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Degenerate Cahn-Hilliard and incompressible limit of a
Keller-Segel model

Charles Elbar∗† Benoît Perthame∗‡ Alexandre Poulain§¶

December 16, 2021

Abstract
The Keller-Segel model is a well-known system representing chemotaxis in living organisms.

We study the convergence of a generalized nonlinear variant of the Keller-Segel to the degenerate
Cahn-Hilliard system. This analysis is made possible from the observation that the Keller-Segel
system is equivalent to a relaxed version of the Cahn-Hilliard system. Furthermore, this latter
equivalent system has an interesting application in the modelling of living tissues. Indeed,
compressible and incompressible porous medium type equations are widely used to describe the
mechanical properties of living tissues. The relaxed degenerate Cahn-Hilliard system, can be
viewed as a compressible living tissue model for which the movement is driven by Darcy’s law
and takes into account the effects of the viscosity as well as surface tension at the surface of the
tissue. We study the convergence of the Keller-Segel system to the Cahn-Hilliard equation and
some of the analytical properties of the model such as the incompressible limit of our model. Our
analysis relies on a priori estimates, compactness properties, and on the equivalence between
the Keller-Segel system and the relaxed degenerate Cahn-Hilliard system.

1 Introduction
When describing living tissue dynamics, the most relevant Hele-Shaw free boundary models come
with a surface tension term, [18, 20]. In the regime of a smooth free boundary, these problems are
well established and obtained as the sharp-interface limits of Cahn-Hilliard equations [4]. However,
it is an open question to prove such a derivation in the global regime of weak solutions. Our goals
are to establish the incompressible limit departing from the Relaxed Cahn-Hilliard system (RCH in
short), and to make the link with a specific Generalized Keller-Segel (GKS) type system, namely

∂tn−
δ

2σ
∆n2 +

δ

σ
div (n∇w) = nG

(
δ

σ
(n− w)

)
, in (0,+∞)× Ω, (1.1)

−σ∆w +
σ

δ
wγ + w = n, in (0,+∞)× Ω, (1.2)

where Ω ⊂ Rd is a smooth open bounded domain. We are going to prove that as σ vanishes, its
limit is the Degenerate Cahn-Hilliard (DCH) model

∂tn− div(n∇µ) = nG(µ), in (0,+∞)× Ω, (1.3)
µ = nγ − δ∆n, in (0,+∞)× Ω, (1.4)
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where µ is formed of a repulsion potential nγ and a surface tension potential −δ∆n (see further
explanations below). In this work, nγ actually stands for max(0, n)γ but since the solutions are
nonnegative, we keep the notation nγ for sake of clarity. The growth (or source) term G(µ) takes
into account death and birth of cells.

It is crucial for the analysis of the convergence of the GKS system to the DCH equation to
remark that the nonlinear system (1.1)–(1.2) is equivalent to a relaxed version of the Cahn-Hilliard
model (see [28]). Indeed, defining

µ =
δ

σ
(n− w) , w = n− σ

δ
µ, p = wγ , µ = p− δ∆w, (1.5)

System (1.1)–(1.2) can be rewritten in the form

∂tn− div(n∇µ) = nG(µ), in (0,+∞)× Ω, (1.6)

−σ∆µ+ µ =
(
n− σ

δ
µ
)γ
− δ∆n, in (0,+∞)× Ω. (1.7)

Although they are equivalent, Systems (1.1)–(1.2) and (1.6)–(1.7) carry different informations. For
instance, since we consider non-negative densities n ≥ 0, we also have

w ≥ 0, µ ≤ δ

σ
n.

The Keller-Segel formulation of the system also provides higher regularity of the solutions. In the
following, we combine analytical methods better adapted to each of these two equivalent formulations
in order to pass to the incompressible limit γ →∞ and obtain

∂tnσ,∞ − div(nσ,∞∇µσ,∞) = nσ,∞G(µσ,∞), (1.8){
µσ,∞ = pσ,∞ − δ∆wσ,∞,
−σ∆wσ,∞ + σ

δ pσ,∞ + wσ,∞ = nσ,∞, wσ,∞ = nσ,∞ − σ
δ µσ,∞.

(1.9)

In this ’stiff pressure limit’, the system (1.8)–(1.9) has three unknowns nσ,∞, wσ,∞ (or µσ,∞) and
pσ,∞ and is completed with a type of incompressibility condition

pσ,∞(wσ,∞ − 1) = 0. (1.10)

For these systems, we use the zero mass and energy flux boundary conditions

n
∂µ

∂ν
=
∂w

∂ν
= 0 on (0,∞)× ∂Ω, (1.11)

where ν is the outward normal vector to the boundary of Ω, and the initial condition

n(0, ·) = n0 ∈ H1(Ω) ∩ L∞(Ω), and 0 ≤ n0 ≤ 1 a.e. (1.12)

We also need assumptions on the pressure-dependent proliferation rate of the cells

G ∈ C(R;R), sup
µ∈R

(1 + |µ|)|G(µ)| < +∞. (1.13)

For instance we can suppose that there exists µH such that G(µ) = 0 for |µ| > µH . In that case,
the value µH can be viewed as the homeostatic pressure which is the lowest level of pressure that
prevents cell multiplication due to contact-inhibition. For the pressure law exponent, we assume

γ > 1. (1.14)
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Using assumptions (1.13) the total mass of the system is bounded. More precisely, we find a
constant CT such that for all t ∈ (0, T ) and for all σ, γ, it holds for all T > 0

1

|Ω|

∫
Ω

nσ,γ(t, ·) ≤ CT ,
1

|Ω|

∫
Ω

wσ,γ(t, ·) ≤ CT . (1.15)

This allows us to use the Poincaré-Wirtinger inequality.
System (1.6)–(1.7) comes with the energy and entropy respectively defined by

E [n, µ] =

∫
Ω

(n− σ
δ µ)γ+1

γ + 1
+
δ

2

∣∣∣∇(n− σ

δ
µ
)∣∣∣2 +

σ

δ

|µ|2

2
,

Φ[n] =

∫
Ω

n log n.

They formally satisfy, as already used in [28], the relations

d

dt
E [n, µ] = −

∫
Ω

n|∇µ|2 +

∫
Ω

nµG(µ),

d

dt
Φ[n] = −

∫
Ω

δ
∣∣∣∆(n− σ

δ
µ
)∣∣∣2 +

σ

δ
|∇µ|2

+ γ
(
n− σ

δ
µ
)γ−1∣∣∣∇(n− σ

δ
µ
)∣∣∣2 +

∫
Ω

nG(µ)(log(n) + 1).

From (1.5), they also provide informations on w. The purpose of this work is to establish estimates
which allow us to study the convergence of the nonlinear GKS model to the DCH model, and to
analyze the incompressible limit γ →∞.

Modelling of living tissues and assumptions Our study lies among other models which rep-
resent biological phenomena that we present here.

System (1.6)–(1.7) models the movement and proliferation of a population of cells constituting a
biological tissue and driven by the combined effects of the pressure, the surface tension occurring at
the surface of the tissue, as well as its viscosity. As in the context of the modelling of diphasic fluid,
in System (1.6)–(1.7), n is the order parameter, i.e. the relative cell density n = n1/(n1 + n2). The
unknown µ is a quantity related to the effective pressure and is also used to relax the fourth order
Cahn-Hilliard type equation in a system of two-second order equations. Following the Cahn-Hilliard
terminology or Mechanobiology, we refer to µ indistinctly as the chemical potential or as the effective
pressure. The equation for the effective pressure (i.e. Equation (1.7)) contains the effects of both
the pressure, through the term

(
n− σ

δ µ
)γ with γ > 1 that controls the stiffness of the pressure law,

and surface tension by −δ∆n, where
√
δ is the width of the interface in which partial mixing of the

two components n1, n2 occurs. Equation (1.7) also contains a diffusive term −σ∆µ used to relax
the Cahn-Hilliard system (1.6)–(1.7) as in [28]. This relaxation term can also be interpreted as the
effect of viscosity.

Modelling tissue growth and understanding the dynamics of cells have been the center of many
research pieces in the past decade. Initiated by Greenspan [24], general mechanical models of tumor
growth [10, 20, 26] have been proposed and used the internal pressure as the main effect that drives
the movement and proliferation of cells. The prototypical example of a mechanical living tissue
model is

∂tn = div (n∇p) + nG(p), p = Pγ(n) :=
γ

γ − 1
nγ−1, (1.16)

in which p is the pressure and n the cell density. In this kind of model, Darcy’s law of movement
is used to reflects the porous media formed by the extra-cellular matrix and the tendency of cells
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to move away from regions of high compression. The dependency on the pressure of the growth
function has also been used to model the sensitivity of tissue proliferation to compression. Interest-
ingly, Perthame et al. [29] have shown that in the incompressible limit (i.e. γ → ∞), solutions of
Model (1.16) converge to a limit (n∞, p∞) solution of a free boundary limit problem of Hele-Shaw
type for which the speed of the free boundary is given by the normal component of p∞. In this
limit, the solution of Equation (1.16) organizes into 2 regions: Ω(t) in which the pressure is positive
(corresponding to the tissue) and outside this zone where p = 0. Furthermore, the free Boundary
problem is supplemented by a complementary equation that indicates that the pressure satisfies

−∆p∞ = G(p∞), in Ω(t), or similarly p∞(∆p∞ +G(p∞)) = 0 a.e. in Ω. (1.17)

However, the crucial role of the cell-cell adhesion at the surface of the tissue is not retrieved at the
limit. Indeed, as pointed by Lowengrub et al. [26], the velocity of the free surface should depend
on its local curvature denoted by κ.

Thus, multiple variants of the general model (1.16) have been suggested to consider other physical
effects in mechanical models of tissue growth. The addition of the effect of viscosity in the model
has been made to represent the friction between cells [6, 9] through the use of Stokes’ or Brinkman’s
law (see [5] for a rigorous derivation of Brinkman’s law in inhomogeneous materials). However, as
pointed out by Perthame and Vauchelet [30], Brinkman’s law leads to a simpler version of the model
and, therefore, is a preferential choice for its mathematical analysis. Adding viscosity through the
use of Brinkman’s law leads to the model{

∂tn = div (n∇µ) + nG(p), in (0,+∞)× Ω,

−σ∆µ+ µ = p, in (0,+∞)× Ω.
(1.18)

The incompressible limit of this system also yields the complementary relation (see [30])

p∞(p∞ − µ∞ − σG(p∞)) = 0, a.e. in Ω.

In the incompressible limit, notable changes compared to the system with Darcy’s law are found.
First the previous complementary relation is different compared to Equation (1.17), and the pressure
p∞ in the limit is discontinuous, i.e. there is a jump of the pressure located at the surface of Ω(t).
However, the pressure jump is related to the potential µ and not to the local curvature of the
free boundary ∂Ω(t). The authors already indicated that a possible explanation to this is that the
previous model does not include the effect of surface tension. Indeed, classical solutions for the
Hele-Shaw problem with the addition of the effect of surface tension leads to the free boundary
problem (see e.g. [18]) {

−∆µ = 0 in Ω \ ∂Ω(t),

µ = σκ on ∂Ω(t).
(1.19)

This correct Hele-Shaw limit has been formally obtained as the sharp-interface asymptotic model
of the Cahn-Hilliard equation [4].

Cahn-Hilliard type models are widely used nowadays to represent living tissues and in particular
tumors [31, 19]. Being of fourth-order, the Cahn-Hilliard equation is often rewritten in a system of
two second-order equations, i.e.

∂tn = div (n∇ (ψ′(n)− δ∆n))→

{
∂tn = div (n∇µ) ,

µ = −δ∆n+ ψ′(n),
(1.20)

where n is the concentration of a phase and µ is called the chemical potential in material sciences
but is often used as an effective pressure for living tissues (see [11, 14, 2, 12]). Also, the interaction
potential ψ(n) contained in this effective pressure term comprises the effects of attraction and
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repulsion between cells. The physically relevant form of this potential is a double-well logarithmic
potential and is often approximated by a smooth polynomial function. However, recent studies
show that for the modelling of living tissues and for the particular application where only one of
the component of the mixture experiences attractive and repulsive forces, a single-well logarithmic
potential is more relevant [10]. In our particular application, the potential ψ′(n) is only related to
the modelling of pressure and, therefore, the final model includes only repulsive forces.

We emphasize that multiple variants of the Cahn-Hilliard model have been studied to represent
living tissues and tumors including passive transport by Darcy’s Law [23, 22, 21] and with the effect
of viscosity [16, 27]. The existence of weak solutions for degenerate mobility has been first studied
by Elliott and Garcke in [17]. The case of a smooth potential and mobility was treated by Dai and
Du in [15]. In the definition of their weak solutions, the authors did not identify the potential µ
except in the zone where the density does not vanishes. Indeed this difficulty comes from the energy
which provides the bound ‖n1/2∇µ‖L2(ΩT ) ≤ C. The term div(n∇µ) in the weak solutions is then
treated as div(n1/2ζ) where ζ is an L2 vector field that can be identified in the zone n 6= 0. For our
system, we identify the potential µ by considering a weaker type of solutions.

Contents of the paper We present and analyze the convergence of the nonlinear GKS model to
the DCH model (corresponding to the study of the vanishing viscosity limit, i.e. σ → 0). We also
study rigorously the incompressible limit, i.e. γ →∞ for this new living tissue model.

Section 2 contains the proof that the nonlinear GKS system (1.1)–(1.2) converges to the DCH
model (1.3)–(1.4). This analysis is made possible from the fact that the nonlinear GKS model is
equivalent to the RCH model and from the use of standard compactness properties. To the best
of our knowledge, this is the first time that a Keller-Segel system is interpreted as a Cahn-Hilliard
system. The study of the incompressible limit is the purpose of Section 3. Since uniform bounds in γ
are required to use standard compactness properties and pass to the limit, we provide new estimates
relying on results obtained for the non-linear GKS model. Section 4 contains a proof of the existence
of weak solution for the system (1.1)–(1.2) and can be read first for the reader’s convenience. The
proof follows the lines of the works [17, 28]. Indeed, using a regularization of the mobility, we apply
a Galerkin approximation to show the existence of weak solutions to the regularized model. The
main novelty in the proof of this latter result is the need of strong convergence for the chemical
potential which is required to pass to the limit for the source term. Then, a priori estimates on
the regularized model give us sufficient control to use standard compactness results and pass to the
limit of the regularization, hence obtaining the existence of weak solutions to the RCH-DKS model.
Uniqueness of the weak solution is also shown in the case where there is no proliferation term.

Therefore, our analysis relies on a combination of results obtained for the Cahn-Hilliard model
as well as the non-linear GKS limit. The addition of the regularization term in the Cahn-Hilliard
model opens a new angle of attack to solve new problems and to find the correct Hele-Shaw limit
for a simple living tissue model.

2 From the GKS to the DCH system (σ → 0)
We consider weak solutions of System (1.1)–(1.2) as built in Section 4 and prove that weak solutions
of the DCH equation can be obtained as the limit of the GKS system. In the definition of the weak
solutions, there is not enough regularity on µ to treat the term −div(n∇µ) as

∫
n∇µ∇χ where χ

is a test function. We need to rely on another integration by parts based on the definition of µ and
Equation (2.13).
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Weak solutions of the DCH equation (1.3)–(1.4) satisfy both forms∫ T

0

〈χ, ∂tn〉 =

∫
ΩT

[ γ

γ + 1
nγ+1 − δn∆n− δ |∇n|

2

2

]
∆χ+ δ

d∑
i=1

∂in∇n · ∇∂iχ+ nG∞χ, (2.1)

∫ T

0

〈χ, ∂tn〉 =

∫
ΩT

γ

γ + 1
nγ+1∆χ− δ∆n(∇n · ∇χ+ n∆χ) + nG∞χ, (2.2)

for all χ ∈ L∞(0, T,W 2,∞(Ω)) with ∇χ · ν = 0, and∫ T

0

〈χ, ∂tn〉 = −
∫

ΩT

n∂tχ−
∫

Ω

χ(t = 0)n0, (2.3)

when, additionally, χ ∈ C1([0, T ] × Ω) and χ(T ) = 0. The source term can be identified as G∞ =
G(µ) in dimension d ≤ 4. The weak formulation (2.1) comes from Equation (2.13). The forms (2.1)
and (2.2) are equivalent with the formula

1

2
∇(|∇f |2) = div(∇f ⊗∇f)−∆f∇f.

We have the following convergence theorem.

Theorem 2.1 (Convergence of the GKS system to the DCH eq.). Assume (1.12)–(1.14). The weak
solutions (nσ, µσ) of the RCH-DKS model converge to (n, µ) weak solution of (1.3)–(1.4) in the sense
defined by (2.1)–(2.3). They satisfy the regularity estimates n ∈ L∞(0, T,H1(Ω))∩L2(0, T,H2(Ω)),
∂tn ∈ (L4(0, T,W 1,s(Ω)))′ where s is defined in Proposition 2.2, µ ∈ L2(0, T, L

γ+1
γ (Ω)) ∩

L
γ+1
γ (0, T, L

d(γ+1)
(d−2)γ (Ω)).

In dimension d ≤ 4, µ belongs to L2(Ω) and for all χ ∈ L∞(0, T,W 2,∞(Ω)) with ∇χ · ν = 0,
Equation (2.1) can be written as∫ T

0

〈χ, ∂tn〉 =

∫
ΩT

µ(∇n · ∇χ+ n∆χ) + nG(µ)χ. (2.4)

with µ = nγ − δ∆n a.e. in Ω.

The rest of this section is devoted to prove this theorem.

2.1 A priori estimates
Since the two systems (1.1)–(1.2) and (1.6)–(1.7) are equivalent, all estimates proved for a system
apply to the other. Based on the construction in Section 4, the energy and entropy structure of the
RCH model provide us with the following bounds. Assuming (1.12)–(1.14), there is a constant C
independent of γ, σ, such that, for all T ≥ 0,

σ

δ

∫
ΩT

|∇µ|2 ≤ C, σ

δ

∫
Ω

|µ(t)|2 ≤ C ∀t ∈ (0, T ), (2.5)

δ

∫
Ω

∣∣∣∇(n(t)− σ

δ
µ(t)

)∣∣∣2 ≤ C, ∀t ∈ (0, T ), (2.6)

δ

∫
ΩT

∣∣∣∆(n− σ

δ
µ
)∣∣∣2 ≤ C, (2.7)∫

ΩT

n|∇µ|2 ≤ C, (2.8)

γ

∫
ΩT

(
n− σ

δ
µ
)γ−1∣∣∣∇(n− σ

δ
µ
)∣∣∣2 ≤ C, (2.9)∫

Ω

(n(t)− σ
δ µ(t))γ+1

γ + 1
≤ C, ∀t ∈ (0, T ). (2.10)
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Next, we deduce further a priori estimates which are enough to pass to the limit as σ vanishes.

Proposition 2.2 (A priori bounds). Assuming (1.12)–(1.14), there is a constant C(T ) independent
of γ and σ such that the a priori estimates hold

‖n‖L2(0,T,H1(Ω)) ≤ C, ‖∂tn‖(L4(0,T,W 1,s(Ω)))′ ≤ C,

with s = 2 for d = 1, s > 2 for d = 2 and s = 4d
d+2 otherwise. Furthermore, we have

‖w‖L∞(0,T,Lγ+1(Ω)) ≤ C,
1

γ
‖w‖γ+1

Lγ+1(0,T,L
d(γ+1)
d−2 (Ω))

≤ C, 1

γ
‖µ‖

γ+1
γ

L
γ+1
γ (0,T,Lq(Ω))

≤ C,

with q = min(2, d(γ+1)
(d−2)γ ).

Proof. From Inequalities (2.5)–(2.6), we deduce that∇n ∈ L2(0, T, L2(Ω)). Thus, using the Poincaré-
Wirtinger inequality, we obtain that n ∈ L2(0, T,H1(Ω)) uniformly in γ, σ. Next, we recall that in
dimension d, H1 ↪→ Lr where r = 2d

d−2 for d > 2, 1 ≤ r < ∞ for d = 2, and 1 ≤ r ≤ ∞ for d = 1.
Thus, n1/2 ∈ L4(0, T, L2r(Ω)). Therefore, for all ϕ ∈ L4(0, T,W 1,s(Ω)), we can compute∣∣∣ ∫

Ω

∂tnϕ
∣∣∣ =

∣∣∣ ∫
Ω

n1/2n1/2∇µ · ∇ϕ+

∫
Ω

nG(µ)ϕ
∣∣∣

≤ ‖n1/2‖L2r(Ω)‖n1/2∇µ‖L2(Ω)‖∇ϕ‖Ls + C‖n‖Lr(Ω)‖ϕ‖Ls/2(Ω),

because 2r
r−1 = 4d

d+2 := s for d > 2. For d ≤ 2, we can consider any r > 1. Assumption (1.13) is used
to control the source term in L∞. Integrating in time, using the triangle inequality on the integrals,
Inequality (2.8) and Hölder’s inequality, we obtain the second estimate,∣∣∣ ∫

ΩT

∂tnϕ
∣∣∣ ≤ C‖ϕ‖L4(0,T,W 1,s(Ω)).

The first Lebesgue estimate for w is just an application of Inequality (2.10). For the second Lebesgue
estimate for w we write Inequality (2.9) as

4γ

(γ + 1)2

∫
ΩT

|∇w
γ+1
2 |2 ≤ C.

With Sobolev’s embedding and the Poincaré-Wirtinger inequality, we obtain

1

γ
‖w

γ+1
2 ‖2

L2(0,T,L
2d
d−2 (Ω))

≤ C.

This yields the second estimate. In addition, this estimate allows us to bound wγ uniformly in
L
γ+1
γ (0, T, L

d(γ+1)
(d−2)γ (Ω)). Finally, we recall the last formula for µ in (1.5), µ = wγ −∆w. Using the

previous bound on wγ and the bound (2.7), we obtain the estimate on µ.
This ends the proof of Proposition 2.2.

2.2 Convergence σ → 0

To study the limit σ → 0, we write the equivalent RCH and GKS systems as

∂tnσ − div(nσ∇µσ) = nσG(µσ), in (0,+∞)× Ω,

µσ = wγσ − δ∆wσ, wσ = nσ −
σ

δ
µσ in (0,+∞)× Ω.
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The main difficulty is the convergence of the term nσ∇µσ in the first equation. We know that
nσ → n strongly in L2(ΩT ) thanks to the Lions-Aubin lemma and Proposition 2.2. In fact, the
strong convergence is obtained in L<∞(0, T, L2(Ω)) (see below). No useful information can be
obtained on ∇µσ and for this reason, after an integration by parts, it remains to prove the weak
convergence in L>1(0, T, L2(Ω)) of µσ. The estimate on µσ given in Proposition 2.2 is not enough
in high dimension (i.e. d > 4) and we need to consider weak solutions given by (2.1)-(2.2) in the
limit. Strong convergence of µσ is also needed in order to identify the source term. Finally, with
the definition of wσ, notice that Inequalities (2.5) show that wσ is a compact perturbation of nσ
(see Proposition 2.4) which has much higher regularity than nσ due to the entropy/energy structure
of our system. Therefore the limit in the terms div(nσ∇µσ) and nσG(µσ) is treated by writing
nσ = wσ + ’compact perturbation’.

Remark 2.3. In the following proof and until the end, we consider convolutions which we integrate
on a bounded domain to prove compactness properties. This is just a formal writing because the
functions we consider are only defined on Ω. To make it rigorous, instead of considering a function f
we need to consider fζ where ζ is a truncature function. Then, the compactness has to be obtained
in domains Ωε for every ε small enough where Ωε ⊂ Ω and every points in Ωε is at distance ε of the
boundary of Ω. From now on, we ignore this technical issue in the proof below.

Proposition 2.4. With the assumptions of Theorem 2.1 we have ∇wσ,∇nσ → ∇n strongly in
L2(ΩT ) when σ → 0.

Proof. Inequalities (2.5) show that σµσ, σ∇µσ → 0 in L2(ΩT ). In addition, Proposition 2.2 yields
the weak convergence of ∇wσ,∇nσ ⇀ ∇n. It remains to prove strong convergence. We rely on
arguments similar to those of Appendix A using the Fréchet-Kolmogorov theorem.
We know that ∇wσ is bounded uniformly in L∞(0, T, L2(Ω)) ∩ L2(0, T,H1(Ω)) using Inequali-
ties (2.6)-(2.7) and elliptic regularity. Then, by interpolation we have an Lp(ΩT ) bound for some
p > 2. It remains to prove strong convergence in L1.
We already have compactness in space thanks to the H1 bound. With the notations of Appendix A,
it only remains to prove compactness in time, that means∫ T−h

0

∫
Ω

|∇wσ(t+ h, ·) ∗ ϕε(x)−∇wσ(t, ·) ∗ ϕε(x)|dxdt ≤ θ(h), θ(h)→ 0 when h→ 0, (2.11)

uniformly in σ.
From (1.5) we can write

∫ T−h

0

∫
Ω

|∇wσ(t+h, ·)∗ϕε(x)−∇wσ(t, ·)∗ϕε(x)|dxdt ≤
∫ T−h

0

∫
Ω

|(nσ(t+h, ·)−nσ(t, ·))∗∇ϕε(x)|dxdt

+ σ

∫ T−h

0

∫
Ω

|(∇µσ(t+ h, ·)−∇µσ(t, ·)) ∗ ϕε(x)|dxdt.

The term σ∇µσ converges strongly to 0 in L2(ΩT ). This provides equicontinuity of the last
term. The first term is dealt in the same way as in Appendix A. This yields the strong convergence
of ∇wσ. Using once again the previous decomposition and σ∇µσ → 0 show that ∇nσ converges
strongly.

Now, we can prove Theorem 2.1.

Proof. Step 1: Strong compactness for wσ, nσ,∇wσ,∇nσ. This step is a consequence of Proposi-
tion 2.2 and Proposition 2.4.
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Step 2: Convergence of n∇µ. Now, most of the convergences come from properties of the weak
limit and the bounds provided at the beginning of this section. For the case of any dimension, we
write nσ∇µσ as

nσ∇µσ = wσ∇µσ +
σ

δ
µσ∇µσ.

The last term converges strongly to 0 as σ → 0. Indeed, from Inequalities (2.5) together with the
Sobolev injection and the Poincaré-Wirtinger inequality, we know that

‖σ1/2µσ‖Lr(ΩT ) ≤ C,

for some r > 2 and C independent of σ. Using also that µ is bounded in L1(ΩT ) and interpolation
we find

‖σ1/2µ‖L2(ΩT ) ≤ Cσ
1−θ
2 , θ =

r

2(r − 1)
< 1. (2.12)

With Inequalities (2.5)-(2.12) we find σµσ∇µσ = (σ1/2µσ)(σ1/2∇µσ) → 0 strongly. We now treat
the first term on the right hand side. We recall that µσ = wγσ−δ∆wσ and therefore we write wσ∇µσ
as

wσ∇µσ =
γ

γ + 1
∇wγ+1

σ − δ
[
∇(wσ∆wσ) +∇|∇wσ|

2

2
−

d∑
i=1

∂i(∂iwσ∇wσ)
]
. (2.13)

We recall the strong convergence of wσ and ∇wσ in L2(ΩT ) to n,∇n and we have the weak conver-
gence of ∆wσ to ∆n thanks to Inequality (2.7). Finally we obtain the convergence in the distribu-
tional sense of the bracket in the right hand side. For the first term on the right hand side, we use
Proposition 2.2. This provides that wγ+1

σ is bounded uniformly L1(0, T, Lp(Ω)) ∩ L∞(0, T, L1(Ω))
for some p > 1 and therefore by interpolation in some Lq(0, T, Lr(Ω)) for some 1 < q < ∞ and
r = 1

1−1/q+1/(qp) . Using the strong convergence of wσ and the Lebesgue dominated convergence
theorem allows us to idenfity wγ+1 in the limit. Using integration by parts we obtain the weak
formulations (2.1)-(2.2).
The regularity of n,∇n,∆n in the limit comes from the uniform bounds on wσ,∇wσ,∆wσ and the
convergence of σµσ to 0.
In dimension d ≤ 4 we have better regularity for µ and we can find another weak formulation. This
is achieved in the following step.

Step 3: The weak formulation (2.4) in dimension d ≤ 4. In the case d ≤ 4 we have

‖µσ‖
L
γ+1
γ (0,T,L2(ΩT ))

≤ C, ‖∇wσ‖L∞(0,T,L2(Ω)) ≤ C,

thanks to Proposition 2.2 and Inequality (2.6). We write

µσ∇nσ = µσ∇wσ +
σ

δ
µσ∇µσ.

We know from above that the second term of the right hand side strongly converges to 0. For the
first term of the right hand side we know that ∇wσ → ∇n strongly in L2(ΩT ). With the previous
bound on ∇wσ the convergence actually holds in every Lp(0, T, L2(Ω)) for p <∞. Using the weak
convergence of µσ we find the weak convergence of the product.
The weak convergence of nσµσ is similar. Therefore, with integration by parts of the term div(nσ∇µσ)
against a test function χ we find the result.

Step 4: Identification of the source term when d ≤ 4. The last difficulty in the proof is to identify
the source term (i.e nG(µ)). Indeed, we do not know that µσ converges a.e. (up to a subsequence).
However, we know that nσ converges a.e to n and G(µσ) is bounded. It remains to prove that µσ
converges a.e. in the zone {n > 0}.
For this reason we search for estimates on nσµσ to prove its convergence almost everywhere. Then,
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the convergence of nσµσ and nσ yields the convergence a.e. of µσ in the zone {n > 0}. Now, we
write nσµσ = wσµσ + σ

δ µ
2
σ and compute

∇(nσµσ) = n1/2
σ n1/2

σ ∇µσ + µσ∇wσ +
3σ

2δ
∇(µ2

σ).

As previously, the last term is bounded uniformly in L1(ΩT ) (and even converges to 0). The first
term is also bounded in L1(ΩT ) with Proposition 2.2 and Inequality (2.8). For the second term we
use that µσ is bounded uniformly in L

γ+1
γ (0, T, L

d(γ+1)
(d−2)γ (Ω)). In dimension d ≤ 4, Inequality (2.6)

provides a bound on the second term. Therefore we have compactness in space. The proof of the
time compactness uses arguments and lemmas reported in Appendix A. Since ∇(wµ) is bounded, it
only remains to show∫ T−h

0

∫
Ω

|wσ(t+ h, ·)µσ(t+ h, ·) ∗ ϕε(x)− wσ(t, ·)µσ(t, ·) ∗ ϕε(x)|dxdt −→
h→0

0, uniformly in σ,

where the smooth functions ϕε are defined in the Appendix A.
We know using (1.5) that

wσµσ = wγ+1
σ − δwσ∆wσ = wγ+1

σ − δ

2
∆w2

σ + δ|∇wσ|2.

Since wσ converges strongly in L2(ΩT ) and is bounded in L∞(0, T, Lγ+1(Ω))∩Lγ+1
(
(0, T ), L

d(γ+1)
d−2 (Ω)

)
thanks to Inequality (2.10) and Proposition 2.2, we conclude by interpolation the strong conver-
gence of wσ in Lγ+1(ΩT ). Therefore the first term is equicontinuous by the converse of the Fréchet-
Kolmogorov theorem.

It only remains to estimate∫ T−h

0

∫
Ω

|[wσ(t+ h, ·)∆wσ(t+ h, ·)− wσ(t, ·)∆wσ(t, ·)] ∗ ϕε(x)|dxdt

≤
∫ T−h

0

∫
Ω

∣∣∣ ∫
Ω

(|∇wσ(t, y)|2 − |∇wσ(t+ h, y)|2)ϕε(x− y)
∣∣∣dydxdt

+

∫ T−h

0

∫
Ω

∣∣∣ ∫
Ω

(w2
σ(t+ h, y)− w2

σ(t, y))∆ϕε(x− y)
∣∣∣dydxdt.

With the strong convergence of ∇wσ and w2
σ we find the equicontinuity of the second and third

term in the decomposition. This yields the equicontinuity with respect to time of wµ.
Therefore thanks to the Fréchet-Kolmogorov theorem we have strong convergence in some Lp

and the convergence a.e. up to a subsequence of µ in the zone n > 0. The Lebesgue dominated
convergence theorem then allows us to identify the source term in the definition of the weak solutions.

3 Incompressible limit γ → +∞
We now fix δ, σ > 0 and study the incompressible limit γ → ∞ for the RCH-DKS system. These
two constants are the main link between RCH and DKS models. We recall that in the case δ = 0,
the incompressible limit is given in [30]. In the case σ = 0, the regularity provided by the DCH
model is not sufficient to pass to the limit. From now on, we keep δ, σ > 0 fixed and we may consider
them equal to 1 in some computations. We summarize the main bounds proved in this section in
the following proposition
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Proposition 3.1. For all T > 0, there exists a constant C(T ) independent of γ such that the weak
solutions built in Section 4 satisfy

‖µ‖L2(0,T,H1(Ω)) ≤ C, ‖n‖L2(0,T,H1(Ω)) ≤ C, (3.1)
‖n‖L∞(ΩT ) ≤ C, (3.2)

‖w‖L∞(0,T,H2(Ω)) ≤ C, ‖wγ‖L∞(ΩT ) ≤ C, ‖∇wγ‖L∞(0,T,L1(Ω)) ≤ C,
‖∆w‖L∞(ΩT ) ≤ C,

(3.3)

‖∂tn‖L2(0,T,H−1(Ω)) ≤ C, ‖∂tw‖L2(0,T,H1(Ω)) ≤ C, ‖∂tµ‖L2(0,T,H−1(Ω)) ≤ C,
‖∂twγ‖L2(0,T,H−1(Ω)) ≤ C.

(3.4)

The weak solutions in the case of no source term, i.e G = 0, are unique.

3.1 Uniform a priori estimates in Proposition 3.1
Proof of Proposition 3.1. We start with the first two estimates (3.1) of Proposition 3.1

The first inequality is a consequence of Inequalities (2.5). The second inequality has been proven
in the previous section.

L∞ bound for n. We now establish Inequality (3.2) under the assumption (1.12) on the initial
condition. The proof requires a variant of Gagliardo-Nirenberg inequality, namely there exists C > 0
such that for every 0 < ε < 1/2 and every v ∈ H1(Ω),

‖v‖2L2(Ω) ≤ ε‖∇v‖
2
L2(Ω) +

C

εd/2
‖v‖2L1(Ω). (3.5)

This inequality is an application of the classical Gagliardo-Nirenberg and Young inequalities.
We refer the reader to [13], Equation (9.3.8).

First, to begin the proof, we wish to stress a few comments. The proof of this proposition relies
on the use of the Alikakos iteration method [3]. We prove it for smooth solutions of the equation
but the method can be applied for weak solutions, since the bounds only depend on the a priori
estimates already found.

We start by choosing σ = δ = 1 to simplify the notation. We notice however that the L∞ bound
is not uniform in σ and therefore this result does not apply to Subsection 2.2. In fact, with the same
proof, it is possible to show that the L∞ bound varies as 1/σ. We multiply Equation (1.1) by n2k−1,
integrate over the domain, and after integration by parts that uses the boundary conditions (1.11),
we obtain

1

2k
d

dt

∫
Ω

n2k + (2k − 1)

∫
Ω

n2k−1|∇n|2 = (2k − 1)

∫
Ω

n2k−1∇w · ∇n+

∫
Ω

n2kG(µ). (3.6)

Then, multiplying Equation (1.2) by n2k , integrating over Ω, and after integration by parts, we
have from the non-negativity of both n and w (see Proposition 4.5)∫

Ω

n2k−1∇w · ∇n =
1

2k

∫
Ω

−∆wn2k ≤ 1

2k

∫
Ω

n2k+1. (3.7)

Therefore, rearranging the second term on the left-hand side of Equation (3.6), passing it to the
right-hand side, using Inequality (3.7), and, finally, using n2k ≤ n2k+1 + 1 for the second term of
the right hand side, we obtain

1

2k
d

dt

∫
Ω

n2k ≤ −4(2k − 1)

(2k + 1)2

∫
Ω

|∇n
2k+1

2 |2 +
(2k − 1

2k
+ C

)∫
Ω

n2k+1 + C.
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This means exactly that for some C > 0,

d

dt
‖n‖2

k

L2k (Ω)
≤ −4(2k − 1)2k

(2k + 1)2
‖∇n

2k+1
2 ‖2L2(Ω) + C2k‖n‖2

k+1

L2k+1
+ C2k.

Applying Equation (3.5) with v = n
2k+1

2 , we obtain for any ε > 0

d

dt
‖n‖2

k

L2k (Ω)
≤
(
C2k − 4(2k − 1)2k

ε(2k + 1)2

)
‖n‖2

k+1

L2k+1
+

C

ε(d+2)/2

4(2k − 1)2k

(2k + 1)2
‖n

2k+1
2 ‖2L1(Ω) + C2k.

Choosing ε = C2−k in order to let the first term of the right-hand side to be non-positive, leads to

d

dt
‖n‖2

k

L2k (Ω)
≤ C2(d+2)k/2‖n

2k+1
2 ‖2L1(Ω) + C2k.

Moreover, using Riesz-Thorin interpolation theorem, we have

d

dt
‖n‖2

k

L2k (Ω)
≤ C2(d+2)k/2‖n‖2

L2k (Ω)
‖n‖2

k−1

L2k−1 (Ω)
+ C2k.

Denoting mk = supt∈(0,T ) ‖n(t)‖
L2k (Ω)

and after integrating in time, we obtain

mk ≤
(
C2

(d+2)k
2 m2k−1

k−1 m
2
k + C2k

)1/2k

.

Following [13] (Lemma 9.3.1, p.213) the sequence mk can be dominated by m′k which satisfies

m′k = (C2
(d+2)k

2 )1/2km
′1−1/2k

k−1 m
′1/2k−1

k with C large enough and m′0 ≥ 1.,

i.e,

m′k = (C2
(d+2)k

2 )
1

2k−2m
′ 2
k−1

2k−2

k−1 .

Letting k → ∞ and by induction we find ‖n‖L∞(ΩT ) = m∞ ≤ m′∞ ≤ C. We refer to [13] for
the details. This yields the result. This in turn provides also higher regularity for w thanks to
Equation (1.2) and one can find estimates (3.3).

Proof of (3.3). The first estimate is a consequence of Equation (1.2) together with elliptic
regularity.

For the second estimate we multiply Equation (1.2) by wγ(r−1). After an integration by parts
and using the nonnegativity of n,w we find for every t,

‖wγ(t)‖rLr(Ω) ≤ ‖n(t)w(t)γ(r−1)‖Lr(Ω).

With Hölder inequality, we obtain

‖wγ(t)‖Lr(Ω) ≤ ‖n(t)‖Lr(Ω).

Letting r → ∞ thanks to Inequality (3.2) and taking the supremum in time yields the result. We
refer the reader to Theorem 2.14 in [1] for further details. The third inequality is just the result of
the two previous inequalities as well as Equation (1.2). To get the fourth inequality we differentiate
in space Equation (1.2) and multiply by sgn(∂xw

γ). Since w is nonnegative, sgn(∂xw
γ) = sgn(∂xw).

Using integration by parts on the first term yields the result. The computations can be made
rigorous with the derivative of a convex approximation of the absolute value.
Remark 3.2. With Inequality (3.2) and Equation (1.2) it is possible to find that w ∈ L2(0, T,H3(Ω))
and therefore wγ ∈ L2(0, T,H1(Ω)) thanks to Equation (1.2). However, the bound is not uniform
in γ and we cannot gain compactness.

12



Remark 3.3. When G = 0, Inequalities (3.3) provides uniqueness of the weak solutions, see Ap-
pendix B.

Time compactness of n. Compactness in time for n follows using once again the Lions-Aubin
lemma with the (L4(0, T,W 1,s(Ω)))′ bound on ∂tn from proposition 2.2. One can prove compactness
in time for w using the Fréchet-Kolmogorov theorem. However, with the previous regularity results,
we can get the better bounds (3.4) on the time derivative of n, w, p = wγ and µ.

Proof of (3.4). Since we have found that n ∈ L∞(ΩT ), we have for any test function φ ∈
L2(0, T ;H1(Ω)),

|
∫

ΩT

∂tnφ| ≤ ‖n‖1/2L∞(ΩT )

∫
ΩT

|n1/2∇µ∇φ| ≤ C‖∇φ‖L2(ΩT ),

where we have used (3.2) and (2.8). Hence, we have ∂tn ∈ L2(0, T,H−1(Ω)) uniformly. To find
compactness of ∂tµ it is enough to find compactness for ∂tw thanks to Equation (1.5). Computing
the time derivative of Equation (1.2), multiplying by a test function φ ∈ L2(0, T ;H1(Ω)), using the
notation z = ∂tw, and integrating in space and time, we have∫

ΩT

σ∇z · ∇φ+
σ

δ
γwγ−1zφ+ zφ =

∫
ΩT

∂tnφ.

Choosing φ = z, and from Young’s Inequality, we have∫
ΩT

(
σ − 1

2κ

)
|∇z|2 +

(
σ

δ
γwγ−1 + 1− 1

2κ

)
|z|2 ≤ 2κ‖∂tn‖2L2(0,T ;H−1(Ω)).

Therefore, choosing κ large enough, we obtain that ∂tw ∈ L2(0, T,H1(Ω)). Using Equation (1.2)
provides the compactness for ∂twγ . This achieves the proof of (3.4) and Proposition 3.1.

Finally, one can show that the regularity of the solutions provides continuity with respect to
time

Proposition 3.4. Assume (1.12)–(1.13), the functions n, w and wγ belong to C(0, T, Lp(Ω)) for
every 1 ≤ p < ∞.

3.2 Convergence γ → +∞
With all the ingredients of the previous subsections we find

Theorem 3.5 (Incompressible limit). Assume (1.12)–(1.13) and let (nσ,γ , µσ,γ) be a weak solu-
tion to the RDCH model (1.6)–(1.7). Then, when γ → ∞, after extraction of subsequences,
(nσ,γ , µσ,γ , wσ,γ) → (nσ,∞, µσ,∞, wσ,∞) with the regularity nσ,∞ ∈ L2(0, T,H1(Ω)) ∩ L∞(ΩT ),
∂tnσ,∞ ∈ L2(0, T,H−1(Ω)), wσ,∞ ∈ C(0, T, Lp(Ω))∩L∞(0, T,W 2,p(Ω)) and µσ,∞ ∈ C(0, T, Lp(Ω))∩
L2(0, T,H1(Ω)) for every 1 ≤ p <∞. These functions satisfy in the weak sense

∂tnσ,∞ − div(nσ,∞∇µσ,∞) = nσ,∞G(µ∞).

and

µσ,∞ = pσ,∞ − δ∆wσ,∞, −σ∆wσ,∞ +
σ

δ
pσ,∞ + wσ,∞ = nσ,∞, wσ,∞ = nσ,∞ −

σ

δ
µσ,∞.

where pσ,∞ is the strong Lp(ΩT )-limit of wγ and belongs to L∞(0, T, L∞(Ω)) ∩ C(0, T, Lp(Ω)).
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Proof. For the first term on the left hand side, the weak convergence of ∂tnσ,γ given by (3.4) is
enough. For the second term of the left hand side, we use (3.1)–(3.2) to prove the weak convergence
of nσ,γ∇µσ,γ . Then, to identify its limit, we use the strong convergence of nσ,γ from (3.1)-(3.4) and
the weak convergence of ∇µσ,γ given by (3.1). For the term on the right hand side, we use the strong
convergence of nσ,γ and µσ,γ . Finally for the equation on µσ,γ and wσ,γ weak convergence is enough.
To prove strong convergence of pσ,γ = wγσ,γ we use the bounds on ∂tpσ,γ ,∇pσ,γ from (3.3)–(3.4).
An application of the Fréchet-Kolmogorov theorem as in Appendix A yields the strong convergence.
The continuity with respect to time follows from the regularity of the solutions.

Moreover, we find two propositions on wσ,∞, the first one provides an L∞-bound on wσ,∞, and
the second one gives some information about the behaviour of the potential in the zones where
wσ,∞ 6= 1.

Proposition 3.6 (L∞-bound for wσ,∞). For the limit solution wσ,∞ defined in Theorem 3.5, we
have, with wσ,γ = nσ,γ − σ

δ µσ,γ ,
‖wσ,∞‖L∞(ΩT ) ≤ 1,

Proof. In the case σ > 0, this estimate is trivial with the L∞ bound on wγ from Proposition 3.1.
However, we also provide a proof that works in the case σ = 0, i.e., when w0,γ = n0,γ).

We start by using Inequality (2.10), we have

‖wσ,γ(t)‖Lγ+1(Ω) ≤ (C(γ + 1))1/(γ+1) ≤ C1/(γ+1).

By interpolation, and with 1
q = θ + 1−θ

γ+1 where q ∈ (1, γ + 1), we have

‖wσ,γ(t)‖Lq(Ω) ≤ ‖wσ,γ(t)‖θL1(Ω)‖wσ,γ(t)‖1−θLγ+1 .

From the Cauchy-Schwarz inequality for the L1 norm and from the previous inequality for the
Lγ+1-norm, we easily find two constants C, C̃ such that

‖wσ,γ(t)‖Lq(Ω) ≤ C̃θC(1−θ)/(γ+1).

Since we know that wγ ⇀ w∞, and by lower semi-continuity of the norm as well as the fact that
θ → 1/q when γ →∞, we have

‖wσ,∞‖L∞(0,T,Lq(Ω)) ≤ lim inf
γ→∞

‖wσ,γ‖L∞(0,T,Lq(Ω)) ≤ C̃1/q,

for any q ∈ (1,∞). Therefore, letting q →∞, we obtain

‖wσ,∞‖L∞(ΩT ) ≤ lim inf
q→∞

‖wσ,∞‖L∞(0,T,Lq)(Ω) ≤ 1.

Compared to previous results on incompressible limits for living tissue models (see e.g. [29]),
we have a slightly different relation linking the pressure and the density. We have the following
proposition.

Proposition 3.7 (Relation between p∞ and w∞). The following relation holds for the limits of
pσ,γ = wγσ,γ and wσ,γ ,

pσ,∞(wσ,∞ − 1) = 0, a.e. in ΩT .

Proof. The inequality pσ,∞(wσ,∞−1) ≤ 0 is found in a straightforward manner using Proposition 3.6,
and the fact that wσ,γ ≥ 0 =⇒ wγσ,γ ≥ 0 =⇒ pσ,∞ ≥ 0.

It remains to show that pσ,∞(wσ,∞ − 1) ≥ 0. We borrow the argument of [25]. For ν > 0, there
exists γ0 such that for γ ≥ γ0,
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wγ+1
σ,γ ≥ wγσ,γ − ν.

Then, from the convergence of wσ,γ and wγσ,γ we know that wγσ,γwσ,γ converges to pσ,∞wσ,∞. Passing
to the limit we get

pσ,∞wσ,∞ ≥ pσ,∞ − ν,
for every ν > 0. Letting ν → 0 yields the result.

Remark 3.8. From this result we find that in the zone w∞ 6= 1, we get p∞ = 0, and thus
µ∞ = −δ∆w∞ which can be interpreted as a term representing surface tension.

When the relaxation parameter satisfy σ = 0, we expect to have w = n. Therefore, in the zone
Ω+(t) = {x, p∞(t, x) > 0} we obtain that the density stays constant n∞ = 1. With Equation (1.6)
this means that formally {

−∆µ = G(µ) in Ω+,

µ = −δ∆n on ∂Ω+.

4 Existence of weak solutions
The proof of existence of weak solutions for system (1.6)–(1.7) follows the standard method for the
DCH (see e.g. [17, 28, 15]). We start by regularizing the model: using a small positive parameter ε
we define a positive approximation of the degenerate mobility b(n) := n. Existence of a solution to
the regularized system is found using standard methods for nonlinear parabolic equations. Then,
we derive a priori estimates on the regularized problem that allow us to pass to the limit ε→ 0 and,
hence, show the existence of weak solution for System (1.6)–(1.7).

4.1 Regularized mobility
We consider a small parameter 0 < ε < 1 and define the regularized mobility

Bε(n) =


1
ε for n ≥ 1

ε ,
ε for n ≤ ε,
n otherwise.

(4.1)

Thereby, we write the regularized analogous of System (1.6)–(1.7)

∂tnε − div(Bε(nε)∇µε) = nεG(µε), in (0,+∞)× Ω, (4.2)

−σ∆µε + µε = (nε −
σ

δ
µε)

γ − δ∆nε, in (0,+∞)× Ω, (4.3)

supplemented with the zero-flux boundary conditions

∂wε
∂ν

= nε
∂µε
∂ν

= 0 on (0,∞)× ∂Ω, (4.4)

where wε is defined by (1.5) and with the initial conditions (1.12).
We have the following existence theorem

Theorem 4.1 (Weak solutions for the regularized system). There exists a pair of functions (nε, µε)
such that for all T ≥ 0,

nε ∈ L2(0, T,H1(Ω)), ∂tnε ∈ L2(0, T,H−1(Ω)),

µε ∈ L2(0, T,H1(Ω)), ∂tµε ∈ L2(0, T,H−1(Ω)),

wε ∈ L2(0, T,H2(Ω)) ∩ L∞(0, T,H1(Ω)), wγε ∈ L2(0, T, L2(Ω)) ∂twε ∈ L2(0, T,H1(Ω)).
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These functions satisfy the regularized Cahn-Hilliard model (4.2)–(4.4) in the following weak sense:
for all test functions χ ∈ L2(0, T,H1(Ω)), it holds∫ T

0

〈χ, ∂tnε〉 = −
∫

ΩT

Bε(nε)∇µε∇χ+

∫
ΩT

nεG(µε)χ, (4.5)

σ

∫
ΩT

∇µε∇χ+

∫
ΩT

µεχ = δ

∫
ΩT

∇nε∇χ+

∫
ΩT

(
nε −

σ

δ
µε

)γ
χ, (4.6)

−σ∆wε +
σ

δ
wγε + wε = nε a.e., (4.7)

µε = wγε − δ∆wε a.e. (4.8)

Proof. Step 1. Galerkin approximation. We consider {φi}i∈N. the eigenfunctions of the Laplace
operator with zero Neumann boundary conditions.

−∆φi = λiφi ∈ Ω with ∇φi · ν = 0 on ∂Ω, (4.9)

which form an orthogonal basis of both H1(Ω) and L2(Ω) and we normalize them such that
(φi, φj)L2(Ω) = δij . Furthermore we assume without loss of generality that λ1 = 0.
We consider the following discrete approximation of System (4.2)-(4.3)

nN (t, x) =

N∑
i=1

cNi (t)φi(x), µN (t, x) =

N∑
i=1

dNi (t)φi(x), (4.10)∫
Ω

∂tn
Nφj = −

∫
Ω

Bε(n
N )∇µN∇φj +

∫
Ω

nNG(µN )φj , for j = 1, ..., N, (4.11)∫
Ω

µNφj = δ

∫
Ω

∇
(
nN − σ

δ
µN
)
∇φj +

∫
Ω

(
nN − σ

δ
µN
)γ
φj , for j = 1, ..., N, (4.12)

nN (0, x) =

N∑
i=1

(n0, φi)L2(Ω)φi. (4.13)

where the coefficients cNj , dNj for j = 1, .., N are determined by

∂tc
N
j = −

∫
Ω

Bε

( N∑
i=1

cNi φi

)
∇µN∇φj + cNj

∫
Ω

G(µN ), (4.14)

dNj (1 + σλj) = δλjc
N
j +

∫
Ω

( N∑
i=1

(cNi −
σ

δ
dNi )φi

)γ
φj , (4.15)

cNj (0) = (n0, φj)L2(Ω). (4.16)

Since the right hand side of Equation (4.14) depends continuously on the coefficients cNj , standard
results on ODE systems gives the existence and uniqueness of a local solution to the initial value
problem (4.14)–(4.16).
Step 2. Inequalities and convergences. Multiplying Equation (4.11) by dj(t) and summing over j
leads to ∫

Ω

∂tn
NµN = −

∫
Ω

Bε(n
N )|∇µN |2 +

∫
Ω

nNG(µN )µN .

Rearranging the left-hand side, we obtain∫
Ω

∂tn
NµN =

∫
Ω

∂t

(
nN − σ

δ
µN
)
µN +

1

2

σ

δ

d

dt

∫
Ω

|µN |2.
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Using in Equation (4.12), φj = d
dt (c

N
j − σ

δ d
N
j )φj and summing over j , we have

∫
Ω

∂t

(
nN − σ

δ
µN
)
µN =

δ

2

d

dt

∫
Ω

∣∣∣∇(nN − σ

δ
µN
)∣∣∣2 +

d

dt

∫
Ω

(
nN − σ

δ µ
N
)γ+1

γ + 1
.

Altogether, we obtain the discrete energy dissipation

d

dt
E(t) +

∫
Ω

Bε(n
N )|∇µN |2 =

∫
Ω

nNG(µN )µN , (4.17)

in which the energy is defined by

E(t) =
δ

2

∫
Ω

∣∣∣∇(nN − σ

δ
µN
)∣∣∣2 +

∫
Ω

(
nN − σ

δ µ
N
)γ+1

γ + 1
+

1

2

σ

δ

∫
Ω

|µN |2.

Taking j = 1 in (4.11) leads to ∂t
∫

Ω
nN =

∫
Ω
φ1

∫
Ω
nNG(µN )φ1 where φ1 is constant, and with

the assumptions on G (see (1.13)), together with Gronwall’s inequality we find∣∣∣ ∫
Ω

nN
∣∣∣ ≤ C, (4.18)

where C is a positive constant independent of N . Using this inequality in (4.17) and the assumptions
on the source term G, we have

d

dt
E(t) +

∫
Ω

Bε(n
N )|∇µN |2 ≤ C. (4.19)

Altogether, we find the following inequalities

δ

2

∫
Ω

∣∣∣∇(nN − σ

δ
µN
)∣∣∣2 ≤ C, (4.20)

σ

2δ

∫
Ω

|µN |2 ≤ C, (4.21)∫
ΩT

Bε(n
N )|∇µN |2 ≤ C, (4.22)

∫
Ω

(
nN − σ

δ µ
N
)γ+1

γ + 1
≤ C. (4.23)

Using the definition (4.1) of Bε(n) and Inequality (4.22) we find a control on |∇µN |2. Combined
with Inequality (4.20), we have∫

ΩT

|∇µN |2 ≤ C,
∫

ΩT

|∇nN |2 ≤ C. (4.24)

Using (4.18), (4.24) and the Poincaré-Wirtinger inequality, we obtain the following convergence
as N → +∞

nN ⇀ nε weakly in L2(0, T,H1(Ω)). (4.25)

From (4.20)-(4.21), we find that the coefficients cNj , dNj are bounded and a global solution to (4.14)–
(4.16) exists. Choosing j = 1 in (4.12) gives∫

Ω

µN =

∫
Ω

(
nN − σ

δ
µN
)γ
,
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which is bounded thanks to (4.23) and the Hölder inequality. Therefore, combining (4.24) and the
Poincaré-Wirtinger inequality, we obtain

µN ⇀ µε weakly in L2(0, T,H1(Ω)). (4.26)

Then, denoting by ΠN the projection operator from L2(Ω) to span{φ1, ...φN}, using Equa-
tion (4.11), we have for every test functions φ ∈ L2(0, T,H1(Ω)),∣∣∣ ∫

ΩT

∂tn
Nφ
∣∣∣ =

∣∣∣ ∫
ΩT

∂tn
NΠNφ

∣∣∣
=
∣∣∣ ∫

ΩT

Bε(n
N )∇µN∇ΠNφ+

∫
ΩT

nNG(µN )ΠNφ
∣∣∣

≤ C
(∫

ΩT

Bε(n
N )|∇µN |2

)1/2(∫
ΩT

|∇ΠNφ|2
)1/2

+ C
(∫

ΩT

|ΠNφ|2
)1/2

≤ C‖φ‖L2(0,T,H1(Ω)),

where the last inequality is obtain from (4.22). Therefore, from the previous result, we can extract
a subsequence such that

∂tn
N ⇀ ∂tnεweakly in L2(0, T,H−1(Ω)). (4.27)

Hence, combining the weak convergences (4.25) and (4.27), and using the Lions-Aubin lemma we
obtain the strong convergence

nN → nε strongly in L2(0, T, L2(Ω)). (4.28)

Step 3. Strong compactness for µN . To identify the limit in the source term, we need to find strong
compactness for the potential µN . As we have strong compactness for nN , it is enough to find strong
compactness for wN .

Using the notation wN = nN − σ
δ µ

N , we change Equation (4.12) in

σ

∫
Ω

∇wN∇φj +
σ

δ

∫
Ω

(wN )γφj +

∫
Ω

wNφj =

∫
Ω

nNφj ,

with wN (t, x) =
∑N
i=1 q

N
i (t)φi(x). The coefficients qNj for j = 1, . . . , N are determined by the

equation

(σλj + 1) qNj +
σ

δ

∫
Ω

(
N∑
i=1

qNi (t)φi(x)

)γ
φj = cNj . (4.29)

Thus, denoting z = ∂tw, and computing the time derivative of the previous equation, we obtain

(σλj + 1)
d

dt
qNj +

σ

δ

d

dt

∫
Ω

(
N∑
i=1

qNi (t)φi(x)

)γ
φj =

d

dt
cNj .

We use the notation ∂tw
N = zN , Multiplying the previous equation by φj(∂twN ), summing over

the j and integrating over the domain lead to

σ

∫
Ω

|∇zN |2 +

∫
Ω

|zN |2 +
γ σ

δ

∫
Ω

(wN )γ−1|zN |2 =

∫
Ω

∂tn
NzN .

Integrating the previous equation in time, and from the use of Young’s inequality on the right hand
side, we have ∫

ΩT

σ|∇zN |2 + |zN |2 ≤ C‖∂tnN‖2L2(0,T,H−1(Ω)) +
σ

2
‖zN‖2L2(0,T,H1(Ω))
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Then, assuming 1− σ
2 > 0, we find ‖z‖2L2(0,T,H1(Ω)) ≤ C.

This previous result allows us to pass to the limit in the source term using the Lions-Aubin
lemma. We refer to [28] to pass to the limit in other terms of the equation and detail the differences.

Lastly, it remains to prove the regularity of w, wγ . To do so, we use Equation (4.29) and
successively multiply it by −φj∆wN , integrate it in space, use integration by parts, and integrate
with respect to time, to arrive to

σ

∫
ΩT

|∆wN |2 +

∫
Ω

|∇wN |2 +
σ

δ
γ(wN )γ−1|∇wN |2 = −

∫
ΩT

nN∆wN .

Since nN is bounded L2(0, T,H1(Ω)), we can use Young inequality and elliptic regularity to find that
wN is bounded in L2(0, T,H2(Ω)). Inequality (4.20) provides the L∞(0, T,H1(Ω)) bound. Finally
the regularity of (wN )γ comes from Equation (1.2).

This concludes the proof.

4.2 A priori estimates
To show the existence of weak solutions of the non-regularized model (1.6)–(1.7), the idea is to pass
to the limit ε → 0 in System (4.2)–(4.3). A priori estimates derived from the regularized model
help us to find the required compacity and pass to the limit in the model. The computations of
the a priori estimates follow closely the paper [28] where the case of a single-well potential was
considered. The addition of the source term G, which is not present in [28], induces the need of new
computations. The second main difference is that we consider a potential term wγ in (1.7) instead
of a smooth and bounded potential as it was done before.

We start by defining the entropy of the system

Φε[n] =

∫
Ω

φε(n(x))dx, φ′′ε (x) =
1

Bε(n)
, φε(0) = φ′ε(0) = 0,

and we recall the energy

Eε[n] =

∫
Ω

(n− σ
δ µ)γ+1

γ + 1
+
δ

2

∣∣∣∇(n− σ

δ
µ
)∣∣∣2 +

σ

δ

|µ|2

2
.

In comparison with the previous subsection, when ε → 0 we loose the uniform L2(ΩT ) bound
on ∇µ which was obtained with the regularized mobility. This bound is actually recovered with
the estimates provided by the entropy that could not be used in the Galerkin scheme. Also, when
ε → 0, the time derivative of the density lies in a larger space than L2(0, T,H−1(Ω)), which is
(L4(0, T,W 1,s(Ω)))′ where s > 2. This prevents us from using the previous computations and we
lose the bound on ∂tw and ∂tµ. To recover their strong convergence and thus to identify the source
term, we need to rely on the Fréchet-Kolmogorov theorem. This last difficulty is dealt with the
following proposition

Proposition 4.2 (Compactness for wε and µε). The sequences (wε)ε and (µε)ε converge strongly
in L1(ΩT ).

Proof. We use the Fréchet-Kolmogorov theorem as in Appendix A. Indeed, we have the compactness
in space for w and Equation (1.2) provides

−σ∆[w(t+ h)− w(t)] +
σ

δ
[wγ(t+ h)− wγ(t)] + w(t+ h)− w(t) = n(t+ h)− n(t).

Multiplying formally by sgn(w(t+h)−w(t)) (rigorously by φ′(w(t+h)−w(t)) where φ is a convex
approximation of the absolute value), integrating in space and using Appendix A, we obtain the
compactness for w. Since µ = δ

σ (n− w) we have compactness for µ.
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Remark 4.3. The strong convergence actually holds in higher Lebesgue spaces since (wε)ε is
bounded uniformly in L2(0, T,H2(Ω)) ∩ L∞(0, T, Lγ+1(Ω)) and (µε)ε in L2(0, T,H1(Ω)).

4.3 Limit ε→ 0

From the previous estimates on the regularized model, we are now in position to prove the existence
of global weak solutions for System (1.6)–(1.7).

Theorem 4.4 (Existence of weak solutions). Assume an initial condition satisfying (1.12). Then,
for σ small enough, there exists a global weak solutions (n, µ) of Equations (1.6)-(1.7) such that

n ∈ L2(0, T,H1(Ω)), ∂tn ∈ (L4(0, T,W 1,s(Ω)))′,

µ ∈ L2(0, T,H1(Ω)),

w ∈ L2(0, T,H2(Ω)) ∩ L∞(0, T,H1(Ω)), wγ ∈ L2(0, T, L2(Ω)),

n ≥ 0, w ≥ 0, a.e. in ΩT ,

where s is defined in proposition 2.2. Moreover, as ε → 0, the inequalities provided by the energy
and entropy hold true.

Proof. The estimates on ∂tn has been proved in Section 2. The proof of this theorem is a straight-
forward adaptation of Theorem 5 in [28] using the computation of Section 4.2, therefore, we do not
repeat the proof arguments here. The nonnegativities of n and w are a consequence of Proposi-
tion 4.5.

The regularity of the solutions is higher than it is expected in Theorem 4.4. We refer to Section 3
for the proof of this result.

Proposition 4.5 (Nonnegativity of n and w). The solution (n,w) of System (1.1)–(1.2) defined by
Theorem 4.4 is nonnegative, i.e.

n(x, t), w(x, t) ≥ 0, a.e. in Ω.

Proof. The proof of the nonnegativity of the density n follows the same argument than [28] that uses
the boundedness of the entropy (uniform in ε). Hence, we do not repeat the proof here. Now, we
recall that the repulsive potential from (1.2) is actually defined by assumption in the introduction
as wγ = max(0, wγ). Then, since n ≥ 0, Equation (1.2) implies that for every function η ≥ 0, we
have ∫

Ω

∇w · ∇η +

∫
Ω

max(0, wγ)η +

∫
Ω

wη ≥ 0,

where we supposed σ = δ = 1 for the sake of clarity. Using the previous inequality, and choosing
η = −w− (where w− represents the negative part of w), we obtain∫

Ω

|∇w−|2 +

∫
Ω

w2
− ≤ 0.

This achieves the proof of the nonnegativity of w.

Remark 4.6. A main difference with [28] is that we can not find an upper bound using an entropy
argument. Indeed, the result in [28] relies on the singularity of the potential at n = 1. Furthermore,
Dai and Du [15] notice that with a smooth potential at n = 1, one cannot prevent the solution from
exceeding this threshold. This is due to the Gibbs-Thomson effect, where the mean curvature of the
interface plays a role in the concentration of the phases.

However, from a different argument relying on the Alikakos iteration method [3], see Inequal-
ity (3.2), we are able to show an L∞-bound for System (1.1)–(1.2) and therefore better regularity
for the functions of our system.
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A Compactness with the Fréchet-Kolmogorov theorem
We provide another method to prove strong compactness in γ for n only using the fact that n∇µ
and ∇n are integrable. This proposition can be applied to prove compactness in σ and ε with the
parameters defined respectively in Section 2 and 4.

Proposition A.1 (Strong compactness for n). The sequence (nσ,γ)γ is compact in L2(0, T, Lp(Ω))
for 1 ≤ p < 2d/(d− 2) if d > 2 and 1 ≤ p <∞ else.

The proof of this proposition uses a sequence (ϕδ)δ>0 ∈ Cc(Rd) of standard mollifiers with mass 1
such that

‖∇kϕδ‖L1(Ω) ≤
C

δk
,

for any function g ∈ Lp(Ω),

‖g ∗ ϕδ‖Lp(Ω) ≤ ‖ϕδ‖L1(Ω)‖g‖Lp(Ω),

and when g ∈W 1,p(Ω) it holds

‖g ∗ ϕδ − g‖Lp ≤ δ‖∇g‖Lp(Ω).

Proof of proposition A.1. Since ∇n is bounded in L1(ΩT ) we only need to prove the time compact-
ness

lim
|h|→0

∫ T−h

0

∫
Ω

|nσ,γ(t+ h, x)− nσ,γ(t, x)|dxdt = 0 uniformly in γ.

Using the mollifiers with δ depending on h to be specified later on, we first notice that∫ T−h

0

∫
Ω

|n(t+ h, x)− n(t, x)|dxdt ≤
∫ T−h

0

∫
Ω

|n(t, x)− n(t, ·) ∗ ϕδ(x)|dxdt

+

∫ T−h

0

∫
Ω

|n(t+ h, x)− n(t+ h, ·) ∗ ϕδ(x)|dxdt

+

∫ T−h

0

∫
Ω

|n(t+ h, ·) ∗ ϕδ(x)− n(t, ·) ∗ ϕδ(x)|dxdt.

For the first and second term, the computations are the same, hence, we only present it for the first
term. Using the properties of the mollifiers, we have∫ T−h

0

∫
Ω

|n(t, x)− n(t, ·) ∗ ϕδ(x)|dxdt ≤ δ
∫ T

0

‖∇n(t)‖L1(Ω)dt ≤ Cδ.

To control ‖∇n‖L1(Ω) we used the Cauchy-Schwarz inequality and Proposition 2.2. The third term
can be written as∫ T−h

0

∫
Ω

|n(t+ h, ·) ∗ ϕδ(x)− n(t, ·) ∗ ϕδ(x)|dxdt =

∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

∂sn(s, x) ∗ ϕδ(x)ds
∣∣∣dxdt.
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And using Equation (1.6) yields∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

∂sn(s, ·) ∗ ϕδ(x)ds
∣∣∣dxdt

=

∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

[div(n∇µ) + nG(µ)](s, ·) ∗ ϕδ(x)ds
∣∣∣dxdt

≤
∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

d∑
i=1

n∂xiµ(s, ·) ∗ ∂xiϕδ(x)ds
∣∣∣dxdt

+

∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

nG(µ)(s, ·) ∗ ϕδ(x)ds
∣∣∣dxdt.

The first term is bounded by∫ T−h

0

∫
Ω

∣∣∣ ∫ t+h

t

d∑
i=1

n∂xiµ(s, ·) ∗ ∂xiϕδ(x)ds
∣∣∣dxdt ≤ C ∫ T−h

0

∫ t+h

t

‖n∇µ(s)‖L1(Ω)‖∇ϕδ‖L1(Ω).

Writing n∇µ = n1/2n1/2∇µ, using the Cauchy-Schwarz inequality, Inequality (2.8), the first
term is bounded by Ch/δ.
The second term is bounded by Ch using assumptions on G. Choosing δ = h1/2 gives compactness
in L1(ΩT ).
Finally using Proposition 2.2 and interpolation, we get the result.

B Uniqueness with no source term
We consider Equations (1.1)-(1.2) with G = 0. Therefore we have conservation of the mass. To
simplify the notations we suppose σ = δ = 1. We retain the regularity of the solutions from
Section 3. Writing n = n2 − n1 and w = w2 − w1 the difference of two solutions we consider ϕ(t)
such that

−∆ϕ(t) = n in Ω,

∇ϕ(t) · ν = 0 on ∂Ω.

Multiplying Equation (1.1) by ϕ, integrating in space and using integrations by parts we obtain

1

2

d

dt

∫
|∇φ|2 −

∫
(n2

2 − n2
1)∆ϕ−

∫
n∇w2 · ∇ϕ−

∫
n1∇w · ∇ϕ = 0.

We denote by I1, I2, I3 the last three terms. Using the definition of ϕ, we have

I1 = −
∫

(n2
2 − n2

1)∆ϕ =

∫
(n2

2 − n2
1)(n2 − n1),

which is nonnegative since x 7→ x2 is increasing for x ≥ 0. Now, we treat I2. Using integration by
parts and n = −∆ϕ one can show that

I2 = −
∑
i,j

∫
∂iϕ∂ijw2∂jϕ−

∑
i,j

∫
∂iϕ∂jw2∂ijϕ

= J1 + J2.
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Using integrations by parts on the second term we find

J2 =
∑
i,j

∫
∂j
|∂iϕ|2

2
∂jw2 +

∑
i,j

∫
|∂iϕ|2∂jjw2

=
1

2

∫
|∇ϕ|2∆w2.

We finally obtain

I2 ≤ C
∫
|D2w2||∇ϕ|2.

From Inequality (3.3) together with the Calderón–Zygmund lemma and using ∇ϕ ∈ L∞ we find

I2 ≤ Cp
(∫
|∇ϕ|2p/(p−1)

)(p−1)/p

≤ Cp‖∇ϕ‖2/pL∞

(∫
|∇ϕ|2

)(p−1)/p

,

for every 1 ≤ p < ∞. For I3 we recall that n1 is bounded in L∞. Using the Cauchy-Schwarz
inequality we only need to show that ‖∇w‖L2 ≤ C‖∇ϕ‖L2 .

Equation (1.2) for the difference of the two solutions can be written as

−∆w + wγ2 − w
γ
1 + w = −∆ϕ.

Now, we multiply by w, use integration by parts and the fact that x 7→ xγ is increasing for x ≥ 0 to
get ∫

|∇w|2 + w2 ≤
∫
|∇ϕ · ∇w|.

Applying Young’s inequality yields the result. Therefore

I3 ≤ C‖∇ϕ‖2L2 .

Combining the previous results we obtain

d

dt
η(t) ≤ Cpmax(η(t)1−1/p, η(t)),

for every 1 ≤ p <∞ where η(t) =
∫
|∇ϕ(t)|2.

Following [8, 7], for t < 1/C, the solution is bounded by

η(t) ≤ (Ct)p.

For t < 1/(2C) we then find
η(t) ≤ 2−p.

Letting p → ∞ we find uniqueness on [0, 1
2C ) and this procedure can be iterated on the whole

interval of existence.
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