Degenerate Cahn-Hilliard and incompressible limit of a Keller-Segel model - Archive ouverte HAL
Article Dans Une Revue Communications in Mathematical Sciences Année : 2022

Degenerate Cahn-Hilliard and incompressible limit of a Keller-Segel model

Résumé

The Keller-Segel model is a well-known system representing chemotaxis in living organisms. We study the convergence of a generalized nonlinear variant of the Keller-Segel to the degenerate Cahn-Hilliard system. This analysis is made possible from the observation that the Keller-Segel system is equivalent to a relaxed version of the Cahn-Hilliard system. Furthermore, this latter equivalent system has an interesting application in the modelling of living tissues. Indeed, compressible and incompressible porous medium type equations are widely used to describe the mechanical properties of living tissues. The relaxed degenerate Cahn-Hilliard system, can be viewed as a compressible living tissue model for which the movement is driven by Darcy's law and takes into account the effects of the viscosity as well as surface tension at the surface of the tissue. We study the convergence of the Keller-Segel system to the Cahn-Hilliard equation and some of the analytical properties of the model such as the incompressible limit of our model. Our analysis relies on a priori estimates, compactness properties, and on the equivalence between the Keller-Segel system and the relaxed degenerate Cahn-Hilliard system.
Fichier principal
Vignette du fichier
article_RDCH_KS_porous.pdf (483.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03484277 , version 1 (16-12-2021)

Licence

Identifiants

Citer

Charles Elbar, Benoît Perthame, Alexandre Poulain. Degenerate Cahn-Hilliard and incompressible limit of a Keller-Segel model. Communications in Mathematical Sciences, 2022, 20 (7), pp.1901-1926. ⟨10.4310/CMS.2022.v20.n7.a5⟩. ⟨hal-03484277⟩
114 Consultations
97 Téléchargements

Altmetric

Partager

More