A fully discrete plates complex on polygonal meshes with application to the Kirchhoff-Love problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

A fully discrete plates complex on polygonal meshes with application to the Kirchhoff-Love problem

Résumé

In this work we develop a novel fully discrete version of the plates complex, an exact Hilbert complex relevant for the mixed formulation of fourth-order problems. The derivation of the discrete complex follows the discrete de Rham paradigm, leading to an arbitrary-order construction that applies to meshes composed of general polygonal elements. The discrete plates complex is then used to derive a novel numerical scheme for Kirchhoff-Love plates, for which a full stability and convergence analysis are performed. Extensive numerical tests complete the exposition.
Fichier principal
Vignette du fichier
divdivsymm.pdf (547.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03504496 , version 1 (29-12-2021)

Identifiants

Citer

Daniele Di Pietro, Jérôme Droniou. A fully discrete plates complex on polygonal meshes with application to the Kirchhoff-Love problem. 2021. ⟨hal-03504496⟩
79 Consultations
69 Téléchargements

Altmetric

Partager

More