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Abstract

In this paper, we provide finite sample results to assess the con-
sistency of Generalized Pareto regression trees, as tools to perform
extreme value regression. The results that we provide are obtained
from concentration inequalities, and are valid for a finite sample size,
taking into account a misspecification bias that arises from the use of
a “Peaks over Threshold” approach. The properties that we derive
also legitimate the pruning strategies (i.e. the model selection rules)
used to select a proper tree that achieves compromise between bias and
variance. The methodology is illustrated through a simulation study,
and a real data application in insurance against natural disasters.

Key words: Extreme value theory; Regression trees; Concentration In-
equalities; Generalized Pareto Distribution.

1 Introduction

Extreme value theory (EVT) is the branch of statistics which has been de-
veloped and broadly used to handle extreme events, such as extreme floods,
heat waves episodes or extreme financial losses [21, 16]. One of the key
results behind the success of this approach was proved by Balkema and de
Haan in [4]: they show that the tail of the distribution of a series of observa-
tions can be approximated by a parametric family of distributions, namely
Generalized Pareto (GP) distributions. This property allows the statisti-
cian to find information from the largest observations of a random sample
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to extrapolate the tail. This yields the so-called Peaks over Threshold (PoT)
method introduced in [27] which consists in fitting a GP distribution to the
excesses above some (high) suitably chosen threshold. In a regression frame-
work, the parameters of this GP distribution depend on covariates reflecting
the fact that different values of these covariates may result in a different tail
behavior of the response variable. In this paper, we study the use of regres-
sion trees to perform GP regression on the excesses. This ensemble method,
introduced by [7], determines clusters of similar tail behaviors depending on
the value of the covariates, based on a recursive partition of the sample and
simple model selection rules. In the present work, we provide theoretical
results and empirical evidence on the consistency of such a procedure and
of these selection rules. The result we provide are based on concentration
inequalities, in order to hold for finite sample sizes. The main difficulty
stands in the misspecification of the model and on handling the fact that
the distributions are heavy tailed.

Tail regression is a challenging task. Several papers have been interested
in extreme quantile regression, to name a few, in 2005, Chernozhukov [11]
and, in 2012, Wang et al. [34] derive extreme quantile estimators assuming
a linear form for the conditional quantile. In 2019, Gardes and Stupfler
[18] and Velthoen et al. [32] use conditional intermediate-level quantiles to
extrapolate above the threshold and deduce estimators for extreme condi-
tional quantiles. Another approach is to model the parameters of the GP
distribution of functions of the covariates e.g. as local polynomials [5] or
as generalized additive models [10]. Very recently, in 2021, Velthoen et al.
[33] proposed to a gradient boosting procedure to estimate conditional GP
distribution. Let us note that the nonparametric approaches rely on regu-
larity assumptions on the way the tail of the distribution evolves with the
covariates (which are required to be continuous through the use of kernel
smoothing). A nice feature of the regression tree approach we consider in the
present paper is its ability to handle several covariates which components
may be either discrete or continuous. Moreover, this method is adapted to
situations where the tail behavior is supposed to be significantly different de-
pending on the characteristics, as for example it is the case in an application
to cyber-insurance considered in a former paper, see [17].

Regression trees, introduced by Breiman [7] along with the CART algo-
rithm (for Clustering And Regression Trees), are flexible tools to perform
a regression and clustering task simultaneously. They have been used in
various fields, including industry [20], geology (see e.g. [26]), ecology (see
e.g. [14]), claim reserving in insurance [24]. Through the iterative splitting
algorithm used in CART, nonlinearities are introduced in the way the dis-
tribution is modeled, while furnishing an intelligible interpretation of the
final classification of response variables. The splitting criterion—used to it-
eratively separate observations into clusters of similar behaviors—depends
on the type of problems one is considering. While the standard CART
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algorithm relies on mean-squared criterion to perform mean-regression, al-
ternative loss functions have been considered as in [9] for quantile regression,
or in [29] who used a log-likelihood based loss. Loh [22, 23] provide detailed
descriptions of regression trees procedures and a review of their variants.
In this paper, building on the Balkema and de Haan result, we use a GP
log-likelihood loss, as in [17], to perform extreme value regression.

The rest of the paper is organized as follows. In Section 2, we introduce
notations and describe the GP regression tree algorithm. Section 3 lists
the main results of this paper, that is deviation bounds for the regression
tree estimator for finite sample size, and consistency of the “pruning” (that
is model selection) strategy. Empirical results are gathered in Section 4,
which provides a simulation study, and a real data analysis in natural dis-
aster insurance. Detailed proofs of the technical results are shown in the
Appendix.

2 Regression trees for extreme value analysis

This section describes the estimation method (GP regression trees) that is
considered in the paper. Some classical results in EVT are given in Section
2.1 to motivate the GP approximation. Regression trees adapted to this
context are described in Section 2.2. A short discussion on the advantage of
this technique compared to competing approaches is developed in Section
2.3.

2.1 Extreme value theory and regression

Let us consider independent and identically distributed observations Y1, Y2, . . .
with an unknown survival function F (that is F (y) = P (Y1 > y)). A natu-
ral way to define extreme events is to consider the values of Yi which have
exceeded some high threshold u. The excesses above u are then defined as
the variables Yi − u given that Yi > u. The asymptotic behavior of extreme
events is characterized by the distribution of the excesses which is given by

F u(z) = P [Y1 − u > z | Y1 > u] =
F (u+ z)

F (u)
, z > 0 .

In 1975, Pickands [25] showed that, if F satisfies the following property

lim
t→∞

F (ty)

F (y)
= y−1/γ0 , ∀y > 0, (2.1)

with γ0 > 0, then

lim
u→∞

sup
z>0
|F u(z)−Hσ0u,γ0(z)| = 0 (2.2)
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for some σ0u > 0 and Hσ0u,γ0 necessarily belongs to the Generalized Pareto
(GP) distributions family which distribution function is of the form

Hσ0u,γ0(z) =

(
1 + γ0

z

σ0u

)−1/γ0

, z > 0,

where σ0u > 0 is a scale parameter and γ0 > 0 is a shape parameter, which
reflects the heaviness of the tail distribution. Especially, if γ0 ∈]0; 1[, the
expectation of Y1 is finite whereas if γ0 ≥ 1 the expectation of Y1 is infinite.
More details on these results can be found in e.g. [12, 6].

In practice, the so-called Peaks over Threshold (PoT) method is widely
used, see [13, 12]. It consists in choosing a high threshold u and fitting a
GP distribution on the excesses above that threshold u. The estimation of
the parameters σ0u and γ0 may be done by maximizing the GP likelihood.
The choice of the threshold u can be understood as a compromise between
bias and variance: the smaller the threshold, the less valid the asymptotic
approximation, leading to bias; on the other hand, a too high threshold
will generate few excesses to fit the model, leading to high variance. The
existing methods are mostly graphical, up to our knowledge, no automatic
data-driven selection procedure is available.

In the present paper, we consider a regression framework, that is that
our goal to know the impact of some random covariates X on the tail of the
distribution of a response variable Y. The previous convergence results hold,
but for quantities σ0u, γ0 and u that may depend on X. More precisely, this
means that, if we assume that γ0(x) > 0 for all x (which is the assumption
that we will make throughout this paper), then (2.1) becomes

lim
t→∞

F (ty|x)

F (y|x)
= y−1/γ0(x), ∀y > 0, (2.3)

where F (y|x) = P(Y ≥ y|X = x), see [6] and references therein, and (2.2)
becomes

lim
u(x)→∞

sup
z>0
|F u(x)(z | x)−Hσ0u(x)(x),γ0(x)(z)| = 0. (2.4)

where F u(x)(z | x) = P [Y − u(x) > z | Y > u(x),X = x].
Suppose that we observe (Yi,Xi)1≤i≤n a sample of (Y,X), where X be-

longs to a compact set X . Following the PoT approach, the estimation of
the function γ0(X) and σ0(X) = σ0u(X) can typically be done by fitting a
regression model on the data points (Yi,Xi) such that Yi exceeds a proper
threshold u(Xi). More precisely, let us define

θ∗(x) = arg max
θ∈Θ

E[φ(Y − u(X), θ)|X = x, Y ≥ u(x)]

= arg max
θ∈Θ

E[φ(Y − u(X), θ)1Y≥u(X)|X = x], (2.5)
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where θ = (σ, γ)τ (where aτ denotes the transpose of a vector a) and φ is
the GP log-likelihood function, that is

φ(z, θ) = − log(σ)−
(

1

γ
+ 1

)
log
(

1 +
γz

σ

)
.

From (2.4), θ∗(x) should be close to θ0(x) = (σ0(x), γ0(x))τ for u(x) large
enough. Based on this idea, Beirlant (2004) [5] proposed a nonparametric
approximation of the loss function maximized by θ∗. This technique, based
on local polynomials, requires continuity of the covariates and some smooth-
ness assumptions on θ0. On the other hand, parametric methods [10, 2] have
also been proposed, but relying on a stronger assumption on the shape of
θ0.

In the next section, we introduce a regression tree approach which is
adapted to both continuous and discrete variables, and that relies on few
assumptions (since the estimated regression function θ0 does not need to be
smooth).

2.2 GPD regression trees

Regression Trees are a convenient tool to capture heterogeneous behaviors
in the data, see [7]. These models aim at constituting classes of observations
which have a relatively similar behavior in terms of the response variable
Y. These classes are defined by “rules”, which affect an observation to one
of these classes according to the values of its covariates X. These rules are
obtained from the data through the CART (Clustering And Regression Tree)
algorithm, and the non-linearity of the procedure allows for an adaptation
to the estimation of large classes of regression functions.

Fitting regression trees relies on a so-called “growing phase”, described
in our context in Section 2.2.1, which corresponds to the determination of
these splitting rules. Section 2.2.2 shows how an estimator of the regression
function θ0 can be deduced from such a tree. The “pruning step”, which
can be understood as a model selection procedure, is described in Section
2.2.3.

2.2.1 Growing step: construction of the maximal tree

The CART algorithm consists in determining iteratively a set of “rules” x =
(x(1), . . . , x(d))→ Rj(x) to split the data, aiming at optimizing some objec-
tive function (also referred to as splitting criterion). In our case, we want to
approximate the criterion (2.5), that is we are searching for a regression func-
tion θ̂(X) among some class such that

∑n
i=1 φ(Yi−u(Xi), θ̂(Xi))1Yi≥u(Xi) is

maximal. To shorten the notation, let ϕ(Yi, θ) = φ(Yi − u(Xi), θ)1Yi≥u(Xi).
A set of rules (Rj)j∈J is a set of maps such that Rj(x) = 1 or 0 depend-

ing on whether some conditions are satisfied by x, with Rj(x)Rj′(x) = 0
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for j 6= j′ and
∑

j Rj(x) = 1. In case of regression trees, these partitioning
rules have a particular structure, since they can be written, for quantita-
tive covariates (the case of x containing qualitative variables is described in
Remark 2.1 below), as Rj(x) = 1x1≤x<x2 for some x1 ∈ Rd and x2 ∈ Rd,
with comparison symbols to be understood as component-wise comparisons.
In other terms, if d = 1, rules can be identified as partitioning segments,
if d = 2 they are rectangles (hyper-rectangles in the general case). The
determination of these rules from one step to another can be represented as
a binary tree, since each rule Rj at step k generates two rules Rj1 and Rj2
(with Rj1(x) + Rj2(x) = 0 if Rj(x) = 0) at step k + 1. The algorithm can
be summarized as follows:
Step 1: R1(x) = 1 for all x, and n1 = 1 (corresponds to the root of the
tree).
Step k+1: Let (R1, ...Rnk

) denote the rules obtained at step k. For j =
1, . . . , nk,

• if all observations such that Rj(Xi) = 1 have the same characteristics,
then keep rule j as it is no longer possible to segment the population;

• else, rule Rj is replaced by two new rules Rj1 and Rj2 determined in
the following way: for each component X(`) of X = (X(1), . . . , X(d)),

define the best threshold x
(`)
j? to split the data, such that x

(`)
j? =

arg maxx(`) Φ(Rj , x
(`)), with

Φ(Rj , x
(`)) =

n∑
i=1

ϕ(Yi, θ`−(Xi, Rj))1X(`)
i ≤x(`)

Rj(x)

+
n∑
i=1

ϕ(Yi, θ`+(Xi, Rj))1X(`)
i >x(`)

Rj(x),

where

θ̂(Rj) = arg max
θ∈Θ

n∑
i=1

ϕ(Yi, θ(Xi))Rj(Xi),

θ`−(x,Rj) = arg max
θ∈Θ

n∑
i=1

ϕ(Yi, θ(Xi))1X(`)
i ≤x

Rj(Xi),

θ`+(x,Rj) = arg max
θ∈Θ

n∑
i=1

ϕ(Yi, θ(Xi))1X(`)
i >x

Rj(Xi).

Then, select the best component index to consider: ̂̀= arg max` Φ(Rj , x
(`)
j? ).

Define the two new rules Rj1(x) = Rj(x)1
x(̂̀)≤x(̂̀)j?

, and Rj2(x) =

Rj(x)1
x(̂̀)>x(̂̀)j?

.
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• Let nk+1 denote the new number of rules.

Stopping rule: stop if nk+1 = nk.

This algorithm has a binary tree structure. The list of rules (Rj)1≤j≤nk

are identified with the leaves of the tree at step k, and the number of leaves
of the tree is increasing from step k to step k+1. The stopping rule can also
be slightly modified to ensure that there is a minimal number of points of
the original data in each leaf of the tree at each step.

Remark 2.1. In this version of the CART algorithm, all covariates are
continuous or {0, 1}−valued. For qualitative variables with more than two
modalities, they must be transformed into binary variables, or the algorithm
must be slightly modified so that the splitting step of each Rj should be done
by finding the best partition into two groups on the values of the modalities
that minimizes the loss function. This can be done by ordering the modalities
with respect to the average value—or the median value—of the response for
observations associated with this modality.

2.2.2 From the tree to the parameter estimation

From a given set of rules R = (Rj)j=1,...,s, let Tj = {x : Rj(x) = 1}, the

jth leaf of the corresponding tree. The estimator θ̂ associated with a tree
T = (T`)`=1,...,K (where K is the total number of leaves) is obtained as

θ̂(x) =

K∑
`=1

θ̂(Rj)Rj(x) =

K∑
`=1

θ̂`1x∈T` .

The maximal tree is the Tmax obtained once the previous algorithm stops.
It corresponds to a trivial estimator of m, since either the number of ob-
servations in a leaf is one, or all observations in this leaf have the same
characteristics x.

The pruning step, presented in the next section, consists in extracting
from the maximal tree a subtree that achieves a compromise between sim-
plicity and good fit.

2.2.3 Selection of a subtree: pruning step

For the pruning step, a standard way to proceed is to use a penalized ap-
proach to select the appropriate subtree, see [7, 19]. For a given tree TK
with K leaves (T`)`=1,...,K , associated with the corresponding estimator θ̂,
the performance of this tree is measured through the following criterion

1

kn

K∑
`=1

n∑
i=1

ϕ(Yi − u, θ̂(Xi))1Xi∈T` − λK. (2.6)
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For a given level of penalty λ, the selected tree is the one that maximizes
criterion (2.6), achieving a compromise between good fit and simplicity. To
determine this optimal tree, it is not necessary to compute all the subtrees
from the maximal tree. It suffices to determine, for all K ≥ 0, the subtree
TK which maximizes the criterion (2.6) among all subtrees with K leaves,
and then to determine the final tree among a list of Kmax trees (where
Kmax is the number of leaves of the maximal tree). The trees TK are easy to
determine, since TK is obtained by removing one leaf to TK+1, see p.284–290
in [7].

The penalization constant λ can be chosen using a test sample or k−fold
cross-validation. In the first case, data are split into two parts before making
the tree grow (a training data of size n and a test sample which is not used
in computing the tree). In the second case, the dataset is randomly split
into k parts which successively act as a training or a test sample, see for
example [3, 28].

2.3 Comparison with competing approaches

Compared to competing approaches in extreme value regression, the advan-
tage of the procedure is to introduce discontinuities in the regression function
while parametric approaches suppose a form of linearity, e.g. [2]. The more
flexible non-parametric approaches, as [5], rely on smoothing techniques that
require the covariates to be continuous. Chavez-Demoulin et al. [10] propose
a semi-parametric framework to separate the continuous covariates from the
discrete ones. Smoothing splines are used to estimate non-parametrically
the continuous part, while the influence of discrete covariates is captured by
a parametric function.

3 Main results

In this section, we show that the GP regression tree procedure defined in
Section 2.2 is consistent. Notations and assumptions used throughout this
section are listed in Section 3.1. We then state our first main results on the
consistency of a fixed tree with K leaves, by separating the stochastic part
of the error (Section 3.2) from the misspecification part (Section 3.3) caused
by the GP approximation. The consistency of the pruning methodology is
studied in Section 3.4.

3.1 Notations

Let us recall that the PoT approach consists in considering observations
such that Yi ≥ u(Xi). Below, we will restrain ourselves to the case where
u(x) = u. Our results easily extend to the case where u(x) =

∑m
j=1 uj1x∈Xj ,

where (Xj)1≤j≤m are subsets of the space of covariates. Another possible
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extension would be to assume that u(x) = f(β,x) for some parameter β and
f a known function. Nevertheless, a choice of such a particular threshold
function seems hard to justify. Hence, we restrain ourselves to the simplest
case.

Moreover, the result we provide holds uniformly for u ∈ [umin, umax] to
cover adaptive choice of this parameter. Conditions on umin and umax are
given in Assumption 3.1.

Assumption 3.1. If n denote the number of observations, let kn be an
intermediate sequence, that is kn → ∞ and kn/n → 0, as n → ∞. Then,
let kn/n denote the average proportion of Y larger than umin, that is P(Y ≥
umin) = knn

−1. Moreover, assume that

P(Y ≥ umax) =
u0kn
n

,

for some constant u0 ≥ 1.

Here, kn will denote the average number (up to some constant) of ob-
servations on which the model is fitted. It is hence related to the rate of
convergence of the procedure. The following assumption introduces condi-
tions on this rate kn and on the space of parameters.

Assumption 3.2. We assume the parameter space to be Θ = S × Γ where

• S = [σmin, σn], with σn = O(na1), with a1 > 0,

• Γ is a compact set [γmin, γmax], with γmin > 0.

Moreover, assume that kn = O(na2), with a2 > 0, and that the number of
leaves of the maximal tree Kmax satisfies Kmax ≤ κkn, with κ > 0.

Next, let us introduce some notations regarding the trees. Consider a tree
T (u) with K leaves denoted T`, ` = 1, . . . ,K. Introducing the (normalized)
contribution of the log-likelihood to the `th leaf, say

L`n(θ, u) =
1

kn

n∑
i=1

φ(Yi − u, θ)1Yi>u1Xi∈T` ,

let
θ̂`(u) = arg max

θ
L`n(θ, u),

the estimated value of the parameter in the leaf T`. This estimator is ex-
pected to be close to

θ∗` (u) = arg max
θ
L`(θ, u),
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introducing L`(θ, u) = knn
−1E[L`n(θ, u)]. We denote by T ∗(u|T ) the tree

with same leaves as T, but with parameters θ∗` (u). This quantity is not
exactly our target: ideally, we would like to estimate

θ0,`(u) = (σ0(T`, u), γ0(T`)),

such that
lim
t→∞

sup
z>0
|F t(z | T`)−Hσ0(T`,t),γ0(T`)(z)| = 0, (3.1)

where F t(z | T`) = P(Y − t ≥ z|X ∈ T`, Y ≥ t). We denote T0(u|T ) the tree
with same leaves as T but with parameters θ0,`(u).

If θ = (θ`)`=1,...,K denotes the set of parameters of a tree with K leaves
(T`)`=1,...,K , we will denote θ(x) the function defined by

θ(x) =

K∑
`=1

θ`1x∈T` .

We will first focus on the difference T (u) and T ∗(u|T ) in Section 3.2, which
is the stochastic part of the error. On the other hand, the difference between
T ∗(u|T ) and T0(u|T ) (and ultimately the difference between θ̂(x) and θ0(x))
is studied in Section 3.3 and can be understood as a misspecification term,
caused by the fact that the excesses above the threshold are not exactly GP
distributed.

For ` = 1, . . . ,K, let ∇θL`(θ, u) denote the gradient of L`(θ, u), denoting

∇θL`(θ, u) = E
(
gθ,`(Yi − u)
hθ,`(Yi − u)

1Xi∈T`1Yi>u

)
with, for z > 0,

gθ(z) = ∂σφ(z, θ) =

(
− 1

σ
+

(
1 +

1

γ

)
γz

σ2(1 + γz
σ )

)
,

hθ(z) = ∂γφ(z, θ) =

(
− 1

γ2
log
(

1 +
γz

σ

)
+

(
1 +

1

γ

)
z

σ + γz

)
.

To handle the stochastic part, we shall add a few assumptions. We first
need a domination condition on the class of the derivatives of the functions
y → φ(y − u, θ). These derivatives are uniformly bounded by

Φ(y) = C(1 + log(1 + wy)),

where C is a constant (not depending on n), and w = γmax/σmin.

Assumption 3.3. Assume that, for some ρ0 > 0,

mρ0 = E [exp(ρ0Φ(Y ))] <∞.
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In fact, this assumption is automatically satisfied if Assumption 3.2
holds: since γ(x) ≥ γmin > 0, E[|Y |1/γ−ε] <∞, for any ε > 0.

Additionally, we need some regularity assumptions on the criterion L`.

Assumption 3.4. Let

M `
θ1,θ2,θ3,θ4(u) = E

[(
∂σgθ1(Y − u) ∂γgθ2(Y − u)
∂σhθ3(Y − u) ∂γhθ4(Y − u)

)
1Y≥u | X ∈ T`

]
.

Assume that there exists a constant C1 > 0 such that

inf
a,b∈R

inf
θ1,θ2,θ3,θ4∈Θ

inf
u∈[umin,umax]

inf
`=,...,K

∣∣∣∣M `
θ1,θ2,θ3,θ4(u)

(
a
b

)∣∣∣∣ ≥ C1 max(|a|, |b|).

The condition on the infimum can be relaxed: Assumption 3.4 comes
naturally in using a Taylor expansion. Hence, the infimum with respect of
θ1, . . . , θ4 can be restricted to θ2 to θ3 belonging to a small neighborhood of
θ1 (and not to the whole set Θ).

3.2 Deviation bounds for our estimator

In this section, we study the consistency of a fitted tree T (u), a subtree
of the maximal tree Tmax(u), with K leaves (T`)`=1,...,K ,. We compare this
fitted tree to T ∗(u|T ), which is the tree based on the same subdivision, but
where, in each leaf `, the parameter is θ∗` (u) (instead of θ̂`(u) in T (u)).

The first step is to define a distance between trees. Let us define ‖(a, b)‖∞ =
max(|a|, |b|), and for two trees T and S,

‖T − S‖2 =

(∫
‖T (x)− S(x)‖2∞dP(x)

)1/2

.

The main result of this section is a deviation bound for ‖T (u)− T ∗(u|T )‖2,
which is Theorem 3.5 below.

Theorem 3.5. Under Assumptions 3.1 to 3.4, and let β > 0 such that βa2 ≥
10/ρ0 (with ρ0 defined in Assumption 3.3) and for t ≥ c1K(log kn)k−1

n , with
c1 > 0,

P
(

sup
umin≤u≤umax

‖T (u)− T ∗(u|T )‖22 ≥ t
)

≤ 2

(
exp

(
− C1knt

Kβ2(log kn)2

)
+ exp

(
− C2knt

1/2

K1/2β log kn

))
+
C3K

k
5/2
n t3/2

,

where C1, C2 and C3 are positive constants.
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The proof of Theorem 3.5 is postponed to the appendix section (Section
A.3). The exponential terms on the right-hand side come from concentra-
tion inequalities proved by Einmahl and Mason [15], while the polynomially
decreasing term is related to the fact that the log-likelihood is an unbounded
quantity, but that can still controlled when considering its expectation.

As a by-product, we obtain the following Corollary 3.6 (by integration
of the bound of Theorem 3.5).

Corollary 3.6.

E
[

sup
umin≤u≤umax

‖T (u)− T ∗(u|T )‖22
]
≤ C4

Kβ2(log kn)2

kn
.

From Corollary 3.6, one can see that the L2−norm of the stochastic part

of the error, E
[
supumin≤u≤umax

‖T (u)− T ∗(u | T )‖22
]1/2

, is proportional to

K1/2, and, as expected, increases with the complexity of the tree. On the

other hand, the error decreases almost at rate k
1/2
n (up to some logarithmic

factor), which is the convergence rate of standard estimators used to estimate
the tail parameter in absence of covariates.

The proof is again postponed to the appendix (Section A.4).

3.3 Misspecification bias

For X = x, the ultimate goal is to estimate the tail index parameter
θ0(x) = (σ0u(x), γ0(x)), introduced in (2.4), by maximization of the GP
likelihood. The difference between θ0(x) and θ∗(x) can be understood as a
misspecification term due to the fact that the observations above the thresh-
old are not exactly distributed according to a GP distribution. This bias
term can be controlled under second order conditions which are standard in
Extreme Value Analysis.

Indeed, recall that assuming that the underlying distribution F (·|x) sat-
isfies Condition (2.3) guarantees that asymptotically the associate excesses
above the threshold u are GP distributed. For finite samples, the excesses
are thus not exactly GP distributed which introduces some bias term. In
order to control this bias term, a second-order condition is needed, that is a
condition to control the rate of convergence in Condition (2.3). There exist
numerous ways to express this second-order condition. Here, we consider
the same condition as Condition C.6 in [5]. First, Condition (2.3) can be
translated into

F (y | x) = y−1/γ0(x)η(y | x) , ∀y > 0, (3.2)

where η is a slow-varying function, that is η(ty | x)/η(t | x)→ 1 as t→∞,
for all y > 0.
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Assumption 3.7. Assume that for all x, there exist a constant c and a
function ψ such that

η(ty | x)/η(t | x) = 1 + cψ(t)

∫ t

1
vρ−1dv + o(ψ(t))

as t→∞ for each y > 0 with ψ(t) > 0 and ψ(t)→ 0 as t→∞ and ρ ≤ 0.

Let us note that we could also consider the case of c, ψ and ρ depending
on x, and then assume some uniform bound over x of these quantities. We
chose this more restrictive formulation to simplify the notations.

The next result guarantees that the bias term tends to 0 as u→∞.

Proposition 3.8. There exists a constant c and a function ψ such that
ψ(u) > 0 and ψ(u)→ 0 as u→∞, and such that, for X = x,

‖θ0(x)− θ∗(x)‖∞ ≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u))) ,

where C2(u) is a constant depending on u, γmin and γmax.

3.4 Consistency of the pruning step

The previous results cover the case of a tree with fixed number of leaves
K. In practice, the question is to select the proper subtree of Tmax(u), the
maximal tree obtained once the previous step of the CART procedure has
stopped, with some “optimal” number of leaves, which is the objective of
the pruning step described in Section 2.2.3.

As seen in Corollary 3.6, the stochastic part of the error put to the square
increases proportionally to K. This is closely related to the natural inflation
of the log-likelihood (which is locally quadratic) when the number of leaves
increases, justifying a penalty proportional to K, as in [7, 19]. The aim of
Theorem 3.9 is to corroborate this choice.

First of all, for a decomposition (T K` )`=1,...,K of K leaves, let us define

TK(u) the tree with parameters θ̂K` (u) estimated with the CART procedure,
T ∗K(u) the tree with parameters

θ∗K` (u) = arg max
θ∈Θ

E
[
φ(Y − u, θ)1Y >u1Xi∈T K

`

]
,

and x → θ∗K(x) =
∑K

`=1 θ
∗K
` (u)1x∈T K

`
the corresponding regression func-

tion. Moreover, let

K0(u) = arg max
K=1,...,Kmax

E
[
φ(Y − u, θ∗K(X))1Y >u

]
.

In words, T ∗(u) = T ∗K0(u)(u) is the subtree of Tmax(u) that achieves the clos-

est proximity to x→ θ∗K(x) in the sense that it maximizes the expectation
of the (pseudo)-log-likelihood.

13



Second of all, we denote, as explained in (2.6), the selected number of
leaves

K̂(u) = arg max
K=1,...,Kmax

{
1

kn

K∑
`=1

n∑
i=1

φ(Yi − u, θ̂K(Xi))1Yi>u1Xi∈T` − αK

}
,

and T̂ (u) = T
K̂(u)

(u) the corresponding selected tree.

Define the log-likelihood Ln(TK , u) associated with a tree TK(u) with K

leaves (T K` )`=1,...,K with parameters θ̂K(u) =
(
θ̂K` (u)

)
`=1,...,K

Ln(TK , u) =
K∑
`=1

L`n(θ̂K` , u) .

Then L(TK , u) = E[Ln(TK , u)]. Finally, for two trees T and S, ∆Ln(T, S) =
Ln(T, u)− Ln(S, u) and similarly, ∆L(T, S) = L(T, u)− L(S, u).

The following Theorem 3.9 shows that the pruning methodology selects
a tree T̂ (u) which approximately achieves the same rate as TK0(u), even if
K0(u) is unknown, provided that the penalty constant λ belongs to some
reasonable interval.

Theorem 3.9. Let D = infu infK<K0(u) ∆L(T ∗(u), T ∗K(u)) and suppose that
there exists a constant c2 > 0 sauch that the penalization constant λ satisfies

c2{log kn}1/2k−1/2
n ≤ λ ≤ (D− 2c2{log(kn)}1/2k−1/2

n )k−1
n ,

then, for all u ∈ [umin, umax],

E
[
‖T̂ (u)− T ∗(u)‖22

]
≤ C5K0(u)(log kn)2

kn
,

where C5 is a constant depending on T ∗(u).

The proof is given in Section A.6.

4 Simulation study and real data analysis

This section is devoted to the illustration of the GP regression procedure on
simulated data (Section 4.1) and on a real dataset (Section 4.2).

4.1 Simulations

In this section, we assess the performance of the GP regression procedure
on simulated data and compare it with the competing approach proposed
by [10]. We first describe the simulation framework and then discuss the
experiments results.
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We consider the following regression framework: X is a one-dimensional
variable uniformly distributed on [0, 1], and the response variable Y , condi-
tionally on X = x, is distributed according to a Burr distribution of param-
eters (σ, γ0(x)) which survival function is given by

F (y | x) =
1

1 + (y/σ)1/γ0(x)
,

with σ > 0 and γ0(x) for all x. Note that F (· | x) satisfies the property
(2.3).

We consider two cases: (i) γ0(x) as a step-wise function and (ii) γ0(x) as
smooth function. In both cases, the scale parameter σ was fixed equal to 1.

(i) step-wise function: In this case, the function γ0 is taken as

γ0(x) =


0.5 if 0 ≤ x < 0.25

1 if 0.25 ≤ x < 0.75

1.5 if 0.75 ≤ x ≤ 1.

(ii) smooth function: In this case, the function γ0 is taken as, for x ∈
[0, 1],

γ0(x) = 1 +
tanh(10(x− 1/4))

4
+

tanh(10(x− 3/4))

4
.

We simulate 1 000 replications for different sizes of the observation sam-
ple (n =1000, 2500, 5000, 10 000 and 25 000) according to the described
framework for both cases (i) and (ii). For each sample, we consider the ex-
cesses above the 0.90-empirical quantile, which corresponds to kn =100, 250,
500, 1 000 and 2 500. For each simulated sample, we compute the regres-
sion tree procedure (CART), and the method based on generalized additive
model (GAM) proposed by [10]. Next we compute

∫ 1
0 (γ̂(x) − γ0(x))2dx

for each estimator. The empirical mean squared error is then obtained by
averaging these errors over the 1 000 replications. Results are shown in
Table 1. The boxplots of the empirical quadratic errors are shown in the
supplementary material (Section A).

Let us note that the GAM approach is not designed to capture non-
smooth functions like in the step-wise case. Nevertheless, we see that this
technique manages to fit relatively correctly even in this case when the
sample size is large. For kn = 1 000 and 2 500, the results of the GAM
approach are similar or even slightly better than the regression tree method.
On the other hand, we observe that regression trees lead to a better fit for
small sample sizes, even in the smooth case where it is not designed to take
into account the regularity of γ0(x).
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Table 1: Empirical mean squared errors for the GP regression tree procedure
(GP CART), and the GAM model for different sample sizes for a) the step-
wise case and b) the smooth case.

kn 100 250 500 1 000 2 500

GP CART 0.290 0.129 0.107 0.080 0.050
GAM 0.313 0.196 0.122 0.081 0.048

a)
kn 100 250 500 1 000 2 500

GP CART 0.227 0.108 0.079 0.059 0.043
GAM 0.233 0.144 0.068 0.034 0.016

b)

4.2 Prediction of the cost of flooding events in France

In order to improve the knowledge and the management of natural catas-
trophes, the French Federation of Insurance (FFA) is interested in the pre-
diction of the cost of such events, especially of the most severe ones, shortly
after their occurrence. These catastrophic events present some heterogene-
ity in their intensity depending on their characteristics, such as the affected
meteorological region or the number of individual houses in flood risk area.
The prediction of their cost thus becomes a challenging task. In this sec-
tion, we illustrate how the GP regression tree procedure can be used to gain
further insight in this heterogeneity. The ability of the procedure to design
classes of events that are more homogeneous (in view of analyzing the tail of
their distribution) is an appealing property in view of operation applications
in insurance.

The database we consider was obtained through a partnership with the
FFA, in particular with one of its dedicated technical body, the association
of French insurance undertaking for natural risk knowledge and reduction
(Mission Risques Naturels, MRN). It consists of all 3 100 flooding events
that have been granted the status of natural catastrophe in France from
1999 to 2019 (let us note that the status ”natural catastrophe” is a French
specificity, with some legal consequences when an event receives this label,
see [8, 1]).This database is fed by 13 contributors including the major French
insurance companies, allowing this database to cover 70% of French non-
life insurance market. The database gathers information regarding each
flooding event (its cost, the meteorological region, the season, the number
of affected hydrological regions, the number of individual houses and the
number of professional business premises in flood-risk area). Note that,
since the purpose of this database is the fast prediction of the cost of a
flooding event (as soon as possible after its occurrence), the variables that
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are registered correspond to quantities that are available before the event,
or soon after it.

The variable of interest, the total cost of a flooding event, is highly
volatile. Indeed, it ranges between 0 and 394 376 000 euros with an empirical
variance equal to 1.77e + 14. Figure 1 shows the average of the costs of
the 10% most onerous flooding events within each meteorological region.
This highlights the heterogeneity of the severity of the most severe events.
Furthermore, the top ten most onerous events represent 43% of the total
cost of this database and the top hundred 80%.

Figure 1: Cartography of the cost of flooding events in France from 1999 to
2019. For each meteorological region, the average of the costs of the 10%
more onerous events is shown. The lighter red color suggesting a small cost
while a darker color suggests a large cost.

Now, let us recall that our goal is to understand the heterogeneity of
the total cost of the most severe flooding events, that is of extreme flooding
events. As explained in Section 2.1, the definition of extreme events con-
sists in choosing a threshold u, which should be chosen as a bias-variance
trade-off. We chose a value of u = 100 000 based practical considerations
and validated by sensitivity analyses (shown in the supplementary material,
Section B). This yields 1 100 extreme events, that is for which the cost is
larger than u.

The GP regression tree was performed on the database corresponding to
the flooding events extracted from the original database for which the total
cost is larger than u (=100 000 euros). The variables of this database and
their characteristics are summarized in Table 2. Again, it can be noticed
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that the cost, the variable of interest, is highly volatile.

Table 2: List of quantitative and categorical variables in the database and
their characteristics. For the quantitative variables, Table a) shows the
minimum, the first quartile, the median, the mean, the third quartile and
the maximum, and for the categorical variables, Table b) the number of
observations per category.

Variable Min 1st Q Median Mean 3rd Q Max

Cost (in euros) 100 005 183 901 390 761 4 949 576 1 339 936 394 376 166

Number of affected
hydrological regions

1 3 5 6.53 8 35

Number of individual
houses in flood risk
area

0 48 504 141 512 345 826 415 488 5 705 590

Number of pro-
fessional business
premises in flood risk
area

0 17 525 54 921 168 950 185 772 2 431 039

a)

Variable Category Number of observations

Meteorological regions

Center 89
North West 111

North 166
North-East 99

East 135
South 281
West 49

South West 158

Seasons

Spring 358
Summer 336
Autumn 251
Winter 143

b)

The tree obtained from GP regression procedure is shown in Figure 2
(the quantile-quantile plots of the GP fit in each leaf are shown in the supple-
mentary material, Section C). The tree is composed of 6 leaves, with three
splits according to only 3 covariates: the number of individual houses, the
number of professional business premises in flood-risk area and the number
of affected meteorological regions. This seems reasonable since the first two
covariates represent the exposure to floods, but also the population den-
sity of the affected area and the third one the extent of the flood. In each
leaf, are given the shape and scale parameters. The worst case scenario
corresponds to the leaf on the far right, with a shape parameter equal to
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1 and containing 9% of all flooding events. This leaf corresponds to events
for which more than 9 meteorological regions are affected and more than
597 518 professional business premises are in flood-risk area. The least se-
vere case corresponds to the third leaf from the left, with a shape parameter
equal to 0.24 and containing only 3% of the events. Table 3 presents for
each leaf the empirical median and mean of the costs and the theoretical
median and mean of the corresponding GP distribution. Let us recall that
for a GP distribution with a scale parameter σ and a shape parameter γ,
the theoretical median is given by σ(2γ − 1)/γ and the empirical mean by
σ/(1− γ) for γ < 1 and ∞ for γ ≥ 1. First of all, for every leaf, the median
is much smaller than the mean suggesting that we are indeed dealing with
extreme events. Then, the empirical and theoretical medians are of the same
order for each leaf while the empirical and theoretical (when it exits) means
are only comparable for the leaves 3 and 5 for which the shape parameter is
significantly different from 1.

<	9	 ≥	9	

<	597	518	 ≥	597	518	

15% 9%4%

Number	of	individual	houses	in	
flood	risk	area

≥	370	050<	370	050

<	12	 ≥	12	

<	30	968	 ≥	30	968	

0.91	
1.08

3%36% 33%

Number	of	individual	houses	in	
flood	risk	area

Number	of	professional	business	
in	flood	risk	area

Number	of	affected	hydrological	
regions

Number	of	affected	hydrological	
regions

0.97	
2.79

0.24	
13.82

0.99	
5.29

0.29	
43.46

1.00	
91.50

Figure 2: GP regression tree obtained for flooding events. For each leaf, the
value of the shape parameter γ (first line) and the scale parameter σ at 10−5

(second line) are given. Percentage of observations affected to each leaf is
mentioned.

5 Conclusion

In this paper, we investigated the consistency of Generalized Pareto regres-
sion trees, applied to extreme value regression. The results that we derive are
non-asymptotic, and allow to justify the consistency of the pruning method-
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Leaf Shape parameter Empirical Median Theoretical Median Empirical Mean Theoretical Mean

1 0.91 207 044 104 793 711 740 1 366 968
2 0.97 364 513 276 879 1 325 493 13 168 585
3 0.24 900 945 1 045 203 1 929 512 1 938 357
4 0.99 578 437 529 377 3 868 125 807 158 756
5 0.29 2 974 918 3 339 911 6 086 955 6 245 812
6 1.00 9 980 686 9 152 030 37 335 807 ∞

Table 3: Empirical median and mean, and theoretical median and mean for
each leaf (in euros).

ology used to select a proper subtree. Let us note that the conditions under
which our results hold are relatively weak, in the sense that they hold even if
the tail index γ is arbitrary close to zero (the special case γ = 0 is excluded)
or large. Moreover, no regularity assumptions on the target parameters is
required, due to the flexibility of the regression tree procedure.

Through the simulation study and the real data analysis, we investigated
the practical performances of the methodology. The regression tree approach
can be applied in various situations, and still provides interpretability of the
results. On the other hand, regression trees may be unstable, since quite sen-
sitive to some changes on the data that have been used to fit them. Hence,
this work is a first step into the direction of studying other relied methodolo-
gies, like random forests (see for example [7]) in this field of extreme value
regression.

A Proofs

In this Section, we present in details the proof of the results presented
throughout the paper. Concentration inequalities required to obtain the
results are presented in Section A.1. These inequalities are used to obtain
deviation bounds in Section A.2, which are the key ingredients of the proof
of Theorem 3.5 (Section A.3), Corollary 3.6 (Section A.4), and Theorem 3.9
(Section A.6). Section B shows some results on covering numbers that are
required to control the complexity of some classes of functions considered in
the proofs. Some technical lemmas are gathered in Section C.

A.1 Concentration inequalities

The proofs of the main results are mostly based on concentration inequal-
ities. The following inequality was proved initially by Talagrand [30], see
also [15].

Proposition A.1. Let (Vi)1≤i≤n denote i.i.d. replications of a random
vector V, and let (εi)1≤i≤n denote a vector of i.i.d. Rademacher variables
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(that is, P(εi = −1) = P(εi = 1) = 1/2) independent from (Vi)1≤i≤n. Let
F be a pointwise measurable class of functions bounded by a finite constant
M0. Then, for all t,

P

(
sup
ϕ∈F

∥∥∥∥∥
n∑
i=1

{ϕ(Vi)− E[ϕ(V)]}

∥∥∥∥∥
∞

> A1

{
E

[
sup
ϕ∈F

∥∥∥∥∥
n∑
i=1

ϕ(Vi)εi

∥∥∥∥∥
∞

]
+ t

})

≤ 2

{
exp

(
−A2t

2

nvF

)
+ exp

(
−A2t

M0

)}
,

with vF = supϕ∈F Var(‖ϕ(V)‖∞), and where A1 and A2 are universal con-
stants.

The difficulty in using Proposition A.1 comes from the need to control the
symmetrized quantity E

[
supϕ∈F ‖

∑n
i=1 ϕ(Vi)εi‖

]
. Proposition A.2 is due to

Einmahl and Mason [15] and allows this control via some assumptions on
the considered class of functions F.

We first need to introduce some notations regarding covering numbers of
a class of functions. More details can be found for example in Chapter 2.6
of [31]. Let us consider a class of functions F with envelope Φ (which means
that for (almost) all v, f ∈ F, |f(v)| ≤ Φ(v)). Then, for any probability
measure Q, introduce N(ε,F,Q) the minimum number of L2(Q) balls of
radius ε to cover the class F. Then, define

NΦ(ε,F) = sup
Q:Q(Φ2)<∞

N(ε(Q(Φ2)1/2),F,Q).

Proposition A.2. Let F be a point-wise measurable class of functions bounded
by M0 with envelope Φ such that, for some constants A3, α ≥ 1, and 0 ≤√
v ≤M0, we have

(i) NΦ(ε,F) ≤ A3ε
−α, for 0 < ε < 1,

(ii) supϕ∈F E
[
ϕ(V)2

]
≤ v,

(iii) M0 ≤ 1
4α1/2

√
nv/ log(A4M0/

√
v), with A4 = max(e,A

1/α
3 ).

Then, for some absolute constant A5,

E

[
sup
ϕ∈F

∥∥∥∥∥
n∑
i=1

ϕ(Vi)εi

∥∥∥∥∥
]
≤ A5

√
αnv log(A4M0/

√
v).

A.2 Deviation results

We first introduce some notations that will be used throughout Sections
A.2 to B. In the following, fθ is a function indexed by θ = (σ, γ)τ denoting
either φ(·, θ) or gθ = ∂σφ(·, θ), or hθ = ∂γφ(·, θ). Let us note that the
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functions y 7→ gθ(y−u) and y 7→ hθ(y−u) are uniformly bounded (eventually
up to some multiplication by a constant) by Φ(y) = log(1 + wy), where
w = γmax/σmin (see Assumption 3.3). On the other hand, y 7→ φ(y−u, θ) is
bounded by log σn+Φ(y) = O(log(kn))+Φ(y). We consider in the following
a class of functions F defined as

F = {y 7→ fθ(y − u)1y≥u1x∈T` , θ ∈ Θ, u ∈ [umin;umax], ` = 1, ...,K} .
(A.1)

Next, recall that for ` = 1, . . . ,K

L`n(θ, u) =
1

kn

n∑
i=1

φ(Yi − u, θ)1Yi>u1Xi∈T` ,

is the (normalized) GP log-likelihood in the leaf ` of the tree T (u) =
(T`)`=1,...,K . The key results behind Theorems 3.5 and 3.9 relies on studying
the deviation of the processes

W`
0(θ, u) = L`n(θ, u)− L`(θ, u),

W`
1(θ, u) = ∇θL`n(θ, u)−∇θL`(θ, u),

indexed by θ, u and `.
We study these deviations by decomposing W`

i (θ, u), for i = 0, 1, (which
is a sum of i.i.d. observations) into two sums:

• the first one gathers observations smaller than some bound (more pre-
cisely, such that Φ(Yi) ≤ Mn), which is considered in Theorem A.3.
Since these observations are bounded (even if this bound in fact de-
pends on n and can tend to infinity when n grows), we can apply a
concentration inequality such as the one of Section A.1;

• in the second one, we consider the observations larger than this bound,
and control them through the fact that the function Φ is assumed to
have a finite exponential moment (see Assumption 3.3).

Corollary A.5, which provides deviation bounds for estimation errors in
the leaves of the tree, is then a direct consequence.

Theorem A.3. Let Mn = β log kn, with β > 0 and

Z(Mn) = sup
f∈F

∣∣∣∣∣ 1

kn

n∑
i=1

(
f(Yi)1Φ(Yi)≤Mn

− E
[
f(Yi)1Φ(Yi)≤Mn

])∣∣∣∣∣
Then, under Assumptions 3.1, 3.2 and 3.4,

P (Z(Mn) ≥ t) ≤ 2

(
exp

(
−C1knt

2

M2
n

)
+ exp

(
−C2knt

Mn

))
, (A.2)

for t ≥ c1(log kn)1/2k
−1/2
n .
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Proof. Let us stress that supf∈F ‖f(y)1Φ(y)≤Mn
‖∞ ≤Mn. From Proposition

A.1,

P

(
Z(Mn) ≥ A1

{
E

[
sup
f∈F

1

kn

∣∣∣∣∣
n∑
i=1

f(Yi)1Φ(Yi)≤Mn
εi

∣∣∣∣∣
]

+ t

})
(A.3)

≤ 2

(
exp

(
−A2k

2
nt

2

nvF

)
+ exp

(
−A2knt

Mn

))
.

From Lemma C.1, vF ≤ M2
nknn

−1, which shows that the first exponential
term on the right-hand side of (A.3) is smaller than

exp

(
−A2knt

2

M2
n

)
. (A.4)

We can now apply Proposition A.2 (combined with Lemma B.1) to this class
of functions with v = M2

nknn
−1 and M0 = Mn. Hence,

E

[
sup
f∈F

1

kn

∣∣∣∣∣
n∑
i=1

f(Yi)1Φ(Yi)≤Mn
εi

∣∣∣∣∣
]
≤ A6

kn

√
nvsn = A6

s
1/2
n

k
1/2
n

,

where A′6 > 0 and sn = log(σαnK
4(d+1)(d+2)n/kn) (α > 0 being defined

in Lemma B.1). From Assumption 3.2, we see that sn = O(log(kn)) (let
us recall that K is necessarily less than n). Whence, if c1 = 2A1A

′
6, for

t ≥ c1 {log (kn)}1/2 k−1/2
n ,

P (Z(Mn) ≥ t) ≤ P

(
Z(Mn) ≥ A1

{
E

[
sup
f∈F

1

kn

∣∣∣∣∣
n∑
i=1

f(Yi)1Φ(Yi)≤Mn
εi

∣∣∣∣∣
]

+
t

2A1

})
.

Equation (A.2) follows from (A.3) and (A.4) with C1 = A2A
−2
1 /4 and C2 =

A2A
−1
1 /2.

Theorem A.4. Define

Z(Mn) = sup
f∈F

∣∣∣∣∣ 1

kn

n∑
i=1

(
f(Yi)1Φ(Yi)>Mn

)
− E

[
f(Yi)1Φ(Yi)>Mn

]∣∣∣∣∣ .
Then, under Assumptions 3.1, 3.2 and 3.3, for Mn = β log kn = βa2 log n

and βa2 ≥ 10/ρ0, and t ≥ c2k
−1/2
n ,

P
(
Z(Mn) ≥ t

)
≤ C3

k
5/2
n t3

. (A.5)

Proof. Let β′ = βa2. Z(Mn) is upper-bounded by

1

kn

n∑
i=1

{
Φ(Yi)1Φ(Yi)≥Mn

1Yi≥umin + E
[
Φ(Y )1Φ(Y )≥Mn

1Y≥umin

]}
.
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A bound for E1,n = E
[
Φ(Y )1Φ(Y )≥Mn

1Y≥umin

]
is obtained from Lemma

C.2, and nE1,n/kn ≤ e1k
−1/2
n if β′ ≥ 2/ρ0.

Next, from Markov inequality,

t3P

(
1

kn

n∑
i=1

Φ(Yi)1Φ(Yi)≥Mn
1Yi≥umin ≥ t

)
≤ nE3,n

k3
n

+
n(n− 1)E2,nE1,n

k3
n

+
n(n− 1)(n− 2)E3

1,n

k3
n

.

From Lemma C.2, we get

nE3,n

k3
n

≤ e3n
−(ρ0β′/4−1/2)

k
5/2
n

,

n(n− 1)E2,nE1,n

k3
n

≤ e2e1n
−(ρ0β′/2−3/2)

k
5/2
n

,

n(n− 1)(n− 2)E3
1,n

k3
n

≤ e3
1n
−(ρ0β′/4−5/2)

k
5/2
n

.

Each of these terms is bounded by max(e3, e2e1, e
3
1)k
−5/2
n for β′ ≥ 10/ρ0.

Thus, for t ≥ 2e1k
−1/2
n and β′ ≥ 10/ρ0,

P
(
Zn ≥ t

)
≤ P

(
1

kn

n∑
i=1

Φ(Yi)1Φ(Yi)≥Mn
1Yi≥umin ≥

t

2

)
+ P

(
E
[
Φ(Y )1Φ(Y )≥Mn

1Y≥umin

]
≥ t

2

)
≤ 8 max(e3, e2c1, e

3
1)

t3k
5/2
n

We now apply these results to deduce deviation bounds on the estimators
θ̂` in the leaves of the tree.

Corollary A.5. Under the assumptions of Theorem A.3 and A.4 and As-

sumption 3.4, for t ≥ c3(log kn)1/2k
−1/2
n ,

P

 sup
`=1,...,K,

umin≤u≤umax

‖θ̂`(u)− θ∗` (u)‖∞ ≥ t

 ≤ 2

(
exp

(
− C4knt

2

β2(log kn)2

)
+ exp

(
− C5knt

β log kn

))
+

C6

k
5/2
n t3

.

Proof. For 1 ≤ ` ≤ K and umin ≤ u ≤ umax, write θ = (s, γ)τ and θ∗` (u) =
(s∗` (u), γ∗` (u))τ , and let mu,`(θ) = ∇θL`(θ, u). From a Taylor expansion,

mu,`(θ) = E
[(

∂sgs̃1,γ(Y − u) ∂γgs,γ̃1(Y − u)
∂shs̃2,γ(Y − u) ∂γhs,γ̃2(Y − u)

)
1X∈T`1Y≥u

]
(θ−θ∗` (u))τ ,
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for some parameters γ̃j (resp. s̃j) between γ and γ∗` (u) (resp. s and s∗` (u)).
From Assumption 3.4, we get, for all ` = 1, . . . ,K,

n

kn
‖mu,`(θ)‖∞ ≥ C1‖θ − θ∗` (u)‖∞.

Hence, for all ` = 1, . . . ,K,

P
(
‖θ̂`(u)− θ∗` (u)‖∞ ≥ t

)
≤ P

(
n

kn
‖mu,`(θ̂)‖∞ ≥ C1t

)
.

Since for all ` = 1, . . . ,K, ∇θL`n(θ̂) = 0, W`
1(θ̂(u), u) = − n

kn
mu,`(θ̂). Hence,

P

 sup
`=1,...,K,

umin≤u≤umax

‖θ̂`(u)− θ∗l (u)‖∞ ≥ t

 ≤ P

 sup
`=1,...,K,

umin≤u≤umax

‖W`
1(θ̂(u), u)‖∞ ≥ C1t

 ,

and the right-hand side is bounded by

P
(
Z(Mn) ≥ C1t

2

)
+ P

(
Z(Mn) ≥ C1t

2

)
.

The result follows from Theorem A.3 and A.4.

A.3 Proof of Theorem 3.5

The proof of Theorem 3.5 then consists in gathering the results on the leaves
obtained in Corollary A.5. Let umin ≤ u ≤ umax,

‖T (u)− T ∗(u|T )‖22 ≤
K∑
`=1

‖θ̂`(u)− θ∗` (u)‖2∞ ≤ K sup
`=1,...,K

‖θ̂`(u)− θ∗` (u)‖2∞.

Hence

P
(

sup
umin≤u≤umax

‖T (u)− T ∗(u|T )‖22 ≥ t
)
≤ P

 sup
`=1,...,K,

umin≤u≤umax

‖θ̂`(u)− θ∗` (u)‖∞ ≥ t1/2K−1/2

 .

The results follows from Corollary A.5, and from the assumption on K ≤
Kmax = O(k3

n).

A.4 Proof of Corollary 3.6

Write

E
[

sup
umin≤u≤umax

‖T (u)− T ∗(u|T )‖22
]

=

∫ ∞
0

P( sup
umin≤u≤umax

‖T (u)−T ∗(u|T )‖22 ≥ t)dt.
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Let tn = c1K(log kn)k−1
n , then∫ ∞

0
P( sup
umin≤u≤umax

‖T (u)−T ∗(u|T )‖22 ≥ t)dt ≤ tn+

∫ ∞
tn

P( sup
umin≤u≤umax

‖T (u)−T ∗(u|T )‖22 ≥ t)dt.

We now use Theorem 3.5 to bound the integral on the right-hand side. Since∫∞
0 exp(−at)dt = 1

a ,
∫∞

0 exp(−a1/2t1/2)dt = 2
a , and

∫∞
1 t−3/2dt = 2, we get

E
[

sup
umin≤u≤umax

‖T (u)− T ∗(u|T )‖22
]
≤ tn +

2Kβ2(log kn)2

C1kn
+

4Kβ2(log kn)2

C2
2kn

+
2C3K

k
5/2
n

≤ c1K log kn
kn

+
2Kβ2(log kn)2

C1kn
+

4Kβ2(log kn)2

C2
2kn

+
2C3K

k
5/2
n

≤ C4K(log kn)2

kn
.

A.5 Proof of Proposition 3.8

Let x fixed, then,

‖θ∗(x)−θ0(x)‖∞ = ‖
Kmax∑
`=1

(θ∗` − θ0(x))1x∈T`‖∞ ≤
Kmax∑
`=1

‖θ∗` −θ0(x)‖∞1x∈T` .

Now, from Taylor expansion, for ` = 1, . . . ,K, conditionally on X ∈ T`,

∇θL`(θ0(x), u) = ∇θL`(θ∗` , u) +∇2
θL

`(θ̃`)(θ0(x)− θ∗` )τ

= 0 + E
[(

∂σgσ̃1,γ(Y − u) ∂γgσ,γ̃1(Y − u)
∂σhσ̃2,γ(Y − u) ∂γhσ,γ̃2(Y − u)

)
1Y≥u | X ∈ T`

]
(θ0(x)− θ∗` )τ

for some parameters γ̃j (resp. σ̃j) between γ0(x) and γ∗` (resp. σ0(x) and
σ∗` ).

Thus, under Assumption 3.4,

‖θ0(x)− θ∗`‖∞ ≤ 1

C1
‖∇θL`(θ0(x), u)‖∞

≤ 1

C1

kn
n

max
(
|E
[
gθ0(x)(Z) | X ∈ T`

]
|,E
[
hθ0(x)(Z) | X ∈ T`

])
,

where Z is a random variable distributed according to the distribution Fu
defined in Section 2.1 with σ0(x) = uγ0(x) and with

E
[
gθ0(x)(Z) | X ∈ T`

]
= − 1

uγ0(x)
+

1

u2γ0(x)

(
1 +

1

γ0(x)

)
E
[

Z

1 + Z/u
| X ∈ T`

]
E
[
hθ0(x)(Z) | X ∈ T`

]
= − 1

γ0(x)2
E [log(1 + Z/u) | X ∈ T`]

+
1

uγ0(x)

(
1 +

1

γ0(x)

)
E
[

Z

1 + Z/u
| X ∈ T`

]
.
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Under Assumption 3.7, we have

F u(z) =
(

1 +
z

u

)−1/γ0(x)
{

1 + cψ(u)

∫ 1+z/u

1
vρ−1dv + o(ψ(u))

}
.

E
[

Z

1 + Z/u
| X ∈ T`

]
=

∫ u

0
F u

(
t

1− t/u

)
dt

=
u

1 + 1/γ0(x)

(
1 +

cψ(u)

1 + 1/γ0(x)− ρ
+ o(ψ(u))

)
≤ u (1 + cγ0(x)ψ(u) + o(ψ(u)))

and then

E [log(1 + Z/u) | X ∈ T`] =

∫ u

0
P
[
Z ≥ u(et − 1) | X ∈ T`

]
dt

= γ0(x)

(
1 +

cψ(u)

1/γ0(x)− ρ
+ o(ψ(u))

)
≤ γ0(x) (1 + cγ0(x)ψ(x)(u) + o(ψ(u))) .

Consequently,

|E
[
gθ0(x)(Z) | X ∈ T`

]
| ≤ 1

γmin

(
1 +

1

u

(
1 +

1

γmin

))
(1 + cγ0(x)ψ(u) + o(ψ(u)))

and

|E
[
hθ0(x)(Z) | X = x

]
| ≤ 1

γmin

(
1 +

1

γmin
+
γmax

γmin

)
(1 + cγ0(x)ψ(u) + o(ψ(u))) .

Hence,

‖θ0(x)− θ∗`‖∞ ≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u))) ,

where C2(u) = 1
C1

1
γmin

max
(

1 + 1
u + 1

uγmin
, 1 + 1

γmin
+ γmax

γmin

)
.

Finally,

‖θ∗(x)− θ0(x)‖∞ ≤
Kmax∑
`=1

‖θ∗` − θ0(x)‖∞1x∈T`

≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u)))

Kmax∑
`=1

1x∈T`

≤ C2(u)
kn
n

(1 + cγmaxψ(u) + o(ψ(u))) .
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A.6 Proof of Theorem 3.9

The following lemma will be needed to prove Theorem 3.9.

Lemma A.6. Let D = infu infK<K0(u) ∆L(T ∗(u), T ∗K(u)) and u ∈ [umin, umax]
fixed. Suppose that there exists a constant c2 > 0 such that the penalization
constant λ satisfies

c2{log kn}1/2k−1/2
n ≤ λ ≤ (D− 2c2{log(kn)}1/2k−1/2

n )k−1
n ,

then, for K > K0(u),

P(K̂(u) = K) ≤ 2

(
exp

(
−C1knλ

2(K −K0(u))2

β2(log kn)2

)
+ exp

(
−C2knλ(K −K0(u)))

β log kn

))
+

C3

k
5/2
n λ3(K −K0(u))3

,

and, for K < K0(u),

P(K̂(u) = K) ≤ 4 exp

(
−C1kn{D− λ(K0(u)−K)}2

β2(log kn)2

)
+4 exp

(
−C2kn{D− λ(K0(u)−K)}

β log kn

)
+

2C3

k
5/2
n {D− λ(K0(u)−K)}3

.

Proof. Let u ∈ [umin, umax] fixed. If K̂(u) = K, this means that

∆Ln(TK(u), TK0(u)(u)) := Ln(TK , u)− Ln(TK0(u), u) > λ(K −K0(u)).

Decompose

∆Ln(TK(u), TK0(u)) = {Ln(TK , u)− Ln(T ∗K , u)}+ {Ln(T ∗K , u)− Ln(T ∗, u)}
+{Ln(T ∗, u)− Ln(TK0(u), u)}.

Since Ln(T ∗, u)− Ln(TK0(u), u) < 0,

∆Ln(TK(u), TK0(u)(u)) ≤ {Ln(TK , u)−Ln(T ∗K , u)}+{Ln(T ∗K , u)−Ln(T ∗, u)}.

For K > K0(u), T ∗K(u) = T ∗(u), hence,

P(K̂(u) = K) ≤ P (∆Ln(TK(u), T ∗K(u)) > λ(K −K0(u)))

≤ P (|∆Ln(TK(u), T ∗K(u))−∆L(TK(u), T ∗K(u))| > λ(K −K0(u))) .

For K > K0(u), a bound is then obtained from Theorems A.3 and A.4 if

λ(K −K0(u)) ≥ c1{log(kn)}1/2k−1/2
n , that is λ ≥ c1{log kn}1/2k−1/2

n .
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Now, for K < K0(u),

∆Ln(T ∗K(u), T ∗(u)) ≤ |∆Ln(T ∗K(u), T ∗(u))−∆L(T ∗K(u), T ∗(u))|+ ∆L(T ∗K(u), T ∗(u))

≤ |∆Ln(T ∗(u), T ∗K(u))−∆L(T ∗(u), T ∗K(u))| −D(K0(u),K).

where D = infK<K0(u),u∈[umin,umax] D(K0(u),K), Hence,

P(K̂(u) = K)

≤ P
(

∆Ln(TK(u), T ∗K(u)) ≥ D− λ(K0(u)−K)

2

)
+P
(
|∆Ln(T ∗(u), T ∗K(u))−∆L(T ∗(u), T ∗K(u))| ≥ D− λ(K0(u)−K)

2

)
≤ P

(
|∆Ln(TK(u), T ∗K(u))−∆L(TK(u), T ∗K(u))| ≥ D− λ(K0(u)−K)

2

)
+P
(
|∆Ln(T ∗(u), T ∗K(u))−∆L(T ∗(u), T ∗K(u))| ≥ D− λ(K0(u)−K)

2

)
.

These two probabilities can be bounded using Theorems A.3 and A.4 pro-
vided that, for all K < K0(u),

D− λ(K0(u)−K)

2
≥ c1{log(kn)}1/2k−1/2

n ,

that is,
λ ≤ D− 2c1{log(kn)}1/2k−1/2

n .
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We are now ready to prove Theorem 3.9. Let u ∈ [umin, umax] fixed.

E
[
‖T̂ (u)− T ∗(u)‖22

]
=

Kmax∑
K=1

E
[
‖TK(u)− T ∗(u)‖221K̂(u)=K

]
≤ E

[
‖TK0(u)(u)− T ∗(u)‖22

]
+

Kmax∑
K=1,K 6=K0(u)

KP(K̂(u) = K)

+

Kmax∑
K=1,K 6=K0(u)

E
[
‖TK(u)− T ∗(u)‖221‖TK(u)−T ∗(u)‖22>K1

K̂(u)=K

]

≤ E
[
‖TK0(u)(u)− T ∗(u)‖22

]
+

K0(u)−1∑
K=1

KP(K̂(u) = K)

+

Kmax∑
K=K0(u)+1

KP(K̂(u) = K)

+2

Kmax∑
K=1,K 6=K0(u)

E
[
‖TK(u)− T ∗K(u)‖221‖TK(u)−T ∗(u)‖22>K

]

+2

Kmax∑
K=1,K 6=K0(u)

P(K̂(u) = K)‖T ∗(u)− T ∗K(u)‖22.

Firstly, from Theorem 3.5,

E
[
‖TK(u)− T ∗K(u)‖221‖TK(u)−T ∗(u)‖22>K

]
= KP

(
‖TK(u)− T ∗K(u)‖22 > K

)
+

∫ ∞
K

P
(
‖TK(u)− T ∗K(u)‖22 > t

)
dt

≤ 2K

(
1 +

β2(log kn)2

C1kn

)
exp

(
− C1kn
β2(log kn)2

)
+2K

(
1 +

2β(log kn)

C2kn
+

2β2(log kn)2

C2
2k

2
n

)
exp

(
− C2kn
β(log kn)

)
+

2C3K
1/2

k
5/2
n

.

Secondly, recall that

‖T ∗K(u)−T ∗(u)‖22 =

∫
‖θK∗(x)−θ∗(x)‖2∞dP(x) ≤ Kmax

Kmax∑
`=1

‖µ(T`)θK∗` −θ∗`‖2∞ ,

where µ(T`) = P(X ∈ T`). Following the same idea as in the proof of
Proposition 3.8, from Taylor’s expansion, under Assumptions 3.4 and 3.7,

‖θK∗` − θ∗`‖2∞ ≤ C2
2(u)

k2
n

n2
(1 + cγmaxψ(u) + o(ψ(u)))2 .
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Hence,

‖T ∗K(u)− T ∗(u)‖22 ≤ C2
2(u)

k2
n

n2
(1 + cγmaxψ(u) + o(ψ(u)))2

Kmax∑
`=1

1x∈T`

≤ C3(u)
k2
n

n2
.

Finally,

E
[
‖T̂ (u)− T ∗(u)‖22

]
≤ C5K0(u)(log kn)2

kn
,

for some constant C5. .

B Covering numbers

Lemma B.1. Following the notations of the proof of Theorem A.3, the class
of functions F satisfies

NΦ(ε,F) ≤ C4K
4(d+1)(d+2)‖Φ‖α1

2 σαn
εα

,

for some constants C4 > 0 and α > 0 (not depending on n nor K).

Proof. Let

gθ(z) = − 1

σ
+

(
1

γ
+ 1

)
γz

σ2(1 + zγ
σ )
,

hθ(z) = − 1

γ2
log
(

1 +
zγ

σ

)
+

(
1
γ + 1

)
z

σ + zγ
,

for z > 0. For θ and θ′ in S × Γ, we have (from a straightforward Taylor
expansion),

|gθ(y − u)− gθ′(y − u)| ≤ C|γ − γ′|+ C ′|σ − σ′|,

for some constants C and C ′. More precisely, one can take

C =
6

γ2
minσmin

,

C ′ =
1

σ2
min

(
1 + 3

{
1 +

1

γmin

})
.

Next, observe that

|gθ′(y − u)− gθ′(y − u′)| ≤ C ′′|u− u′|,
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where C ′′ = 4γ2
max/[γminσ

3]. Which leads to

|gθ(y − u)− gθ′(y − u′)| ≤ Cg max(‖θ − θ′‖∞, |u− u′|),

for some constant Cg > 0. Similarly,

|hθ(y − u)− hθ′(y − u)| ≤ C1(4 + log(1 + wy))|γ − γ′|+ C2|σ − σ′|,

Next,
|hθ′(y − u)− hθ′(y − u′)| ≤ C7|u− u′|,

where C7 = 5/(γminσmin), leading to, for some Ch > 0,

|hθ(y − u)− hθ′(y − u′)| ≤ Ch max(‖θ − θ′‖∞, |u− u′|).

On the other hand,

|φ(y−u, θ)−φ(y−u, θ′)| ≤ 1

γ2
min

(2 + log(1 +wy))|γ−γ′|+ 3

γminσmin
|σ−σ′|,

and

|φ(y − u, θ′)− φ(y − u′, θ′)| ≤ 1

σmin
|u− u′|.

Define F1 = {gθ(·−u) : θ ∈ S×Γ, u ∈ [umin, umax]}, F2 = {hθ(·−u) : θ ∈
S ×Γ, u ∈ [umin, umax]}, and F3 = {φ(· − u, θ) : θ ∈ S ×Γ, u ∈ [umin, umax]}.
From Example 19.7 in [31], we get, for i = 1, ..., 3,

N(ε,Fi) ≤ Fi‖Φ‖α1
2 σα1

n ε−α1 ,

for some α > 0 and constants Fi.
On the other hand, let

F4 = {x 7→ 1x∈T` : ` = 1, . . . ,K} ,

and
F5 = {y 7→ 1y>u : u ∈ U} .

From Lemma 4 in [24], we have N(ε,F4) ≤ mkKα2ε−α2 , where α2 = 4(d+
1)(d+2), and where k is the number of discrete components taking at most m
modalities. On the other hand, from Example 19.6 in [31], N(ε,F5) ≤ 2ε−2.

From Lemma A.1 in [15], we get, for i = 1, . . . , 3,

N(ε,FiF4F5) ≤ 4mkKα2 max(Cg, Ch)‖Φ‖α1
2 σα1

n

εα1+α2+α3
.

Multiplying FiF4F5 by a single indicator function 1Φ(Yi)≤Mn
does not change

the covering number, and the result follows.
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C Technical Lemmas

Lemma C.1. With vF defined in Proposition A.1,

vF ≤
M2
nkn
n

.

Proof. We have

vF ≤ E
[
Φ(Y )21Y≥umin1Φ(Y )≤Mn

]
≤ M2

nP(Y ≥ umin) =
M2
nkn
n

.

Lemma C.2. Define, for j = 1, 2, 3,

Ej,n = E
[
Φ(Y )j1Φ(Y )≥Mn

1Y≥umin

]
.

Under the assumptions of Theorem A.4,

Ej,n ≤
ejk

1/2
n

n1/2nρ0βa2/4
.

Proof. Applying twice Cauchy-Schwarz inequality leads to

Ej,n ≤ P(Y ≥ umin)1/2E[Φ(Y )2j1Φ(Y )≥Mn
]1/2 ≤ k

1/2
n

n1/2
E[Φ(Y )4j ]1/4P(Φ(Y ) ≥Mn)1/4.

Next, from Chernoff inequality,

P(Φ(Y ) ≥Mn) ≤ exp(−ρ0Mn)E[exp(ρ0Φ(Y ))] ≤ mρ0

nρ0βa2
.
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