Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy - Archive ouverte HAL
Article Dans Une Revue Letters in Mathematical Physics Année : 2021

Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy

Résumé

We consider the Dubrovin–Frobenius manifold of rank 2 whose genus expansion at a special point controls the enumeration of a higher genera generalization of the Catalan numbers, or, equivalently, the enumeration of maps on surfaces, ribbon graphs, Grothendieck’s dessins d’enfants, strictly monotone Hurwitz numbers, or lattice points in the moduli spaces of curves. Liu, Zhang, and Zhou conjectured that the full partition function of this Dubrovin–Frobenius manifold is a tau-function of the extended nonlinear Schrödinger hierarchy, an extension of a particular rational reduction of the Kadomtsev–Petviashvili hierarchy. We prove a version of their conjecture specializing the Givental–Milanov method that allows to construct the Hirota quadratic equations for the partition function, and then deriving from them the Lax representation.

Dates et versions

hal-03476927 , version 1 (13-12-2021)

Identifiants

Citer

Guido Carlet, Johan van de Leur, Hessel Posthuma, Sergey Shadrin. Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy. Letters in Mathematical Physics, 2021, 111 (3), ⟨10.1007/s11005-021-01391-4⟩. ⟨hal-03476927⟩
23 Consultations
0 Téléchargements

Altmetric

Partager

More