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Abstract

In this work we develop a novel fully discrete version of the plates complex, an exact Hilbert
complex relevant for the mixed formulation of fourth-order problems. The derivation of the discrete
complex follows the discrete de Rham paradigm, leading to an arbitrary-order construction that
applies to meshes composed of general polygonal elements. The discrete plates complex is then
used to derive a novel numerical scheme for Kirchhoff–Love plates, for which a full stability and
convergence analysis are performed. Extensive numerical tests complete the exposition.
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1 Introduction
Denote by ) ⊂ R2 a contractible polygonal set and by S the space of symmetric 2 × 2 matrices. In this
paper we develop a fully discrete counterpart of the following exact Hilbert complex [16]:

RT
1()) N1() ;R2) N(divdiv, ) ;S) !2()) 0,

sym curl divdiv 0
(1)

where “sym” denotes the symmetric part of a space or an operator, while RT
1()) ≔ P

0()) + xP0())
is the lowest-order Raviart–Thomas space [31]. For a precise definition of the differential operators
sym curl and divdiv in Cartesian coordinates, we refer to (3) below. As the complex (1) is relevant
for mixed formulations of Kirchhoff–Love plates [16], it will be referred to as plates complex in what
follows.

The fully discrete counterpart of the plates complex proposed in this work follows the Discrete de
Rham (DDR) paradigm [22, 25] (see also [23]), and it appears to be the first one designed to support
arbitrary order and general meshes possibly including polygonal elements and non-matching interfaces.
The principle of the DDR paradigm is to replace both spaces and operators by discrete counterparts
designed so as to be compatible with the cohomology properties of the continuous complex. Specifically:
• The discrete spaces are spanned by vectors of polynomialswith components attached tomesh entities in
order to mimic, through their single-valuedness, global continuity properties of the continuous spaces.
The polynomial space for each component is selected to ensure compatibility with the continuous
complex, and can be (a) a full polynomial space, (b) a space obtained applying a differential operator
to a full polynomial space, or (c) its Koszul complement (see [3, Chapter 7] on this concept). Cases
(b) and (c) correspond to incomplete polynomial spaces.
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• The discrete operators are obtained in two steps: first, operator reconstructions in full polynomial
spaces are built mimicking an appropriate integration by parts formula; second, whenever needed, the
!2-orthogonal projection on the appropriate incomplete polynomial space is taken.

In this work, these general principles are declined for the plates complex (1). A key additional difficulty
with respect to the de Rham complex considered in [22, 25] is that both the spaces and operators have
to account for the additional algebraic constraints resulting from symmetry.

The novel polygonal plates complex developed in the first part of this work is applied to Kirchhoff–
Love plates (see [19] concerning the application of the DDR paradigm to Reissner–Mindlin plates).
The support of polygonal meshes in the context of solid mechanics has several interests, including the
possibility to perform adaptation through nonconforming mesh refinement or agglomeration [1, 7], as
well as the support of easy mesh cutting, e.g., for the modelling of cracks. Denote by Ω a contractible
polygonal domain of R2 corresponding to the surface of the plate in its reference configuration. Given
an orthogonal load 5 : Ω → R, we seek the moment tensor 2 : Ω → S and the deflection D : Ω → R
such that

2 + Ahess D = 0 in Ω, (2a)
− divdiv2 = 5 in Ω, (2b)
D = mnD = 0 on mΩ, (2c)

with hess denoting the Hessian operator and A the fourth-order tensor defined by A3 = �
[
(1 − a)3 +

a tr(3)O2
]
for all 3 ∈ S, where � is the bending modulus, a the Poisson ratio, and O2 is the 2 × 2

identity matrix. Notice that the symmetry requirement on 2 naturally results from (2a) owing to the
Schwarz theorem. A weak formulation of (2) with symmetric moment tensors in a space embedding
the continuity of the normal-normal component at interfaces underpins the Hellan–Herrmann–Johnson
method, the analysis of which has been considered in several works [4, 6, 8, 12–14, 18, 28, 30, 32];
see also [5] concerning the application to domains with curved boundaries and [29] for nonlinear
shells. Recently, a weak formulation based on moment tensors in N(divdiv,Ω;S), along with the
corresponding finite element discretisation, has been studied in [15]. While the aforementioned work
has inspired the developments of the present paper, the discrete finite element complexes constructed
therein are restricted to matching triangular meshes (and, even on these meshes, differ from the one
proposed here). For the sake of completeness, we also mention that polygonal methods for the primal
formulation of Kirchhoff–Love plates have been developed in [2, 10].

The rest of this work is organised as follows. In Section 2 we establish the setting (differential
operators, notation for geometric entities, polynomial spaces). Section 3 is devoted to the construction
of the local discrete complex and the proof of its exactness for contractible polygonal elements. The ap-
plication to Kirchhoff–Love plates is considered in Section 4, where complete stability and convergence
analysis are carried out, and numerical examples on various meshes are presented.

2 Setting
2.1 Two-dimensional vector calculus operators

Consider the real plane R2 endowed with the Cartesian coordinate system (G1, G2). We will need
the following two-dimensional differential operators acting on smooth enough scalar-valued fields @,
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vector-valued fields v =
(
E1
E2

)
, or matrix-valued fields 3 =

(
g11 g12
g21 g22

)
:

curl @ ≔
(
m2@

−m1@

)
,

div v ≔ m1E1 + m2E2, grad v ≔

(
m1E1 m2E1
m1E2 m2E2

)
, sym curl v ≔

(
m2E1

−m1E1+m2E2
2

−m1E1+m2E2
2 −m1E2

)
,

div 3 ≔
(
m1g11 + m2g12
m1g21 + m2g22

)
, rot 3 ≔

(
m2g11 − m1g12
m2g21 − m1g22

)
,

(3)

where m8 denotes the partial derivative with respect to the 8th coordinate. Defining the fourth-order
tensor C such that

C3 =

(
g12

−g11+g22
2−g11+g22

2 −g21

)
∀3 =

(
g11 g12
g21 g22

)
∈ R2×2, (4)

we have sym curl v = C grad v.
2.2 Notation for geometric entities

Let ) ⊂ R2 be a contractible polygonal domain and denote by x) a point inside ) such that there exists a
disk centered in x) and contained in ) . The sets of edges and vertices of ) are denoted by E) andV) ,
respectively. For each edge � ∈ E) , we denote byV� the set of vertices corresponding to its endpoints
and fix an orientation by prescribing a unit tangent vector t� . This orientation determines two numbers
(l�+ )+ ∈V� in {−1, +1} such that l�+ = +1 whenever t� points towards + . The corresponding unit
normal vector n� is selected so that ( t� , n� ) forms a right-handed system of coordinates, and we denote
by l) � ∈ {−1, +1} the orientation of � relative to ) , defined so that l) �n� points out of ) .
2.3 Polynomial spaces

Given . ∈ {)} ∪ E) , we denote by Pℓ (. ) the space spanned by the restriction to . of two-variate
polynomials of total degree ≤ ℓ, with the convention that P−1(. ) = {0}. The corresponding !2-
orthogonal projector is denoted by cℓP,. . The symbols Pℓ (. ;R2) and P

ℓ (. ;S) denote, respectively,
vector-valued and symmetric tensor-valued functions over ) whose components are in Pℓ (. ). Notice
that, for all � ∈ E) , the space Pℓ (�) is isomorphic to univariate polynomials of total degree ≤ ℓ (see
[24, Proposition 1.23]). In what follows, with a little abuse of notation, both spaces are denoted by
Pℓ (�). Finally, we denote by Pℓ (E) ) the space of broken polynomials of total degree ≤ ℓ on E) .
Vector and tensor versions of this space are denoted in boldface and the codomain is specified.

3 A local fully discrete complex
3.1 Spaces

Wewill need the following decomposition of the spacePℓ () ;S) of symmetric tensor-valued polynomials
of total degree ≤ <:

P
<() ;S) =H

<()) ⊕H
c,<())

with H
<()) ≔ hessP<+2()) andHc,<()) ≔ sym

(
(x − x) )⊥ ⊗ P

<−1() ;R2)
)
,

(5)

where sym 3 = 3+3>
2 is the symmetrisation operator. The !2-orthogonal projectors on H

<()) and
H
c,<()) are respectively denoted by 0<

H,)
and 0c,<

H,)
, and we notice that, since the kernel of the

Hessian operator coincides with the space of affine bivariate polynomials (that has dimension 3) and
dimPA ()) = 12 (A + 2) (A + 1),

dim(H<())) = 12 (< + 4) (< + 3) − 3, dim(Hc,<())) = <(< + 1). (6)
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We let, for any : ≥ 3 and ℓ ≥ 2,

\:
)
≔

{
v
)
=

(
v) , (v� )� ∈E) , (v+ ,Mv,+ )+ ∈V)

)
:

v) ∈ P:−2() ;R2),
v� ∈ P:−4(� ;R2) for all � ∈ E) ,

v+ ∈ R2 and Mv,+ ∈ R2×2 for all + ∈ V)
}
,

(7a)

�ℓ) ≔
{
3
)
=

(
3H,) , 3

c
H,)

, (g� , �3,� )� ∈E) (3+ )+ ∈V)
)
:

(3H,) , 3
c
H,)
) ∈ Hℓ−3()) ×Hc,ℓ ()),

g� ∈ Pℓ−2(�) and �3,� ∈ Pℓ−1(�) for all � ∈ E) ,

3+ ∈ S for all + ∈ V)
}
.

(7b)

Remark 1 (Dimensions of the local spaces). Recalling that, for all � ∈ E) , dimP<(�) = < +1, it holds

dim\:
)
= : (: − 1) + 2(: − 3) card(E) ) + 6 card(V) )
= : (: − 1) + 2: card(V) ),

(8)

where the conclusion follows observing that card(V) ) = card(E) ). Further recalling (6), we have

dim�ℓ) =
1
2ℓ(ℓ + 1) − 3 + ℓ(ℓ + 1) + [(ℓ − 1) + ℓ] card(E) ) + 3 card(V) )

= 32ℓ(ℓ + 1) + 2(ℓ + 1) card(V) ) − 3.
(9)

The interpolators on \:
)
and �ℓ

) are, respectively, O:\ ,) : I
1() ;R2) → \:

)
and Oℓ�,) : N

2() ;S) →
�ℓ) such that, for all v ∈ I1() ;R2) and all 3 ∈ N2() ;S),

O:\ ,) v ≔
(
0:−2
P,)

v, (0:−4
P,�

v |� )� ∈E) ,
(
v(x+ ), grad v(x+ )

)
+ ∈V)

)
, (10)

Oℓ�,) 3 ≔
(
0ℓ−3
H,)

3, 0c,ℓ
H,)

3,(
cℓ−2
P,�
(3 |�n� · n� ), cℓ−1P,�

[
mt� (3 |�n� · t� ) + (div 3) |� · n�

] )
� ∈E) ,(

3(x+ )
)
+ ∈V)

)
,

(11)

where x+ denotes the coordinate vector of the vertex + ∈ V) while, for all � ∈ E) , mt� denotes the
derivative along the edge � in the direction of t� .

3.2 Differential operators and potential reconstructions

In what follows we define the various reconstructions of differential operators and of the corresponding
vector or symmetric tensor potentials. Following standard conventions for DDR methods, full operators
mapping on complete polynomial spaces are denoted in sans serif font for easier identification.

3.2.1 Reconstructions in \:
)

The key integration by parts formula to reconstruct discrete counterparts of the symmetric curl and of
the corresponding vector potential is the following: For any v : ) → R2 and any 3 : ) → S smooth
enough, ∫

)

v · rot 3 = −
∫
)

sym curl v : 3 +
∑
� ∈E)

l) �

∫
�

3 t� · v. (12)
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The full symmetric curl C:−1sym,) : \
:
)
→ P

:−1() ;S) is such that, for all v
)
∈ \:

)
,∫

)

C:−1sym,) v) : 3 = −
∫
)

v) · rot 3 +
∑
� ∈E)

l) �

∫
�

vE) · (3 t� ) ∀3 ∈ P:−1() ;S), (13)

where vE) ∈ P: (E) ;R2) ∩ I0(m) ;R2) denotes the unique function in this space such that

for all � ∈ E) , 0:−4P,�
(vE) ) |� = v� and mt� (vE) ) |� (x+ ) = Mv,+ t� for all + ∈ V� ,

and vE) (x+ ) = v+ for all + ∈ V) .
(14)

The following polynomial consistency property holds: For all v ∈ P: () ;R2), letting vE) be defined by
(14) with v

)
= O:\ ,) v, we have vE) = v |m) . It can be easily checked that (13) defines C:−1sym,) v) uniquely

owing to the Riesz representation theorem in P
:−1() ;S) equipped with the standard !2-product. By

design, we have the following polynomial consistency property:

C:−1sym,) (O:\ ,) v) = sym curl v ∀v ∈ P: () ;R2). (15)

The discrete symmetric curl I:−1sym,) : \
:
)
→ �:−1) , acting between the discrete spaces in the complex,

is obtained setting, for all v
)
∈ \:

)
,

I:−1sym,) v) ≔
(
0:−4
H,)

(
C:−1sym,) v)

)
, 0c,:−1

H,)

(
C:−1sym,) v)

)
,
(
c:−3P,� (mt� vE) · n� ), m

2
t� vE) · t�

)
� ∈E) ,(

CMv,+
)
+ ∈V)

)
,

(16)

with C as in (4). The choice of the edge terms in (16) is justified by the formulas in [15, Lemma 2.2]
relating trace values of the symmetric curl with tangential derivatives of the function. Finally, we define
the vector potential V:\ ,) : \

:
)
→ P

: () ;R2) such that, for all v
)
∈ \:

)
,∫

)

V:\ ,) v) · rot 3 = −
∫
)

C:−1sym,) v) · 3 +
∑
� ∈E)

l) �

∫
�

vE) · (3 t� ) ∀3 ∈ Hc,:+1()).

To check that this condition defines V:\ ,) v) uniquely, use again the Riesz representation theorem for
P
: () ;R2) equipped with the !2-product along with the fact that rot : Hc,:+1()) → P

: () ;R2) is an
isomorphism (see [15, Lemma 3.6]). The following polynomial consistency property holds:

V:\ ,)
(
O:\ ,) v

)
= v ∀v ∈ P: () ;R2).

3.2.2 Reconstructions in �ℓ)
The starting point is, in this case, the following integration by parts formula, corresponding to [18,
Eq. (2.4)] (see also [15, Eq. (2)]) and valid for all tensor-valued functions 3 : ) → S and all scalar-
valued functions @ : ) → R smooth enough:∫

)

divdiv 3 @ =
∫
)

3 : hess @ −
∑
� ∈E)

l) �

∑
+ ∈V�

l�+ (3n� · t� ) (x+ ) @(x+ )

−
∑
� ∈E)

l) �

[∫
�

(3n� · n� ) mn� @ −
∫
�

(
mt� (3n� · t� ) + div 3 · n�

)
@

]
.

(17)

The discrete div-div operator DDℓ−1
)
: �ℓ) → Pℓ−1()) is such that, for all 3) ∈ �

ℓ
) ,
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∫
)

DDℓ−1) 3
)
@ =

∫
)

3H,) : hess @ −
∑
� ∈E)

l) �

∑
+ ∈V�

l�+ (3+ n� · t� ) @(x+ )

−
∑
� ∈E)

l) �

(∫
�

g� mn� @ −
∫
�

�g,� @

)
∀@ ∈ Pℓ−1()). (18)

Writing (18) for 3
)
= Oℓ�,) 3, removing the !2-orthogonal projectors in the right hand side, and

integrating by parts, it can be easily checked that the following commutation property holds:

DDℓ−1)

(
Oℓ�,) 3

)
= cℓ−1P,)

(
divdiv 3

)
∀3 ∈ N2() ;S). (19)

The tensor potential Vℓ�,) : �
ℓ
) → Pℓ () ;S) is such that, for all 3

)
∈ �ℓ) and all (@, 4) ∈ Pℓ+2()) ×

H
c,ℓ ()),∫
)

Vℓ�,) 3) : (hess @ + 4) =
∫
)

DDℓ−1) 3
)
@ +

∑
� ∈E)

l) �

∑
+ ∈V�

l�+ (3+ n� · t� ) @(x+ )

+
∑
� ∈E)

l) �

(∫
�

%ℓ�,�3� mn� @ −
∫
�

�3,� @

)
+

∫
)

3c
H,)

: 4,
(20)

where, for all � ∈ E) , denoting by 3
�
≔

(
g� , �3,� , (3+ )+ ∈V�

)
the restriction of 3

)
to � , %ℓ�,�3� ∈

Pℓ (�) is the unique polynomial that satisfies

%ℓ�,�3� (x+ ) = 3+ n� · n� for all + ∈ V� and cℓ−2P,�
(
%ℓ�,�3�

)
= g� . (21)

The fact that condition (20) defines Vℓ�,) 3) uniquely follows from the Riesz representation theorem
applied to P

ℓ () ;S) equipped with the standard !2-product, along with the decomposition (5) of this
space and the compatibility condition expressed by the fact that both sides of (20) vanish for @ ∈ P1())
and 4 = 0 (use (18) and ℓ − 1 ≥ 1 to see that the right-hand side vanishes).

Using the commutation property (19), it can be checked that the following polynomial consistency
properties hold: For all ) ∈ Tℎ, denoting by Oℓ�,� the restriction of Oℓ�,) to � ∈ E) ,

%ℓ�,� (O
ℓ
�,�3 |� ) = 3 |�n� · n� ∀3 ∈ Pℓ () ;S) , ∀� ∈ E) , (22)

Vℓ�,) (O
ℓ
�,) 3) = 3 ∀3 ∈ Pℓ () ;S). (23)

3.3 Discrete complex

Let : ≥ 3. The discrete version of the complex (1) is obtained arranging the spaces (7) (with ℓ = : − 1)
in a sequence and connecting them with the discrete operators:

RT
1 \:

)
�:−1) P:−2()) 0.

O :\ ,) I:−1sym,) DD:−2
) 0

(24)

The following remark will play a crucial role in establishing key properties of the discrete complex.
Remark 2 (Hermite lifting on a subtriangulation). An element v

)
=

(
v) , (v� )� ∈E) , (v+ ,Mv,+ )+ ∈V)

)
∈

\:
)
can be lifted into a function over ) as described hereafter. Denote by T) a matching simplicial

subtriangulation of ) the trace of which on m) coincides with E) , and let H:) be the vector-valued
Hermite finite element space of degree : built on T) (see, e.g., [11, Section 3.2] for the real-valued
Hermite space). We take ṽ as the element of H:) defined setting the degrees of freedom on m) equal
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to
(
(v� )� ∈E) , (v+ ,Mv,+ )+ ∈V)

)
and interpolating the internal degrees of freedom (which determine in

particular the projection on P:−3(t) for each triangle t ∈ T) ) from v) . It follows that

ṽ |m) = vE) , 0
:−3
P,)

ṽ = 0:−3
P,)

v) , and CMv,+ = C grad ṽ(x+ ) = sym curl ṽ(x+ ) for all + ∈ V) . (25)

We note that the following integration-by-parts holds: For all @ ∈ �1()),∫
)

sym curl ṽ : hess @ −
∑
� ∈E)

l) �

∑
+ ∈V�

l�+ sym curl ṽ(x+ )n� · t� @(x+ )

−
∑
� ∈E)

l) �

[∫
�

(mt� ṽ |� · n� ) mn� @ −
∫
�

(m2t� ṽ |� · t� ) @
]
= 0. (26)

To establish this relation, it suffices to apply (17) on each triangle t ∈ T) with 3 = sym curl ṽ |t,
use div div(sym curl ṽ |t) = 0 and [15, Lemma 2.2] to transform the boundary terms into tangential
derivatives of ṽ |t, sum up the resulting formulas over t ∈ T) , and notice that the terms on the internal
boundaries ∪t∈T) mt ∩ ) cancel out since the tangential derivatives on the triangle edges and the nodal
values of the gradients of ṽ are continuous across the triangles. Additionally, using the first two relations
in (25) in (13) with 3 ∈ P

:−2() ;S) and using the integration by parts (12) (which is valid since
ṽ ∈ N1() ;R2)), it holds

0:−2
P,)
(C:−1sym,) v) ) = 0:−2

P,)
(sym curl ṽ). (27)

Theorem 3 (Exactness). With ) contractible polygon, the complex (24) is exact.

Proof. We have to prove the following relations:

O:\ ,)RT
1 = KerI:−1sym,) , (28)

ImDD:−2) = P:−2()), (29)
ImI:−1sym,) = KerDD:−2) . (30)

1. Proof of (28).We start by proving that

O:\ ,)RT
1 ⊂ KerI:−1sym,) . (31)

To this end, we take a generic w ∈ RT
1, set ŵ

)
≔ O:\ ,) w, and show that I:−1sym,) ŵ) = 0. By

the polynomial consistency property (15) along with RT
1()) ⊂ P

: () ;R2), it holds C:−1sym,) ŵ) =

sym curlw = 0, where the conclusion follows using the leftmost portion of the continuous complex (1).
As a consequence, the internal components of I:−1sym,) ŵ) vanish.

Let us now consider the boundary components. We start by noticing that, by polynomial consistency
of the construction (14), ŵE) = w |m) . Moreover, for all � ∈ E) , w |� ·n� ∈ P0(�) (see [22, Proposition
8]), so that mt� ŵE) · n� = mt�w |� · n� = 0, i.e., the first edge component of I:−1sym,) ŵ) vanishes.
Additionally, since ŵE) · t� = w |� · t� ∈ P1(�), the function m2t� ŵE) · t� also vanishes. Finally, vertex
components vanish since C gradw(x+ ) = sym curlw(x+ ) = 0 by (1), thus proving (31)

We next show that
KerI:−1sym,) ⊂ O:\ ,)RT

1, (32)

i.e., for all v
)
∈ \:

)
such that

I:−1sym,) v) = 0, (33)
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there exists w ∈ RT
1()) such that v

)
= O:\ ,) w. We start by examining the boundary function vE)

defined by (14). For any + ∈ V) , the condition CMv,+ = 0 resulting from (33) and the definition (4) of
C imply the existence of (V+ )+ ∈V) ∈ Rcard(V) ) such that

Mv,+ = V+ O2 ∀+ ∈ V) , (34)

with O2 denoting as before the 2 × 2 identity matrix. Let now � ∈ E) and denote by +1, +2 its vertices
numbered so that t� = x+2 − x+1 . The conditions relative to � resulting from (33) translate as follows:

c:−3P,�
(
mt� (vE) · n� )

)
= 0, (35)

m2t� (vE) · t� ) = 0 =⇒ vE) · t� ∈ P1(�). (36)

Combining (36) (which implies, in particular, that mt� (vE) · t� ) is constant along �) with the definition
(14) of vE) , we obtain

Mv,+1 t� · t� = mt� (vE) · t� ) |� (x+1) = mt� (vE) · t� ) |� (x+2) = Mv,+2 t� · t� .

Owing to (34) this yields V+1 = V+2 . Repeating this reasoning for all edges � ∈ E) , we infer the
existence of V ∈ R such that

V+ = V and mt� (vE) ) |� (x+ ) = Vt� for all + ∈ V) . (37)

We now exhibit a function w ∈ RT
1()) such that, for all � ∈ E) ,

w |� · t� = vE) · t� and w(x+ ) · n� = vE) (x+ ) · n� for all x+ ∈ V� . (38)

We take w of the form w(x) = " + Vx with " ∈ R2 such that, for a fixed vertex +0 ∈ V) , w(x+0) = v+0
and V as in (37). Let us number the remaining vertices coherently with the orientation of ) , and denote
by �8 the edge of endpoints x+8 , x+8+1 , 8 ≥ 0. Set 8 = 0. Since w |�8 · n�8 is constant along �8 by [22,
Proposition 8], w(x+8+1) · n�8 = w(x+8 ) · n�8 = v+8 · n�8 . Moreover, for any x ∈ �8 ,

w(x) · t�8 =
[
w(x+8 ) + V(x − x+8 )

]
· t�8 =

[
v+8 + V(x − x+8 )

]
· t�8 = vE) (x) · t� ,

the conclusion following by (36) combined with (37). These conditions are precisely (38) for �8 = �0.
Iterating this reasoning for 8 = 1, . . . , card(E) ) − 1 allows one to prove (38) for all � ∈ E) .

We next prove that
for all � ∈ E) , w |� = vE) on � . (39)

By (38), the tangential component of w coincides with that of vE) on every edge. It only remains to
prove the equality of their normal components. Let � ∈ E) be the edge of vertices +1, +2 and set, for
the sake of brevity, q� ≔ vE) |� · n� ∈ P: (�). Combining (37) and (35), we infer

mt�q� (x+8 ) = mt� (vE) ) |� (x+8 ) · n� = Vt� · n� = 0 for all 8 ∈ {1, 2} and c:−3P,� (mt�q� ) = 0.

It is easy to check that these conditions along with mt�q� ∈ P:−1(�) enforce mt�q� = 0, so that
q� ∈ P0(�) is identically equal to w |� · n� on � by the second condition in (38), thus concluding the
proof of (39).

Respectively denoting by v
m)

and O:\ ,m) the restrictions to m) of v
)
and O:\ ,) (the latter being

obtained collecting only the boundary components of (10)), (39) and (34) imply

v
m)
= O:\ ,m) w |m) . (40)
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To conclude the proof of (32), it suffices to show that v) = 0:−2
P,)

w = w (notice that : − 2 ≥ 1 since
: ≥ 3). The condition 0c,:−1

H,)

(
C:−1sym,) v)

)
= 0 resulting from (33) implies, accounting for (13): For all

3 ∈ Hc,:−1()),∫
)

v) · rot 3 =
∑
� ∈E)

l) �

∫
�

vE) · (3 t� ) =
∑
� ∈E)

l) �

∫
�

w |� · (3 t� ) =
∫
)

w · rot 3,

where we have used (39) in the second equality and the integration by parts formula (12) to conclude.
Since rot : Hc,:−1()) → P

:−2() ;R2) is an isomorphism, this shows that v) = w, hence, recalling
(40), v

)
= O:\ ,) w, proving (32).

2. Proof of (29). Given @ ∈ P:−2()) ⊂ !2()), by surjectivity of divdiv (see [17]) there exists 3@ ∈
N2() ;S) such that divdiv 3@ = @. The surjectivity of DD:−2

)
is then proved observing that, by (19),

DD:−2)

(
O:−1�,) 3@

)
= c:−2P,)

(
divdiv 3@

)
= c:−2P,) @ = @.

3. Proof of (30).We start by proving that

ImI:−1sym,) ⊂ KerDD:−2) . (41)

To this end, let v
)
∈ \:

)
. Writing the definition (18) of DD:−2

)
with 3

)
= I:−1sym,) v) and recalling the

definitions (16) of I:−1sym,) and (14) of vE) , we have, for all @ ∈ P:−2()),∫
)

DD:−2)

(
I:−1sym,) v)

)
@

=

∫
) �
�
�>

0:−2
P,)

0:−4
H,)

(
C:−1sym,) v)

)
: hess @ −

∑
� ∈E)

l) �

∑
+ ∈V�

l�+ (CMv,+ )n� · t� @(x+ )

−
∑
� ∈E)

l) �

(∫
��
��c:−3P,� (mt� vE) · n� ) mn� @ −

∫
�

m2t� vE) · t� @
)
,

(42)

where the substitution of 0:−4
H,)

with 0:−2
P,)

is made possible by the fact that hess @ ∈ H
:−4()) ⊂

P
:−2()), while the removal of c:−3P,� is a consequence of mn� @ |� ∈ P:−3(�). Denote by ṽ ∈ N2() ;R2)

the lifting of v
)
in a Hermite finite element space on a subtriangulation of ) obtained as in Remark 2.

Recalling (27) and (25), (42) becomes∫
)

DD:−2)

(
I:−1sym,) v)

)
@ =

∫
)

sym curl ṽ : hess @ −
∑
� ∈E)

l) �

∑
+ ∈V�

l�+ sym curl ṽ(x+ )n� · t� @(x+ )

−
∑
� ∈E)

l) �

(∫
�

(mt� ṽ |� · n� ) mn� @ −
∫
�

m2t� ṽ |� · t� @
)
= 0,

the conclusion being a consequence of (26). This proves (41).
To prove (30), it only remains to show that

dim(ImI:−1sym,) ) = dim(KerDD:−2) ). (43)

By the rank-nullity theorem along with (28) and (8),

dim(ImI:−1sym,) ) = dim\:
)
− dim(RT

1())) = : (: − 1) + 2: card(V) ) − 3.
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On the other hand, again by the rank-nullity theorem along with (29) and (9) written for ℓ = : − 1,

dim(KerDD:−2) ) = dim�:−1) − dim(P:−2()))
= 32 : (: − 1) + 2: card(V) ) − 3 −

1
2 : (: − 1)

= : (: − 1) + 2: card(V) ) − 3.

This proves (43) and concludes the proof of (30). �

We close this section by establishing a link between the tensor potential reconstruction in �:−1) and
the full and discrete curls on \:

)
. As pointed out in [22], this type of results play a key role in the proof

of optimal consistency properties for discrete operators, and thus rates of convergence for the related
schemes. This is the reason why, even though Lemma 4 is not used in the numerical analysis of the
Kirchhoff–Love model considered in Section 4 (as this model does not involve the symmetric curl), we
state and prove this link potential–curls link.

Lemma 4 (Tensor potential reconstruction and discrete curls). It holds, for all v
)
∈ \:

)
,

V:−1�,)

(
I:−1sym,) v)

)
= C:−1sym,) v) .

Proof. Let v
)
∈ \:

)
. We start by noticing that, for all � ∈ E) , %:−1�,�

(
I:−1sym,�v�

)
(with I:−1sym,� and v

�

denoting the restrictions of I:−1sym,) and v
)
to �) satisfies, by its definition (21) written for ℓ = : − 1,

%:−1�,�

(
I:−1sym,�v�

)
(x+ ) = CMv,+ n� · n� = (mt� vE) · n� ) (x+ ) for all + ∈ V� ,

c:−3P,�

[
%:−1�,�

(
I:−1sym,�v�

) ]
= c:−3P,� (mt� vE) · n� ),

where we have used [15, Eq. (3)] and introduced the lifting ṽ of v
)
defined in Remark 2 to write, in the

first line,

CMv,+ n� · n� = (sym curl ṽ(x+ ))n� · n� = (mt� ṽ(x+ )) · n� = (mt� vE) (x+ )) · n� .

Since mt� vE) · n� ∈ P:−1(�), these conditions ensure that

%:−1�,�

(
I:−1sym,�v�

)
= mt� vE) · n� .

We next write the definition (20) of V:�,) with 3
)
= I:−1sym,) v) and use the above relation along with

(30) to infer, for all (@, 4) ∈ P:+1()) ×Hc,:−1()),∫
)

V:−1�,)

(
I:−1sym,) v)

)
: (hess @ + 4)

=
∑
� ∈E)

l) �

∑
+ ∈V�

l�+ (CMv,+ n� · t� @) (x+ )

+
∑
� ∈E)

l) �

[∫
�

(mt� vE) · n� ) mn� @ −
∫
�

(m2t� vE) · t� ) @
]
+

∫
)
��
�0c,:−1

H,)
(C:−1sym,) 3) ) : 4,

where the cancellation of the projector is possible since 4 ∈ H
c,:−1()). Using the lifting ṽ of v

)

defined in Remark 2 and the integration by parts formula (26), we can go on writing∫
)

V:−1�,)

(
I:−1sym,) v)

)
: (hess @ + 4) =

∫
)

sym curl ṽ : hess @ +
∫
)

C:−1sym,) 3) : 4. (44)
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By the integration by parts formula (12)with (v, 3) = (ṽ, hess @) (which is justified since ṽ ∈ N1() ;R2)),
we have ∫

)

sym curl ṽ : hess @ = −
∫
)

ṽ ·����
��rot(hess @) +

∑
� ∈E)

l) �

∫
�

hess @ t� · ṽ

=
∑
� ∈E)

l) �

∫
�

hess @ t� · vE) =
∫
)

C:−1sym,) v) : hess @,
(45)

where we have used the fact that ṽ |m) = vE) to pass to the second line and the definition (13) of C:−1sym,)
with 3 = hess @ to conclude. Plugging (45) into (44), the conclusion follows observing that hess @ + 4
spans P:−1() ;S) as (@, 4) spans P:+1()) ×Hc,:−1()) by (5) written for < = : − 1. �

4 Application to Kirchhoff–Love plates
We apply the above developments to the design of a polygonal method for problem (2). We assume that
� > 0, a ∈ (0, 1), and we note that the tensor A is invertible, with

A−13 =
1

� (1 − a)

(
3 − a

1 + a tr(3)O
)

∀3 ∈ S.

In particular, the following coercivity and bound estimates hold, in which |·| denotes the Frobenius
norm:

A−13 : 3 ≥ |3 |2
� (1 + a) and |A−13 | ≤ 2

� (1 − a) |3 |, ∀3 ∈ S. (46)

Assuming 5 ∈ !2(Ω), we thus consider the following weak formulation of problem (2): Find (2, D) ∈
N(divdiv,Ω;S) × !2(Ω) such that∫

Ω

A−12 : 3 +
∫
Ω

divdiv 3 D = 0 ∀3 ∈ N(divdiv,Ω;S),

−
∫
Ω

divdiv2 E =
∫
Ω

5 E ∀E ∈ !2(Ω).
(47)

4.1 Global discrete spaces

Let ℓ ≥ 2 and denote byMℎ = (Tℎ, Eℎ) a polygonal mesh in the sense of [24, Definition 1.4], with
Tℎ collecting the polygonal mesh elements and Eℎ the mesh faces. We additionally denote by Vℎ the
set collecting the edge endpoints. The global discrete counterpart of N(divdiv,Ω;) onMℎ is defined
glueing the boundary components of the local spaces (7b) defined on each mesh element ) ∈ Tℎ:

�ℓℎ ≔
{
3
ℎ
=

(
(3H,) , 3

c
H,)
)) ∈Tℎ , (g� , �3,� )� ∈Eℎ (3+ )+ ∈Vℎ

)
:

(3H,) , 3
c
H,)
) ∈ Hℓ−3()) ×Hc,ℓ ()) for all ) ∈ Tℎ,

g� ∈ Pℓ−2(�) and �3,� ∈ Pℓ−1(�) for all � ∈ Eℎ,

3+ ∈ S for all + ∈ Vℎ
}
.

Correspondingly, the global interpolator on �ℓ
ℎ
is defined patching together the local interpolators (11):

For all 3 ∈ N2(Ω;S),

Oℓ�,ℎ3 ≔
(
(0ℓ−3

H,)
3, 0c,ℓ

H,)
3)) ∈Tℎ ,(

cℓ−2
P,�
(3 |�n� · n� ), cℓ−1P,�

[
mt� (3 |�n� · t� ) + (div 3) |� · n�

] )
� ∈Eℎ ,(

3(x+ )
)
+ ∈Vℎ

)
.
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We additionally define, for any integer < ≥ 0, the space of broken polynomials on Tℎ of total degree
≤ < as

P<(Tℎ) ≔
{
@ℎ ∈ !2(Ω) : @ |) ∈ P<()) for all ) ∈ Tℎ

}
.

Vector and tensor versions of this space are denoted in boldface and we specify the codomain to
distinguish them. Interpolation on P<(Tℎ) is done through the !2-orthogonal projector c<P,ℎ.

4.2 Global discrete !2-product and norm of moment tensors

We define the following discrete !2-product on �ℓ
ℎ
:

(4
ℎ
, 3
ℎ
)�,ℎ ≔

∑
) ∈Tℎ

(∫
)

Vℓ�,) 4) : V
ℓ
�,) 3) + B�,) (4) , 3) )

)
∀(4

ℎ
, 3
ℎ
) ∈ �ℓℎ × �

ℓ
ℎ,

with stabilization bilinear form

B�,) (4) , 3) ) ≔
∑
� ∈E)

ℎ)

∫
�

(Vℓ�,) 4) n� · n� − %
ℓ
�,�4� ) (V

ℓ
�,) 3) n� · n� − %

ℓ
�,�3� )

+
∑
� ∈E)

ℎ3)

∫
�

[ (
mt� (Vℓ�,) 4) n� · t� ) + div Vℓ�,) 4) · n� − �4,�

)
×

(
mt� (Vℓ�,) 3) n� · t� ) + div Vℓ�,) 3) · n� − �3,�

) ]
+

∑
+ ∈V)

ℎ2) (Vℓ�,) 4) (x+ ) − 4+ ) : (V
ℓ
�,) 3) (x+ ) − 3+ ).

The corresponding operator norm is

‖3
ℎ
‖�,ℎ ≔ (3ℎ, 3ℎ)

1
2
�,ℎ .

We denote by ‖·‖�,) the norm on �ℓ) obtained restricting the above norm to the element ) ∈ Tℎ.
4.3 Discrete problem and main results

The discrete problem reads: Find (2
ℎ
, Dℎ) ∈ �ℓℎ × Pℓ−1(Tℎ) such that

0ℎ (2ℎ, 3ℎ) + 1ℎ (3ℎ, Dℎ) = 0 ∀3
ℎ
∈ �ℓℎ, (48a)

−1ℎ (2ℎ, Eℎ) =
∫
Ω

5 Eℎ ∀Eℎ ∈ Pℓ−1(Tℎ), (48b)

with bilinear forms 0ℎ : �ℓℎ × �
ℓ
ℎ
→ R and 1ℎ : �ℓℎ × Pℓ−1(Tℎ) → R such that

0ℎ (2ℎ, 3ℎ) ≔
∑
) ∈Tℎ

(∫
)

A−1Vℓ�,)2) : V
ℓ
�,) 3) +

1
� (1 + a) B�,) (2) , 3) )

)
,

1ℎ (3ℎ, Eℎ) ≔
∑
) ∈Tℎ

∫
)

DDℓ−1) 3
)
E) ,

(49)

where 3
)
∈ �ℓ

)
and E) ∈ Pℓ−1()) respectively denote the restrictions of 3ℎ and Eℎ to) . Adding together

both equations in (48) we obtain the following equivalent variational formulation: Find (2
ℎ
, Dℎ) ∈

�ℓ
ℎ
× Pℓ−1(Tℎ) such that

�ℎ ((2ℎ, Dℎ), (3ℎ, Eℎ)) =
∫
Ω

5 Eℎ ∀(3
ℎ
, Eℎ) ∈ �ℓℎ × P

ℓ−1(Tℎ), (50)
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with bilinear form �ℎ : (�ℓℎ × Pℓ−1(Tℎ))2 → R such that

�ℎ ((2ℎ, Dℎ), (3ℎ, Eℎ)) ≔ 0ℎ (2ℎ, 3ℎ) + 1ℎ (3ℎ, Dℎ) − 1ℎ (2ℎ, Eℎ).

In what follows, we equip the Cartesian product space �ℓ
ℎ
× Pℓ−1(Tℎ) with the norm

‖(3
ℎ
, Eℎ)‖�×!,ℎ ≔

(
‖3
ℎ
‖2�,ℎ + ‖Eℎ ‖

2
!2 (Ω)

) 1
2
.

We next state the main results of the analysis, the proof of which is postponed to the coming sections.
From this point on, to avoid the proliferation of generic constants, we write 0 . 1 in place of 0 ≤ �1
with� possibly depending only on the domainΩ and on the mesh regularity parameter of [24, Definition
1.9], but independent of the meshsize and the physical parameters �, a. The following lemma contains
existence and uniqueness of a discrete solution as well as an a priori estimate on it.

Lemma 5 (Well-posedness of problem (48)). The bilinear form �ℎ satisfies the inf-sup condition: For
all (2

ℎ
, Dℎ) ∈ �ℓℎ × Pℓ−1(Tℎ),

W‖(2
ℎ
, Dℎ)‖�×!,ℎ . sup

(3
ℎ
,Eℎ) ∈�ℓℎ×Pℓ−1 (Tℎ)\{(0,0) }

�ℎ ((2ℎ, Dℎ), (3ℎ, Eℎ))
‖(3

ℎ
, Eℎ)‖�×!,ℎ

, (51)

where

W ≔

[
�2

(
1 + 1

�2 (1−a)2

)2
+ 1

]− 12
. (52)

As a consequence, there exists a unique solution (2
ℎ
, Dℎ) ∈ �ℓℎ × Pℓ−1(Tℎ) to problem (48) (or,

equivalently, (50)), for which the following a priori bound holds:

‖(2
ℎ
, Dℎ)‖�×!,ℎ . W−1‖ 5 ‖!2 (Ω) .

Proof. See Section 4.5. �

The convergence rates of theDDR scheme for smooth enough solutions are estimated in the following
theorem.

Theorem 6 (Error estimate). Assume that the solution (2, D) to the continuous problem (47) is such
that 2 ∈ N2(Ω;S) ∩ Nℓ+1(Tℎ;S) and D ∈ �1(Ω) ∩ �ℓ+3(Tℎ), and let (2

ℎ
, Dℎ) ∈ �ℓℎ × Pℓ−1(Tℎ) be

the solution to the discrete problem (48) (or, equivalently, (50)). Then, recalling the definition (52) of
W, it holds

‖(Oℓ�,ℎ2 − 2ℎ, c
ℓ−1
P,ℎD − Dℎ)‖�×!,ℎ . W

−1ℎℓ+1
(

1
� (1−a) |2 |Nℓ+1 (Tℎ) + |D |� ℓ+3 (Tℎ)

)
. (53)

Proof. See Section 4.6. �

Remark 7 (Superconvergence of the deflection). The error estimate (53) shows a superconvergence of Dℎ
to cℓ−1P,ℎD. This phenomenon is common in mixed formulations; see, e.g., [26, Theorem 7] concerning a
Mixed High-Order method for the Darcy problem related to the rightmost portion of the DDR sequence
of [25].
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(a) Matching triangular (b) Locally refined (c) Hexagonal (d) Kershaw

Figure 1: Meshes used in the numerical test of Section 4.4. The triangular, nonconforming, and Kershaw
meshes are taken from the FVCA5 benchmark [27].

4.4 Numerical examples

The DDR scheme (48) was implemented in HArDCore (see https://github.com/jdroniou/
HArDCore), an open source C++ library geared towards polytopal methods. For the resolution of
the linear system, the moment unknowns in each cell (components in H

ℓ−3()) ×H
c,ℓ ()) in �ℓ

ℎ
) are

eliminated using a standard static condensation process, and the resulting system is solved using the
Intel MKL PARDISO library (see https://software.intel.com/en-us/mkl). In order to nu-
merically assess the convergence rates established in Theorem 6, we have considered a manufactured
solution of problem (47) with tensor A such that A3 = 3 for all 3 ∈ S and deflection field

D(G1, G2) = sin(cG1) sin(cG2).

The corresponding moment tensor field and orthogonal load are, respectively,

2(G1, G2) = c2
(
sin(cG1) sin(cG2) − cos(cG1) cos(cG2)
− cos(cG1) cos(cG2) sin(cG1) sin(cG2)

)
, 5 (G1, G2) = 4c4 sin(cG1) sin(cG2).

To account for the fact that the normal derivative of D does not vanish on mΩ (which corresponds to
a non-homogeneous natural condition for the mixed formulation considered here), the right-hand side
of (48a) is replaced by −∑

� ∈Eb
ℎ

∫
�
mnD %

ℓ
�,�3� , where E

b
ℎ
is the set of boundary edges, mnD is the

given boundary datum with n : mΩ → R2 the outer normal to Ω. It can be easily checked that this
modification does not alter the consistency results of Lemma 5, hence Theorem 6 holds unchanged also
in this case.

To showcase the ability of the DDR method to support both standard and general polygonal meshes
(possibly including non-matching interfaces), we consider matching triangular, locally refined quad-
rangular, predominantly hexagonal, and Kershaw mesh sequences, an example of which is depicted in
Figure 1.

The convergence of the energy error with respect to the meshsize ℎ for each of these mesh families
and polynomial degrees ℓ ∈ {2, 3, 4} is displayed in Figure 2. The predicted orders of convergence
are numerically verified for all the mesh sequences, as can be checked comparing each curve with the
corresponding reference slope.

Saturation of the error can be noticed for ℓ = 4 on the finest triangular and Kershaw meshes.
This saturation is related to the accumulation of round-off errors and the different values at which it
occurs is linked to the condition number of the system matrix. Notice that the Kershaw mesh family
is particularly delicate, as the quality worsens at each refinement owing to the onset of more and more
elongated elements.
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ℓ = 2 ℓ = 3 ℓ = 4
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(a) Triangular
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(b) Locally refined
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(c) Hexagonal
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(d) Kershaw

Figure 2: Error ‖(Oℓ�,ℎ2 − 2ℎ, cℓ−1P,ℎD − Dℎ)‖�×!,ℎ vs. meshsize ℎ for the test case of Section 4.4 using
the mesh families depicted in Figure 1. The reference slopes refer to the orders of convergence predicted
by Theorem 6 for each polynomial degree ℓ ∈ {2, 3, 4}.
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4.5 Stability analysis

In this section we give a proof of Lemma 5 after discussing the required intermediate results. Following
analysis principles developed for the Discrete de Rham sequence [22], we first introduce a component
norm |||·|||�,ℎ on �ℓℎ, establish boundedness with respect to this norm of discrete differential and potential
operators, prove the equivalence of the component norm with the norm ‖·‖�,ℎ, and finally establish the
boudedness of the interpolator on �ℓ

ℎ
.

4.5.1 Component norm and uniform equivalence with the operator norm

The component norm |||·|||�,ℎ : �ℓℎ → [0,∞) is such that, for all 3ℎ ∈ �
ℓ
ℎ
,

|||3
ℎ
|||2�,ℎ ≔

∑
) ∈Tℎ

|||3
)
|||2�,)

with

|||3
)
|||2�,) ≔ ‖3H,) ‖2R2 () ;R2×2) + ‖3

c
H,)
‖2
R2 () ;R2×2)

+
∑
� ∈E)

(
ℎ) ‖g� ‖2!2 (�) + ℎ

3
) ‖�3,� ‖2!2 (�)

)
+

∑
+ ∈V)

ℎ2) |3+ |2.

Proposition 8 (Boundedness of local operators). It holds, for all ) ∈ Tℎ and all 3) ∈ �
ℓ
) ,

ℎ2) ‖DDℓ−1) 3
)
‖!2 () ) . |||3) |||�,) , (54)( ∑

� ∈E)
ℎ) ‖%ℓ�,�3� ‖

2
!2 (�)

) 1
2

. |||3
)
|||�,) , (55)

‖Vℓ�,) 3) ‖R2 () ;R2×2) . |||3) |||�,) , (56)

with 3
�
denoting the restriction of 3

)
to � .

Proof. 1. Proof of (54). Making @ = DDℓ−1
)

3
)
in the definition (18) of DDℓ

)
and using discrete inverse

and trace inequalities on the edges and the vertices (see [24, Lemmas 1.28 and 1.32]), we find

‖DDℓ−1) 3
)
‖2
!2 () ) . ‖3H,) ‖R2 () ;R2×2)ℎ

−2
) ‖DDℓ−1) 3

)
‖!2 () ) +

∑
� ∈E)

∑
+ ∈V�

|3+ |ℎ−1) ‖DDℓ−1) 3
)
‖!2 () )

+
∑
� ∈E)

‖g� ‖!2 (�)ℎ
− 32
)
‖DDℓ−1) 3

)
‖!2 () ) +

∑
� ∈E)

‖�3,� ‖!2 (�)ℎ
− 12
)
‖DDℓ−1) 3

)
‖!2 () ) .

Simplyfying by ‖DDℓ−1
)

3
)
‖!2 () ) and multiplying by ℎ2

)
leads to

ℎ2) ‖DDℓ−1) 3
)
‖!2 () ) . ‖3H,) ‖R2 () ;R2) +

∑
+ ∈V)

ℎ) |3+ | +
∑
� ∈E)

ℎ
1
2
)
‖g� ‖!2 (�) +

∑
� ∈E)

ℎ
3
2
)
‖�3,� ‖!2 (�) .

The proof of (54) is completed using the Cauchy–Schwarz inequality on the sums together with
card(V) ) . 1 and card(E) ) . 1.

2. Proof of (55). The mapping @ ∈ Pℓ ( [0, 1]) → (@(0), @(1), cℓ−2[0,1]@) ∈ R × R × P
ℓ−2( [0, 1]) is

an isomorphism and thus, for all @ ∈ Pℓ ( [0, 1]), we have

‖@‖2
!2 (0,1) . ‖c

ℓ−2
[0,1]@‖

2
!2 (0,1) + |@(0) |

2 + |@(1) |2.
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For any � ∈ E) , using the isomorphism [0, 1] 3 B ↦→ x+1 + Bℎ� (x − x+1) ∈ � , where +1, +2 are the
vertices of � , we infer from the definition (21) of %ℓ�,�3� and ℎ) . ℎ� that

ℎ) ‖%ℓ�,�3� ‖
2
!2 (�) . ℎ) ‖g� ‖

2
!2 (�) + ℎ

2
) |3+1 |2 + ℎ2) |3+2 |2.

Summing over � ∈ E) concludes the proof of (55).

3. Proof of (56).Reasoning via a scaling/transport argument as in [22, Section 2.5] (see in particular
Lemma 2 therein), we easily see that (5) is a topological decomposition; with < = ℓ, this gives
(@, 4) ∈ Pℓ+2()) ×Hc,ℓ ()) such that hess @ + 4 = Vℓ�,) 3) and ‖ hess @‖R2 () ;R2×2) + ‖4‖R2 () ;R2×2) .
‖Vℓ�,) 3) ‖R2 () ;R2×2) . The space

ℭ:+1()) ≔ span
{(

x − x)
ℎ)

)"
: " = (U1, U2) ∈ N2 , 2 ≤ U1 + U2 ≤ : + 1

}
(where y" = HU11 H

U2
2 if y = (H1, H2) ∈ R2) is a complement of P1()) = Ker hess in P:+1()). Selecting

@ ∈ ℭ:+1()), we can again use a transport and scaling argument as in [22, Lemma 9] to see that
‖@‖!2 () ) . ℎ2) ‖ hess @‖R2 () ;R2×2) . Hence, we have (@, 4) ∈ Pℓ+2()) ×H

c,ℓ ()) such that

hess @ + 4 = Vℓ�,) 3) and ℎ−2) ‖@‖!2 () ) + ‖4‖R2 () ;R2×2) . ‖V
ℓ
�,) 3) ‖R2 () ;R2×2) . (57)

Plugging these (@, 4) into the definition (20) of Vℓ�,) 3) and using discrete inverse and trace inequalities
on the edges and the vertices, we obtain

‖Vℓ�,) 3) ‖
2
R2 () ;R2×2) . ‖DDℓ−1) 3

)
‖!2 () ) ‖@‖!2 () ) +

∑
� ∈E)

∑
+ ∈V�

|3+ |ℎ−1) ‖@‖!2 () )

+
∑
� ∈E)

(
‖%ℓ�,�3� ‖!2 (�)ℎ

− 32
)
‖@‖!2 () ) + ‖�3,� ‖!2 (�)ℎ

− 12
)
‖@‖!2 () )

)
+ ‖3c

H,)
‖R2 () ;R2×2) ‖4‖R2 () ;R2×2) .

Applying (57), simplifying by ‖Vℓ�,) 3) ‖R2 () ;R2×2) , and using Cauchy–Schwarz inequalities on the sums,
we infer

‖Vℓ�,) 3) ‖R2 () ;R2×2) . ℎ
2
) ‖DDℓ−1) 3

)
‖!2 () ) +

( ∑
+ ∈V)

ℎ2) |3+ |2
) 1
2

+
( ∑
� ∈E)

ℎ) ‖%ℓ�,�3� ‖
2
!2 (�)

) 1
2

+
( ∑
� ∈E)

ℎ3) ‖�3,� ‖2!2 (�)

) 1
2

+ ‖3c
H,)
‖R2 () ;R2×2) .

The estimate (56) then follows from (54) and (55). �

Lemma 9 (Uniform equivalence between the component and operator norms). It holds, for • = ℎ or
) ∈ Tℎ,

|||3• |||�,• ' ‖3•‖�,• ∀3• ∈ �
ℓ
•, (58)

where 0 ' 1 means 0 . 1 and 1 . 0.
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Proof. We obviously only have to prove the case • = ) for a generic ) , the case • = ℎ resulting by
squaring and summing over ) ∈ Tℎ. We have

‖3
)
‖2�,) = ‖V

ℓ
�,) 3) ‖

2
R2 () ;R2×2) +

∑
� ∈E)

ℎ) ‖Vℓ�,) 3) n� · n� − %
ℓ
�,�3� ‖

2
!2 (�)

+
∑
� ∈E)

ℎ3) ‖mt� (V
ℓ
�,) 3) n� · t� ) + div Vℓ�,) 3) · n� − �3,� ‖2!2 (�)

+
∑
+ ∈V)

ℎ2) |Vℓ�,) 3) (x+ ) − 3+ |
2.

(59)

Using triangle, discrete trace, and discrete inverse inequalities, we infer

‖3
)
‖2�,) . ‖V

ℓ
�,) 3) ‖

2
R2 () ;R2×2) +

∑
� ∈E)

ℎ) ‖%ℓ�,�3� ‖
2
!2 (�) +

∑
� ∈E)

ℎ3) ‖�3,� ‖2!2 (�) +
∑
+ ∈V)

ℎ2) |3+ |2.

The estimates (56) (for the first term in the right-hand side) and (55) (for the second term) conclude the
proof that ‖3

)
‖�,) . |||3) |||�,) .

Let us turn to the converse inequality. Making 4 = 0 and taking a generic @ ∈ Pℓ−1()) in the
definition (20) of Vℓ�,) 3) , the definitions (21) of %

ℓ
�,� and (18) of DDℓ−1

)
show that∫

)

Vℓ�,) 3) : hess @ =
∫
)

3H,) : hess @,

which yields 0ℓ−3
H,)
(Vℓ�,) 3) ) = 3H,) . Making @ = 0 in the definition (20) of Vℓ�,) 3) , we also see that

0c,ℓ
H,)
(Vℓ�,) 3) ) = 3c

H,)
. The !2-boundedness of the orthogonal projectors thus yield

‖3H,) ‖2R2 () ;R2×2) + ‖3
c
H,)
‖2
R2 () ;R2×2) ≤ 2‖V

ℓ
�,) 3‖

2
R2 () ;R2×2) .

Using the definition (21) of %ℓ�,�3� and the !2-boundedness of cℓ−2P,� , we therefore infer

|||3
)
|||2�,) ≤ 2‖V

ℓ
�,) 3) ‖

2
R2 () ;R2×2) +

∑
� ∈E)

(
ℎ) ‖%ℓ�,�3� ‖

2
!2 (�) + ℎ

3
) ‖�3,� ‖2!2 (�)

)
+

∑
+ ∈V)

ℎ2) |3+ |2.

Introducing Vℓ�,) 3) n� · n� , mt� (V
ℓ
�,) 3) n� · t� ) + div Vℓ�,) 3) · n� , and Vℓ�,) 3) (x+ ) respectively in

the edge and vertex terms, using triangle inequalities, and recalling (59), we infer

|||3
)
|||2�,) . ‖3) ‖

2
�,) +

∑
� ∈E)

ℎ) ‖Vℓ�,) 3) n� · n� ‖
2
!2 (�)

+
∑
� ∈E)

ℎ3) ‖mt� (V
ℓ
�,) 3) n� · t� ) + div Vℓ�,) 3) · n� ‖

2
!2 (�) +

∑
+ ∈V)

ℎ2) |Vℓ�,) 3) (x+ ) |
2.

The proof is completed applying discrete trace and inverse inequalities to bound the sums in the right-
hand side, up to a multiplicative constant, by ‖Vℓ�,) 3) ‖R2 () ;R2×2) ≤ ‖3) ‖�,) . �

4.5.2 Boundedness of the interpolator and inf-sup condition on 1ℎ
Proposition 10 (Boundedness of Oℓ�,) ). For all ) ∈ Tℎ and all 3 ∈ N

2() ;S), it holds

‖Oℓ�,) 3‖�,) . ‖3‖R2 () ;R2×2) + ℎ) |3 |N1 () ;R2×2) + ℎ
2
) |3 |N2 () ;R2×2) . (60)

As a consequence, for all 3 ∈ N2(Ω;S),

‖Oℓ�,ℎ3‖�,ℎ . ‖3‖N2 (Ω;R2×2) .
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Proof. By the norm equivalence of Lemma 9, ‖Oℓ�,) 3‖�,) . |||O
ℓ
�,) 3 |||�,) . Moreover, using the

!2-boundedness of orthogonal projectors and the definition (11) of Oℓ�,) 3, we have

|||Oℓ�,) 3 |||
2
�,) . ‖3‖

2
R2 () ;R2×2) +

∑
� ∈E)

(
ℎ) ‖3‖2R2 (� ;R2×2) + ℎ

3
) ‖mt�3 |� ‖

2
R2 (� ;R2×2) + ℎ

3
) ‖ div 3‖2

R2 (� ;R2)

)
+

∑
+ ∈V)

ℎ2) |3(x+ ) |2.

Continuous trace inequalities (see, e.g., [24, Lemma 1.31]) applied to 3 and its derivatives lead to

|||Oℓ�,) 3 |||
2
�,) . ‖3‖

2
R2 () ;R2×2) + ℎ

2
) |3 |2N1 () ;R2×2) + ℎ

4
) |3 |2N2 () ;R2×2) +

∑
+ ∈V)

ℎ2) |3(x+ ) |2. (61)

By [24, Eq. (5.110)] and mesh regularity (which gives |) |− 12 . ℎ−1
)
), it holds, for all + ∈ V) ,

|3(x+ ) | . ℎ−1) ‖3‖R2 () ;R2×2) + |3 |N1 () ;R2×2) + ℎ) |3 |N2 () ;R2×2) . (62)

Plugging (62) into (61) completes the proof of (60). �

Lemma 11 (Discrete inf-sup condition for 1ℎ). It holds, for all Eℎ ∈ Pℓ−1(Tℎ),

‖Eℎ ‖!2 (Ω) . sup
3
ℎ
∈�ℓ
ℎ
\{0}

1ℎ (3ℎ, Eℎ)
‖3
ℎ
‖�,ℎ

. (63)

Proof. By [17], divdiv : N(divdiv,Ω;S) → !2(Ω) is surjective, i.e., there exists 3E ∈ N2() ;S)
such that divdiv 3E = Eℎ and ‖3E ‖N2 (Ω;R2×2) . ‖Eℎ ‖!2 (Ω) . Combining this fact with the commutation
property (19) of DDℓ−1

)
and the boundedness of the interpolator proved in Proposition 10, one can use

the classical Fortin argument (see, e.g., [9, Section 5.4.3]) to infer (63). �

4.5.3 Proof of Lemma 5

Owing to (46), the bilinear form 0ℎ defined by (49) is clearly coercive and continuous with respect to
the ‖·‖�,ℎ-norm, with coercivity constant 1

� (1+a) and continuity constant 2
� (1−a) . By (63), the bilinear

form 1ℎ is inf-sup stable with a constant that does not depend on �, a or the meshsize. The conclusion
follows applying [24, Lemma A.11 and Proposition A.4].
4.6 Convergence analysis

This section contains technical results concerning the consistency of the potential reconstruction in
�ℓ
ℎ
and of the stabilisation bilinear forms {B�,) }) ∈Tℎ , from which a bound on the consistency error is

inferred. Theorem 6 directly follows combining the inf-sup stability (51) along with the latter bound
(see (66) below) and applying the Third Strang Lemma of [21].

Proposition 12 (Consistency of the potential reconstruction and stabilization form). For all ) ∈ Tℎ and
all 3 ∈ Nℓ+1() ;S), it holds

‖Vℓ�,) (O
ℓ
�,) 3) − 3‖R2 () ;R2×2) . ℎ

ℓ+1
) |3 |Nℓ+1 () ) , (64)

B�,) (Oℓ�,) 3, 4) ) . ℎ
ℓ+1
) |3 |Nℓ+1 () ) ‖4) ‖�,) ∀4

)
∈ �ℓ) . (65)

Proof. 1. Proof of (64). Let 3̂) ≔ 0ℓ
P,)

3 be the !2-orthogonal projection of 3 on P
2() ;S) (which

boils down to the component-wise !2-projections). The polynomial consistency (23) of Vℓ�,) yields
Vℓ�,) (O

ℓ
�,) 3̂) ) = 3̂) , and so

Vℓ�,) (O
ℓ
�,) 3) − 3 = Vℓ�,) (O

ℓ
�,) (3 − 3̂) )) − (3 − 3̂) ).
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Applying a triangle inequality and the estimate (56) on Vℓ�,) , the norm equivalence (58), and the
boundedness (60) of Oℓ�,) , we infer

‖Vℓ�,) (O
ℓ
�,) 3) − 3‖R2 () ;R2×2) . ‖O

ℓ
�,) (3 − 3̂) )‖�,) + ‖3 − 3̂) ‖R2 () ;R2×2)

. ‖3 − 3̂) ‖R2 () ;R2×2) + ℎ) |3 − 3̂) |N1 () ;R2×2) + ℎ
2
) |3 − 3̂) |N2 () ;R2×2) .

The estimate (64) follows from the approximation properties of 0ℓP,) , see [24, Theorem 1.45] and also
[20, Lemmas 3.4 and 3.6].

2. Proof of (65). To prove (65), we first notice that the polynomial consistencies (22) and (23) yield

B�,) (Oℓ�,) 3̂) , 4) ) = 0 ∀(3̂) , 4) ) ∈ P
ℓ () ;S) × �ℓ) .

Letting, as above, 3̂) = 0ℓ
P,)

3, we infer that

B�,) (Oℓ�,) 3, O
ℓ
�,) 3)

1
2 = B�,) (Oℓ�,) (3 − 3̂) ), O

ℓ
�,) (3 − 3̂) ))

1
2 ≤ ‖Oℓ�,) (3 − 3̂) )‖�,) ,

where conclusion follows from the definition of ‖·‖�,) . The approximation properties of 0ℓ
P,)

then yield,
as in Point 1., B�,) (Oℓ�,) 3, O

ℓ
�,) 3)

1
2 . ℎℓ+1

)
|3 |Nℓ+1 () ;R2×2) , and (65) follows using a Cauchy–Schwarz

inequality on the positive semi-definite bilinear form B�,) . �

Lemma 13 (Consistency error bound). Assume that 2 ∈ N2(Ω;S) ∩ Nℓ+1(Tℎ;S) and D ∈ �1(Ω) ∩
�ℓ+3(Tℎ) solve (2). Let the consistency error Eℎ ((2, D); ·) : �ℓℎ × Pℓ−1(Tℎ) → R be such that, for all
(3
ℎ
, Eℎ) ∈ �ℓℎ × Pℓ−1(Tℎ),

Eℎ ((2, D); (3ℎ, Eℎ)) ≔
∫
Ω

5 Eℎ − 0ℎ (Oℓ�,ℎ2, 3ℎ) − 1ℎ (3ℎ, c
ℓ−1
P,ℎD) + 1ℎ (O

ℓ
�,ℎ2, Eℎ).

Then, it holds

|Eℎ ((2, D); (3ℎ, Eℎ)) | . ℎ
ℓ+1‖(3

ℎ
, Eℎ)‖�×!,ℎ

(
1

� (1−a) |2 |Nℓ+1 (Tℎ) + |D |� ℓ+3 (Tℎ)
)
. (66)

Proof. By definition of 1ℎ and the commutation property (19),

1ℎ (Oℓ�,ℎ2, Eℎ) =
∑
) ∈Tℎ

∫
)

DDℓ−1) (Oℓ�,)2) E) =
∑
) ∈Tℎ

∫
)�
��cℓ−1P,) (divdiv2) E) =

∫
Ω

divdiv2 Eℎ,

where the cancellation of the projector is justified since E) ∈ Pℓ−1()). Using − divdiv2 = 5 , we see
that the first and last terms in the definition of the consistency error cancel out, and thus that

Eℎ ((2, D); (3ℎ, Eℎ)) = −
∑
) ∈Tℎ

(∫
)

A−1Vℓ�,) (O
ℓ
�,)2) : V

ℓ
�,) 3) +

1
� (1 + a) B�,) (O

ℓ
�,)2, 3) )

)
−

∑
) ∈Tℎ

∫
)

DDℓ−1) 3
)
cℓ−1P,) D.

We then add and subtract A−12 = −hess D to Vℓ�,) (O
ℓ
�,)2) and get

Eℎ ((2, D); (3ℎ, Eℎ)) =
∑
) ∈Tℎ

(∫
)

A−1(2 − Vℓ�,) (O
ℓ
�,)2)) : V

ℓ
�,) 3) +

1
� (1 + a) B�,) (O

ℓ
�,)2, 3) )

)
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+
( ∑
) ∈Tℎ

∫
)

hess D : Vℓ�,) 3) −
∑
) ∈Tℎ

∫
)

DDℓ−1) 3
)�
��cℓ−1P,) D

)
≕ T1 + T2, (67)

the cancellation of the projector being justified by DDℓ−1
)

3
)
∈ Pℓ−1()). The consistency properties

(64) and (65) of the local potential reconstruction and stabilization forms together with Cauchy–Schwarz
inequalities and (46) yield

|T1 | . 1
� (1−a) ℎ

ℓ+1 |2 |Nℓ+1 (Tℎ) ‖3ℎ ‖�,ℎ . (68)

To estimate T2, we set D̂) = cℓ+2P,) D and notice that the definition (20) of V
ℓ
�,) yields

0 = −
∫
)

Vℓ�,) 3) : hess D̂) +
∫
)

DDℓ−1) 3
)
D̂) +

∑
� ∈E)

l) �

∑
+ ∈V�

l�+ (3+ n� · t� ) D̂) (x+ )

+
∑
� ∈E)

l) �

(∫
�

%ℓ�,�3� mn� D̂) −
∫
�

�3,� D̂)

)
.

Adding this quantity to T2 leads to

T2 =

[ ∑
) ∈Tℎ

∫
)

hess(D − D̂) ) : Vℓ�,) 3) −
∑
) ∈Tℎ

∫
)

DDℓ−1) 3
)
(D − D̂) )

]
+

∑
) ∈Tℎ

∑
� ∈E)

l) �

∑
+ ∈V�

l�+ (3+ n� · t� ) (D̂) (x+ ) − D(x+ ))

+
∑
) ∈Tℎ

∑
� ∈E)

l) �

(∫
�

%ℓ�,�3� mn� (D̂) − D) −
∫
�

�3,� (D̂) − D)
)

≕ T21 + T22 + T23,

(69)

where the introduction of D(x+ ) in T22 is justified by the fact that it vanishes for boundary vertices and
that, if )1, )2 are the two elements on each side of an internal edge � ,∑

) ∈Tℎ

∑
� ∈E)

l) �

∑
+ ∈V�

l�+ (3+ n� · t� ) D(x+ )︸                                  ︷︷                                  ︸
=:0�+

=
∑
� ∈Eℎ

(l)1� + l)2� )︸            ︷︷            ︸
=0

0�+ = 0,

while the introduction of D in T23 follows from the single-valuedness of this function and its derivatives
on the edges along with D = mnD = 0 on mΩ, and a similar argument. The approximation properties of
cℓ+2P,) and the bound (54) on DDℓ−1

)
give

|T21 | .
∑
) ∈Tℎ

(
ℎℓ+1) |D |� ℓ+3 () ) ‖Vℓ�,) 3) ‖R2 () ;R2×2) + ℎ

ℓ+3
) |D |� ℓ+3 () ) ‖DDℓ−1) 3

)
‖!2 () )

)
. ℎℓ+1 |D |� ℓ+3 (Tℎ) ‖3ℎ ‖�,ℎ .

(70)

To estimate T22, we use (62) and the approximation properties of cℓ+2P,) :

|T22 | .
∑
) ∈Tℎ

∑
+ ∈V)

|3+ |ℎℓ+2) |D |� ℓ+3 () ) ≤
( ∑
) ∈Tℎ

∑
+ ∈V)

ℎ2) |3+ |2
) 1
2
( ∑
) ∈Tℎ

ℎ
2(ℓ+1)
)

|D |2
� ℓ+3 () )

) 1
2

. ‖3
ℎ
‖�,ℎℎℓ+1 |D |� ℓ+3 (Tℎ) , (71)

where we have used a Cauchy–Schwarz inequality and the norm equivalence (58) to conclude.
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The estimate ofT23 is obtained using Cauchy–Schwarz inequalities, the boudedness (55) of the edge
potential reconstructions, the norm equivalence (58), and the trace approximation properties of cℓ+2P,) to
get

|T23 | . ℎℓ+1 |D |� ℓ+3 (Tℎ) ‖3ℎ ‖�,ℎ . (72)

Plugging (70)–(72) into (69), we obtain |T2 | . ℎℓ+1 |D |� ℓ+3 (Tℎ) ‖3ℎ ‖�,ℎ which, used in (67) together
with (68), concludes the proof of (66). �
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