Introducing a mesoscopic scale with Conf luence in Modularity, to improve graph clustering resolution - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Introducing a mesoscopic scale with Conf luence in Modularity, to improve graph clustering resolution

Bruno Gaume
Alexandre Delanoe
  • Fonction : Auteur
Alp Mestanogullari
  • Fonction : Auteur
  • PersonId : 1125245

Résumé

Given a graph G = (V, E) and two vertices i, j ∈ V , we introduce Conf luence(G, i, j), a vertex mesoscopic closeness measure which brings together vertices from the same link-dense region of the graph G, and separates vertices coming from two distinct dense regions. Conf luence becomes a useful tool to avoid the resolution problems of the standard M odularity(G, Γ) measure for a given clustering Γ, as evidenced by our comparative study between these two measures on toy graphs. We additionally present a heuristic to nd a partitional clustering of a graph that tentatively optimizes a clustering quality function derived from Conf luence, comparing the new heuristic's behaviour to the state of the art Louvain and Inf omap methods on real terrain networks, while introducing a way to control the size of the resulting clusters along the way.
Fichier principal
Vignette du fichier
Gaume_Kodex_1.pdf (1.5 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03468437 , version 1 (07-12-2021)

Identifiants

  • HAL Id : hal-03468437 , version 1

Citer

Bruno Gaume, Alexandre Delanoe, Alp Mestanogullari. Introducing a mesoscopic scale with Conf luence in Modularity, to improve graph clustering resolution. 2021. ⟨hal-03468437⟩
80 Consultations
63 Téléchargements

Partager

More