Firm non-expansive mappings in weak metric spaces
Résumé
We introduce the notion of firm non-expansive mapping in weak metric spaces, extending previous work for Banach spaces and certain geodesic spaces. We prove that, for firm non-expansive mappings, the minimal displacement, the linear rate of escape, and the asymptotic step size are all equal. This generalises a theorem by Reich and Shafrir.
Origine | Fichiers produits par l'(les) auteur(s) |
---|