Generalized Pareto Regression Trees for extreme events analysis - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Generalized Pareto Regression Trees for extreme events analysis

Résumé

In this paper, we provide finite sample results to assess the consistency of Generalized Pareto regression trees, as tools to perform extreme value regression. The results that we provide are obtained from concentration inequalities, and are valid for a finite sample size, taking into account a misspecification bias that arises from the use of a "Peaks over Threshold" approach. The properties that we derive also legitimate the pruning strategies (i.e. the model selection rules) used to select a proper tree that achieves compromise between bias and variance. The methodology is illustrated through a simulation study, and a real data application in insurance against natural disasters.
Fichier principal
Vignette du fichier
GPDCARTArXiV.pdf (980.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03486564 , version 1 (17-12-2021)
hal-03486564 , version 2 (16-03-2024)

Identifiants

Citer

Sébastien Farkas, Antoine Heranval, Olivier Lopez, Maud Thomas. Generalized Pareto Regression Trees for extreme events analysis. 2021. ⟨hal-03486564v1⟩
183 Consultations
377 Téléchargements

Altmetric

Partager

More