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Abstract

Given a graphG = (V,E) and two vertices i, j ∈ V , we introduce Confluence(G, i, j),
a vertex mesoscopic closeness measure which brings together vertices from the same
link-dense region of the graph G, and separates vertices coming from two distinct dense
regions.

Confluence becomes a useful tool to avoid the resolution problems of the standard
Modularity(G,Γ) measure for a given clustering Γ, as evidenced by our comparative
study between these two measures on toy graphs. We additionally present a heuris-
tic to �nd a partitional clustering of a graph that tentatively optimizes a clustering
quality function derived from Confluence, comparing the new heuristic's behaviour
to the state of the art Louvain and Infomap methods on real terrain networks, while
introducing a way to control the size of the resulting clusters along the way.

1



Contents

1 Introduction 3

2 Modularity 4

2.1 Limits of Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Avoiding Modularity limits by introducing a mesoscopic scale 6

3.1 Con�uence, a vertices mesoscopic closeness measure . . . . . . . . . . . . . 6
3.2 Introducing a mesoscopic scale in Modularity . . . . . . . . . . . . . . . . . 10
3.3 Optimality for QPedge versus optimality for QConf . . . . . . . . . . . . . 11

4 A heuristic by edges con�uence 13

4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Louvain, Infomap and Kodex on four Gtoys graphs . . . . . . . 18
4.2.2 Louvain, Infomap and Kodex on terrain graphs . . . . . . . . . . 19

5 Modulating the size of modules 21

6 Conclusions and perspectives 23

TODO dans l'ordre:

(1) DONE Con�rmer que Version-Haskel=Version-Cython: Alp

(2) DONE Choisir les graphes de l'état de l'art:

� https://snap.stanford.edu/data/com-DBLP.html

� https://snap.stanford.edu/data/com-Amazon.html

� https://networkrepository.com/actor-movie.php

(3) DONE Rédiger la section 4.1 Implémentation: Alp et Alexandre

(4) DONE Rédiger la section 6 Conclusion et Perspectives: Bruno

(5) DONE Traduction en bon anglais: Alp et Alexandre

(6) Relecture: David et Quentin

(7) Formater le .tex selon les consignes d'édition de Physical-Review(E) : Bruno

(8) Soumettre l'article à Physical-Review(E) et Déposer l'article sur arxiv : Bruno

2

https://snap.stanford.edu/data/com-DBLP.html
https://snap.stanford.edu/data/com-Amazon.html
https://networkrepository.com/actor-movie.php


Cet article est en cours de rédaction et il est déposé sur https://arxiv.org/user/
pour permetre au logiciel libre Gartgantexte de concourir à un prix du logiciel libre.

Le code Haskell provisoire est déposé ici : https://gitlab.iscpif.fr/gargantext/
gargantext-graph sous la Licence accessible ici : https://gitlab.iscpif.fr/
gargantext/haskell-gargantext/blob/dev/LICENSE

1 Introduction

Terrain networks are real world networks that model data gathered by �eld work, in diverse
�elds such as sociology, linguistics, biology, or graphs from the internet. Most terrain
networks contrast with arti�cial graphs (deterministic or random) and share four similar
properties [Watts and Strogatz, 1998, Albert and Barabasi, 2002, Newman, 2003]. They
exhibit:

p1 : A low density (not many edges);

p2 : Short paths (the average number of edges L on the shortest path between two vertices
is low);

p3 : A high clustering rate C = 3 × number of triangles
number of connected triplets (locally densely connected

subgraphs can be found whereas the whole graph is globally sparse);

p4 : A heavy-tailed degree distribution (the distribution of the degrees of the vertices of
the graph can be approximated by a power law).

Clustering a terrain network consists in grouping together in modules vertices that
belong to the same densely connected region of the graph (property p3), while keeping
separate vertices that do not (property p1). The di�erence with a classi�cation task is that
the number of groups is not known in advance.
Let G = (V,E) be a graph:
−Module: A module γ of G is a non-empty subset of the graph's vertices: γ 6= ∅ and
γ ⊂ V ;
−Clustering: A clustering Γ of G is a set of modules of G such that

⋃
γ∈Γ γ = V ;

−Partitional clustering: If ∀γi, γj ∈ Γ, (i 6= j) ⇒ (γi ∩ γj = ∅), then Γ is a
partitional clustering of G, where modules of G are not allowed to overlap. Given such

a Γ we can de�ne an equivalence relation
Γ∼ on the set of vertices: ∀u, v ∈ V, (u

Γ∼ v) ⇔
(∃γ ∈ Γ such that u ∈ γ and v ∈ γ);
−Clustering quality function: A clustering quality function Q(G,Γ) is an R-valued
function whose goal is to measure the adequacy of the modules with the densely connected
regions of terrain networks (property p3).
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In order to establish a good partitional clustering for a graph G = (V,E), given a
clustering quality function Q, it would in theory be su�cient to build all the possible
partitionings of the set of vertices V , and to pick a partitioning Γ such that Q(G,Γ) is
optimal. This method is however obviously impractical, since the number of partionings of
a set of size n = |V | is equal to the nth Bell number, a sequence known to grow exponentially
[Knuth, 1968].

Many graph clustering methods therefore consist in de�ning a heuristic that can �nd in
a reasonable amount of time a clustering Γ that tentatively optimises Q(G,Γ) for a given
clustering quality function Q. Several partitional clustering methods, such as Louvain
[Blondel et al., 2008], use the Modularity quality function suggested in 2004 by Newman
and Girvan [Newman and Girvan, 2004].

In section 2 we present the Modularity quality function, describing its limits in section
2.1. To avoid these limits, section 3 revisits the de�nition of Modularity to introduce a
mesoscopic scale, with a vertices mesoscopic closeness measure Confluence, that we de�ne
in section 3.1. We then compare the clusterings which maximize this new quality function
with the ones that maximize Modularity, on a few small toy graphs, in section 3.3.

We then describe, in section 4, a new heuristic to optimize this new quality func-
tion on bigger graphs, comparing in section 4.2 the results with those obtained using two
of the most used state of the art heuristics: Louvain [Blondel et al., 2008] which tries
to maximize Modularity, and Infomap, among the most elegant and e�cient heuritics,
which tries to maximize the quality function described in 2008 by Rosvall and Bergstrom
[Rosvall and Bergstrom, 2008].

Finally, in section 5, we describe a way to control the size of the modules and conclude
in section 6.

2 Modularity

The modularity of a partitional clustering for a graph G = (V,E) with m = |E| edges is
equal to the di�erence between the proportion of links internal to modules of the clustering,
and the same quantity in a null model, where no community structure is expected. The
null model is a random graph GNull with the same number of vertices and edges, as well
as the same distribution of degrees as G, where the probability of having an edge between
two vertices x and y is equal to dG(x).dG(y)

2m , with dG(i) = |{v ∈ V/{i, v} ∈ E}| is the degree
of vertex i in G.

Let G = (V,E) be a graph with m edges and Γ a partitioning of V . The modularity of
Γ can be de�ned as follows.
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Modularity(G,Γ) =
1

2m

∑
γ∈Γ

∑
i,j∈γ

Pedge(G, i, j)− Pedge(GNull, i, j) (1)

Where Pedge(G, x, y) is a symmetrical vertex closeness measure equal to the probability of
{x, y} being an edge of G, that is:

Pedge(G, i, j) =

{
1 if {i, j} ∈ E,
0 otberwise.

(2)

Pedge(GNull, i, j) =
dG(i).dG(j)

2m
(3)

In equation 1, the �rst term 1
2m is purely conventional, so that modularity values all live

in the [−1, 1] interval, but plays no role when maximizing modularity, since it is constant
for a given graph G.

We then de�ne QPedge as Newman and Girvan's quality function, to be maximized:

QPedge(G,Γ) =
∑
γ∈Γ

∑
i,j∈γ

Pedge(G, i, j)− Pedge(GNull, i, j)

=
∑
γ∈Γ

∑
i,j∈γ

{
1− dG(i).dG(j)

2m if {i, j} ∈ E,
−dG(i).dG(j)

2m otherwise.
(4)

A good partitional clustering Γ as per 4 is one that groups in the same module vertices
that are linked (especially ones with low degrees, but also to a lesser extent ones with high
degrees), while avoiding as much as possible the grouping of non-linked vertices (especially
ones with high degrees, but to a lesser extent ones with low degrees).

2.1 Limits of Modularity

Several authors [Fortunato and Barthelemy, 2006, Kumpula et al., 2007] showed that opti-
mizingModularity leads to merging small modules into larger ones, even when those small
modules are well de�ned and weakly connected to one another. To address this problem,
some authors [Reichardt and Bornholdt, 2006, Arenas et al., 2008] de�ned multiresolution
variants of Modularity, adding a resolution parameter to control module sizes.

For instance [Reichardt and Bornholdt, 2006] introduces a parameter λ ∈ R in equation
4:

Qλ =
∑
γ∈Γ

∑
i,j∈γ

{
1− λ.dG(i).dG(j)

2m if {i, j} ∈ E,
−λ.dG(i).dG(j)

2m otherwise.
(5)

where λ is a resolution parameter: the higher λ is, the smaller the modules get (high
resolution).
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However, in [Lancichinetti and Fortunato, 2011], the authors show that �... multiresolu-
tion Modularity su�ers from two opposite coexisting problems: the tendency to merge small
subgraphs, which dominates when the resolution is low; the tendency to split large subgraphs,
which dominates when the resolution is high. In benchmark networks with heterogeneous
distributions of cluster sizes, the simultaneous elimination of both biases is not possible and
multiresolution Modularity is not capable to recover the planted community structure, not
even when it is pronounced and easily detectable by other methods, for any value of the
resolution parameter. This holds for other multiresolution techniques and it is likely to be
a general problem of methods based on global optimization.

... real networks are characterized by the coexistence of clusters of very di�erent sizes, whose
distributions are quite well described by power laws [Clauset et al., 2004, Radicchi et al., 2004].
Therefore there is no characteristic cluster size and tuning a resolution parameter may not
help.�

3 AvoidingModularity limits by introducing a mesoscopic scale

In equation 4, with regards to a graph G:

� Pedge(G, i, j) =

{
1 if {i, j} ∈ E,
0 otherwise.

is a local (microscopic) vertices closeness mea-

sure relative to G;

� Pedge(GNull, i, j) = dG(i).dG(j)
2m is a global (macroscopic) vertices closeness measure

relative to G.

To avoid limits described in section 2.1, we introduce in equation 4 an intermediate meso-

scopic1 vertices closeness measure relative to G: Confluence(G, i, j) that we de�ne below.

3.1 Con�uence, a vertices mesoscopic closeness measure

If G = (V,E) is a re�exive2 and undirected graph, let us imagine a walker wandering on
the graph G: at time t ∈ N, the walker is on one vertex i ∈ V ; at time t + 1, the walker
can reach any neighbouring vertex of i, with uniform probability. This process is called a
simple random walk [Bollobas, 2002]. It can be de�ned by a Markov chain on V with an

1Amesoscopic scale is an intermediate scale between a localmicroscopic scale and a globalmacroscopic
scale.

2i.e. each vertex is connected to itself. If such self-loops do not exist in the data, they may be added
without loss of information.
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n× n transition matrix [G]:

[G] = (gi,j)i,j∈V with gi,j =


1

dG(i)
if {i, j} ∈ E,

0 otherwise.

(6)

Since G is re�exive, each vertex has at least one neighbour (itself) and [G] is therefore
well de�ned. Furthermore, by construction, [G] is a stochastic matrix: ∀i ∈ V,

∑
j∈V gi,j =

1. The probability P tG(i j) of a walker starting on vertex i and reaching vertex j after t
steps is:

P tG(i j) = ([G]t)i,j (7)

Propsition 1 Let G = (V,E) be a re�exive graph with m edges, and Gnull = (V,Enull) its
null model such that the probability of the existence of a link between two vertices i and j
is ei,j = dG(i).dG(j)

2m .

∀t ∈ N∗, ∀i, j ∈ V, P tGnull(i j) =
dG(j)

2m
(8)

Proof by induction on t :
(a) True for t = 1:

∀i, j ∈ V, P 1
Gnull

(i j) = ei,j .
1

dG(i) = dG(i).dG(j)
2m . 1

dG(i) = dG(j)
2m

(b) If true for t then true for t + 1:

∀i, j ∈ V, P t+1
Gnull

(i j) =
∑

k∈V

(
P tGnull(i k).P 1

Gnull
(k j)

)
=
∑

k∈V

(
P tGnull(i k).dG(j)

2m

)
= dG(j)

2m .
∑

k∈V P
t
Gnull

(i k)

= dG(j)
2m .

∑
k∈V

dG(k)
2m = dG(j)

2m

(a) & (b) ⇒ 8

�

On a graph G = (V,E) the trajectory of a random walker is completely governed
by the topology of the graph in the vicinity of the starting node: after t steps, any
vertex j located at a distance of t links or less can be reached. The probability of
this event depends on the number of paths between i and j, and on the structure of
the graph around the intermediary vertices along those paths. The more short paths
exist between vertices i and j, the higher the probability P tG(i j) of reaching j from
i.
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On the graph Gnull the trajectory of a random walker is only governed by the
degrees of the vertices, and no longer at all by the topology of the graph in the
vicinity of the starting node.

We want to consider as �close� each pair of vertices {i, j} having a probability of reaching
j from i after a short random walk in G, greater than the probability of reaching j from i
in Gnull. We therefore de�ne the t-con�uence Conf t(G, i, j) between two vertices i, j on a
graph G as follows:

Conf t(G, i, j) =

 0 if i = j,
P tG(i j)−P tGnull (i j)
P tG(i j)+P tGnull

(i j) =
P tG(i j)− dG(j)

2m

P tG(i j)+
dG(j)

2m

otherwise.
(9)

Propsition 2 Let G = (V,E) be a re�exive graph with m edges, and Gnull its null model
such that the probability of the existence of a link between two vertices i and j is ei,j =
dG(i).dG(j)

2m .
∀t ∈ N∗, ∀i, j ∈ V, Conf t(GNull, i, j) = 0 (10)

Proof :
If i = j, the result follows directly from de�nition 9.

If i 6= j, Conf t(GNull, i, j) =
P tGNull

(i j)−
dGNull

(j)

2m

P tGNull
(i j)+

dGNull
(j)

2m

(by de�nition 9)

=
P tGNull

(i j)− dG(j)

2m

P tGNull
(i j)+

dG(j)

2m

(by de�nition of GNull)

=
dG(j)

2m
− dG(j)

2m
dG(j)

2m
+
dG(j)

2m

(by proposition 1)

= 0

�

To prove that Conf t(G, · , · ) is symmetric, we �rst need to prove proposition 3.

Propsition 3 Let G = (V,E) be a re�exive graph.

∀t ∈ N∗, ∀i, j ∈ V, P tG(i j) =
dG(j)

dG(i)
.P tG(j i) (11)

Proof by induction on t :

8



(a) True for t = 1:

∀i, j ∈ V,
if {i, j} /∈ E, then P 1

G(i j) = 0 and P 1
G(j i) = 0, therefore P 1

G(i j) = dG(j)
dG(i) .P

1
G(j i) = 0

otherwise P 1
G(i j) = 1

dG(i) = dG(j)
dG(i) .

1
dG(j) = dG(j)

dG(i) .P
1
G(j i)

(b) If true for t then true for t + 1:

∀i, j ∈ V, P t+1
G (i j) =

∑
k∈V

(
P tG(i k).P 1

G(k j)
)

=
∑

k∈V

(
P tG(k i).dG(k)

dG(i) .P
1
G(k j)

)
=
∑

k∈V

(
P tG(k i).dG(k)

dG(i) .P
1
G(j k). dG(j)

dG(k)

)
=
∑

k∈V

(
P tG(k i).P 1

G(j k).dG(j)
dG(i)

)
= dG(j)

dG(i)

∑
k∈V

(
P 1
G(j k).P tG(k i)

)
= dG(j)

dG(i) .P
t+1
G (j i)

(a) & (b) ⇒ 11

�

Propsition 4 Let G = (V,E) be a re�exive graph.

∀t ∈ N∗, ∀i, j ∈ V,Conf t(G, i, j) = Conf t(G, j, i) (12)

Proof :

If i=j : it follows directly from de�nition 9.

If i 6= j : Conf t(G, i, j) =
P tG(i j)−P tGnull (i j)
P tG(i j)+P tGnull

(i j) =
P tG(i j)− dG(j)

2m

P tG(i j)+
dG(j)

2m

=
dG(j)

dG(i)
.P tG(j i)− dG(j)

2m

dG(j)

dG(i)
.P tG(j i)+

dG(j)

2m

=
(
dG(j)

dG(i)
.P tG(j i)− dG(j)

2m
).
dG(i)

dG(j)

(
dG(j)

dG(i)
.P tG(j i)+

dG(j)

2m
).
dG(i)

dG(j)

=
P tG(j i)− dG(i)

2m

P tG(j i)+
dG(i)

2m

=
P tG(j i)−P tGnull (j i)
P tG(j i)+P tGnull

(j i)

= Conf t(G, j, i)

�

Confluence actually de�nes an in�nity of symmetrical vertex closeness measures, one
for each random walk length t. For clarity, in the rest of this paper, we set t = 3 and de�ne
Conf(G, i, j) = Conf3(G, i, j).
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Most terrain networks exhibit the properties p2 (short paths) and p3 (high clustering
rate). With a classic distance such as the shortest path between two vertices, all vertices
would be close to each other in a terrain network (because of property p2). On the contrary,
Confluence allows us to identify vertices living in the same higher density zones of G
(property p3):

If i, j are in the same high local density region:

P 3
G(i j) > P 3

Gnull
(i j), thus Conf(G, i, j) > 0 (13)

If i, j are in two distinct high local density regions:

P 3
G(i j) < P 3

Gnull
(i j), thus Conf(G, i, j) < 0 (14)

3.2 Introducing a mesoscopic scale in Modularity

To avoid the limits of Modularity described in section 2.1, we propose QConf , a new
clustering quality function, which introduces a mesoscopic scale into Modularity through
Confluence:

QConf (G,Γ) =
∑

γ∈Γ

∑
i 6=j∈γ Conf(G, i, j) +

(
Pedge(G, i, j)− Pedge(Gnull, i, j)

)
By the de�nitions of Conf (equation 9) and Pedge (equations 2 and 3) :

QConf (G,Γ) =
∑

γ∈Γ

∑
i 6=j∈γ

P 3
G(i j)− dG(j)

2m

P 3
G(i j)+

dG(j)

2m

+

{
1− dG(i).dG(j)

2m if {i, j} ∈ E,
−dG(i).dG(j)

2m otherwise.

Leading us to the following de�nition of QConf :

QConf (G,Γ) =
∑
γ∈Γ

∑
i 6=j∈γ


(
P 3
G(i j)− dG(j)

2m

P 3
G(i j)+

dG(j)

2m

)
+
(

1− dG(i).dG(j)
2m

)
if {i, j} ∈ E,

(
P 3
G(i j)− dG(j)

2m

P 3
G(i j)+

dG(j)

2m

)
−
(
dG(i).dG(j)

2m

)
otherwise.

(15)

To make it easier to interpret QConf , we de�ne the GooDness of a clustering Γ for a
graph G = (V,E):

GooDness(G,Γ) =
1

2|E|
.QConf (G,Γ) (16)

and the ConFness of a set of vertices γ ∈ Γ for a graph G = (V,E):

ConFness(G, γ) =
1

|γ|.(|γ| − 1)

∑
i 6=j∈γ

Confluence(G, i, j) (17)

10



3.3 Optimality for QPedge versus optimality for QConf

A partitional clustering ∆ is optimal for a quality function Q i�: For all partitioning Γ of
V , Q

(
G,∆)

)
= Q

(
G,Γ)

)
. Computing a ∆ that maximizes QPedge(G,∆) is NP − complete

[Brandes et al., 2008], and the same holds for computing a clustering that maximizesQConf .
However, when the number of vertices of a graph G = (V,E) is small, the problem

of maximizing the modularity can be turned into a reasonably tractable Integer Linear
Program (see [Brandes et al., 2008]): We de�ne n2 decision variables Xij ∈ {0, 1}, one for
each pair of vertices {i, j} ∈ V . The key idea is that we can build an equivalence relation
on V (i ∼ j i� Xij = 1) and therefore a partitioning of V . To guarantee that the decision
variables give rise to an equivalence relation, they must satisfy the following constraints:

Re�exivity: ∀i ∈ V,Xii = 1;

Symmetry: ∀i, j ∈ V : Xij = Xji;

Transitivity: ∀i, j, k ∈ V :


∀i, j, k ∈ V : Xij +Xjk − 2.Xik ≤ 1;
∀i, j, k ∈ V : Xik +Xij − 2.Xjk ≤ 1;
∀i, j, k ∈ V : Xjk +Xik − 2.Xij ≤ 1.

With the following objective functions to maximize:

For QPedge :
∑
i,j∈V

Xij .
(
Pedge(G, i, j)− Pedge(GNull, i, j)

)
For QConf :

∑
i 6=j∈V

Xij .
(
Conf(G, i, j) + Pedge(G, i, j)− Pedge(Gnull, i, j)

) (18)

On four small ati�cial graphs, G1
toy, ... G

4
toy, we compare optimal clusterings ∆G

Pedge

and ∆G
Conf respectively computed for QPedge and QConf , with results illustrated in Figure 1.

The optimal clusterings for QConf do not necessarily have a higher resolution than with
QPedge, they can even have a lower resolution3:

• Fig. 6(b): ∆
G1
toy

Conf 〈0.20, 0.40〉 versus ∆
G1
toy

Pedge 〈0.21, 0.38〉 :

∆
G1

toy

Conf has a higer resolution than ∆
G1

toy

Pedge, with δ
1
Pedge = δ2

Conf ∪ δ3
Conf :

◦ ∆
G1
toy

Conf =
{
δ1
Conf={0, 4, 5, 6} 〈0.10〉, δ2

Conf={1, 2, 3} 〈0.18〉, δ3
Conf={7, 8} 〈0.18〉

}
;

◦ ∆
G1
toy

Pedge =
{
δ1
Pedge={1, 2, 3, 7, 8} 〈0.04〉, δ2

Pedge={0, 4, 5, 6} 〈0.10〉
}
.

3Where 〈_ ,_ 〉 for the 〈Modularity, GooDness〉 of the clustering, and 〈_〉 for the 〈ConFness〉 of the
modules
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• Fig 1(b): ∆
G2
toy

Conf 〈0.37, 0.75〉 versus ∆
G2
toy

Pedge 〈0.38, 0.70〉:

∆
G2

toy

Conf has a lower resolution than ∆
G2

toy

Pedge, with δ
1
Conf = δ1

Pedge ∪ δ2
Pedge:

◦ ∆
G2
toy

Conf =
{
δ1
Conf={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 〈0.13〉, δ2

Conf={13, 14, 15, 16} 〈0.59〉,

δ3
Conf={10, 11, 12} 〈0.67〉

}
;

◦ ∆
G2
toy

Pedge =
{
δ1
Pedge={0, 1, 3, 4, 8} 〈0.17〉, δ2

Pedge={2, 5, 6, 7, 9} 〈0.22〉,

δ3
Pedge={13, 14, 15, 16} 〈0.59〉, δ4

Pedge={10, 11, 12} 〈0.67〉
}
.

• Fig 1(c): ∆
G3
toy

Conf 〈0.30, 0.62〉 versus ∆
G3
toy

Pedge 〈0.33, 0.61〉:

∆
G3

toy

Conf is di�erent from ∆
G3

toy

Pedge, with δ
1
Conf = δ2

Pedge ∪ δ3
Pedge and δ

1
Pedge = δ2

Conf ∪
δ3
Conf :

◦ ∆
G3
toy

Conf =
{
δ1
Conf={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 〈0.10〉, δ2

Conf={10, 11, 12} 〈0.65〉,

δ3
Conf={13, 14, 15} 〈0.66〉

}
;

◦ ∆
G3
toy

Pedge =
{
δ1
Pedge={10, 11, 12, 13, 14, 15} 〈0.26〉, δ2

Pedge={0, 2, 6, 7, 8} 〈0.17〉,

δ3
Pedge={1, 3, 4, 5, 9} 〈0.15〉

}
.

• Fig 1(d): ∆
G4
toy

Conf 〈0.32, 0.53〉 versus ∆
G4
toy

Pedge 〈0.32, 0.53〉:

∆
G4

toy

Conf is equal to ∆
G4

toy

Pedge:

◦ ∆
G4
toy

Conf = ∆
G4
toy

Pedge =
{
δ1={0, 1, 2, 3, 4, 5, 6, 7} 〈0.19〉, δ2={8, 9, 10, 11, 12, 13, 14, 15} 〈0.12〉,

δ3={16, 17, 18, 19, 20, 21, 22, 23} 〈0.19〉
}
.
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(a) G1
toy (b) G2

toy (c) G3
toy (d) G4

toy

Figure 1: Optimality with respect to QPedge versus optimality with respect to

QConf . Shapes describe an optimal clustering for QConf (if two vertices have same shape,
then they are in a same module for QConf ). Colors describe an optimal clustering for QPedge
(if two vertices have same color, then they are in a same module for QPedge).

4 A heuristic by edges con�uence

We describe in this section a heuristic for tentatively maximizing QConf . To this end, we
start with a variant on Conf , named Confr, where the con�uence between two adjacent
vertices is computed by removing the edge between them4:

Confr(G, i, j) =

{
Conf(G, i, j) if {i, j} /∈ E,
Conf(G = (V,E − {i, j}), i, j) otherwise. (19)

Confr gives us an ordering on the edges {i, j} ∈ E of the graph. In particular, sorting
the edges by decreasing Confr(G, i, j) forms the basis of a new strategy for constructing
the cluster's modules, Hbec (Heuristic by edges confluence), described5 in algorithm 1.
On G5

toy, the graph depicted in Figure 2, Hbec yields the following clusters: Hbec(G5
toys) ={

{0, 1, 3, 4, 5}, {6, 7, 8, 9, 10}, {2}
}
. It is interesting to note how vertex 2 is left isolated in

its own cluster by Hbec, whereas it joins the {6, 7, 8, 9, 10} module in the optimal clustering

for QConf : ∆
G5
toy

Conf =
{
{0, 1, 3, 4, 5}, {2, 6, 7, 8, 9, 10}

}
.

4A comparative study of Confr with over 80 similarity measures between vertices of a graph has been
done by Emmanuel Navarro in his thesis, looking into the sensitivity of various methods to the density
of graphs, paths of length 1 and the degrees of vertices, among other aspects. This thesis is available at
https://oatao.univ-toulouse.fr/12024/1/navarro.pdf. The study shows that, among the 80
similarity measures considered, Confr(G, i, j) is the only one that, even though it does not systematically
regroup pairs of vertices {i, j} ∈ E, is correlated to the local edge density around vertices i and j, while
being independent of the global density of the graphs.

5Di�erent edges might happen to have the exact same Confr value, making the process non-deterministic
in general, because of its sensitivity on the order in which the edges with identical Confr values are
processed. A simple solution to this problem is to sort edges by �rst comparing their Confr values and
then using the lexicographic order on (i, j) when Confr values are strictly identical.
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Figure 2: G5
toys

Indeed, when a vertex is linked to two or more distinct dense regions of a graph, Hbec
tends to leave that vertex isolated due to its Confr-centered strategy, which does not push
the said vertex towards one of those regions over the other. It is therefore desirable to add
one last step to the process, to get even closer to the optimal clustering by trying to merge
more modules with a greedy algorithm:

FastGreedy(Hbec(G)) : we iteratively merge pairs of modules resulting fromHbec(G)
when the union of modules is locally optimal with respect to QConf , stopping when
merging any pair of the remaining modules would not result in an increase of QConf .

We call Kodex(G) the complete algorithm, including the �nal FastGreedy step. We

now get: Kodex(G5
toys) = ∆

G5
toy

Conf .

4.1 Implementation

Our implementation of Kodex re�ects the high-level description from the previous sections
and is therefore split into three main parts: pre-computing the con�uence of all the edges
of the graph (and sorting the said list of edges in decreasing con�uence order), doing a �rst
clustering pass (Hbec), and the �nal greedy step. Let G = (V,E), and n = |V |.

Edges con�uence:

� First, construct the re�exive sparse adjacency matrix of the input graph, Adj(G) ∈
Mn(R), represented using the Compressed Sparse Column format, supported by the
vast majority of sparse linear algebra libraries, by supplying the appropriate routine
with all the (i, j, 1) triplets, where {i, j} ∈ E or i = j. That is, Adj(G)i,j = 1 if i, j ∈
E or i = j, 0 otherwise .

� Then compute the corresponding transition matrix, T (G), assuming a uniform prob-
ability of reaching any neighbor from a given vertex. This amounts to setting all non-
zero values of a column j to 1

degGj
. That is, T (G)i,j = 1

degG(j) if i, j ∈ E, 0 otherwise .
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Algorithm 1 Hbec(G) Heuristic by edges con�uence for optimizing QConf

Input: G = (V,E) an undirected graph
Output: C a partitional clustering of G

for i ∈ V do

modi� {i}
vi� i

q� 0
Υ� ∅
While Υ 6= E do

{i, j}� arg max
{x,y}∈E−Υ

Confr(G, x, y) I (a)

Υ� Υ ∪ {{i, j}}
if vi 6= vj then I i and j are not in the same module
qcandidate� q+ 2.

∑
x∈mi

∑
y∈mj

Conf(G, x, y) +Pedge(G, x, y)−Pedge(Gnull, x, y) I (b)

if q 6 qcandidate then
q� qcandidate
modi� modi ∪modj
for y ∈ modj do

vy � vi
mj � ∅

C � ∅
for i ∈ V do

if modi 6= ∅
C � C ∪ {modi}

return C
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� Then compute the proxemy matrix, P (G) = T (G)3.

� Next, we iterate over the list of edges {a, b} ∈ E, constructing another list:

� De�ne T (G − {a, b}) to be the same as T (G) except for the entries at (a, b)
and (b, a) that should be set to 0, to emulate the removal of the link between
vertices a and b, and an update to the other entries of the two relevant columns
to re�ect a decrease by 1 in the degree of vertices a and b, to account for the
freshly removed link.
That is,

T (G− {a, b})i,j =


0 if {i, j} = {a, b}

1
degG(j) if j = a or j = b but i /∈ {a, b}
T (G)i,j otherwise

� De�ne eb ∈ Rn as (eb)i = 1 if i = b, 0 otherwise , ideally using a sparse repre-
sentation.

� Multiply T (G − {a, b}) and eb, and multiply the result by T (G − {a, b}), and
again, as many times as the length of the random walk is, which has been 3
in most of this paper. That is, for t = 3, we compute: T (G − {a, b})T (G −
{a, b})T (G− {a, b})eb. We call the resulting vector w ∈ Rn

� Finally, compute confa,b =
wa−

degG(a)−1

nnz(Adj(G))−2

wa+
degG(a)−1

nnz(Adj(G))−2

where nnz is a function returning

the number of non-zero entries in a sparse matrix, typically provided by sparse
linear algebra libraries. Return (a, b, confa,b).

� Sort the list of (a, b, confa,b) according to confa,b, in decreasing order, breaking equal-
ities by discriminating on the lexicographic ordering on a and then b.

Hbec

� We create a clustering with all vertices isolated in their own 1-point cluster. Clusters
are represented with associative maps from cluster identi�ers to sets of vertex iden-
ti�ers, i.e clust[i] = {a, b, c} means that vertices a, b, c are in cluster number i, while
maintaining another associative map from vertex identi�ers to cluster identi�er, i.e
index[i] = c means that vertex i belongs to cluster c. We additionally maintain a
mapping from cluster identi�ers to scores, score[i], to avoid save some computations
that we will keep reusing, instead of performing them from scratch every time.

� We set the score of our clustering, clustscore to 0 initially.

� We iterate over the sorted list of edges from the previous phase. When processing
entry (a, b, confa,b):
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� We compute the clustering quality improvement we would get by merging clus-
ters index[a] and index[b]:

score(index[a] and index[b]) =
∑

i∈clust[index[a]],j∈clust[index[b]]

f(i, j) (20)

where f is de�ned as:

f(i, j) =
P (G)i,j − degG(i)

nnz(Adj(G)

P (G)i,j + degG(i)
nnz(Adj(G)

+Adj(G)i,j −
(degG(i)− 1)(degG(j)− 1)

nnz(Adj(G))− n

� If score(index[a] and index[b])−score[index[a]]−score[index[b]] > 0, we merge
index[b] into index[a]:

* clustscore := clustscore+ score(index[a] and index[b])− score[index[a]]−
score[index[b]]

* clust[index[a]] := clust[index[a]] ∪ clust[index[b]]

* score[index[a]] := score(index[a] and index[b])

* For all i ∈ clust[index[b]], we set index[i] := index[a].

Otherwise, we move on to the next edge.

� Once all the edges have been processed, clust describes a partitional clustering of G.

Final greedy step

� For all pairs of non-empty clusters resulting from Hbec, compute the sum described
in equation 20, using an associative container of some sort to record the mapping
between the pair of cluster identi�ers and the resulting score.

� If there is a pair of clusters for which the sum yields a strictly positive number (i.e
a pair that would improve the quality of the clustering, if merged), merge them,
updating the scores computed in the �rst step to account for the merge, wherever one
of those clusters is involved.

� Repeat until no such pair of clusters exists anymore.

4.2 Tests

We compare three heuristics for computing a partitional clustering:

� Louvain : The Louvain method [Blondel et al., 2008] is the state of the art heuristic
that tentatively maximizes Modularity;
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� Infomap : The Infomap method is a heuristic for tentatively maximizing the quality
function described in 2008 by Rosvall and Bergstrom [Rosvall and Bergstrom, 2008].
This quality function is based on the minimum description length principle [Grünwald, 2007].
It consists in measuring the compression ratio that a given partitioning Γ provides
for describing the trajectory of a random walk on a graph. The trajectory descrip-
tion happens on two levels. When the walker enters a module, we write down its
name. We then write the vertices that the walker visits, with a notation local to
the module, so that an identical short name may be used for di�erent vertices from
di�erent modules. A concise description of the trajectory, with a good compression
ratio, is therefore possible when the modules of Γ are such that the walker tends to
stay in them, which corresponds to the idea that the walker is �captured� when it
enters a good module, which is supposed to be a densely linked region that is only
weakly connected to other modules. The quality6 of a partitional clustering is the
compression ratio that Γ provides for describing the trajectory of a random walker
on G;

� Kodex : The heuristic described in section 4 that tentatively maximizes QConf .

4.2.1 Louvain, Infomap and Kodex on four Gtoys graphs

We start by testing Louvain, Infomap and Kodex on the four Gtoys graphs of section 3.3.
The results are summarized in Figure 3.

On these four Gtoys graphs, Louvain �nds the optimal modules with respect to QPedge
whileKodex �nds the optimal modules with respect to QConf . On G

2
toy and G

3
toy, Infomap

andKodex agree on the clustering, both �nding the optimal modules with respect to QConf .
However, on G1

toy and G
4
toy, Infomap collects all the vertices into a single module, because

there is no way to compress the description of the path of a random walker on either of
those graphs.

Indeed, G4
toy has been arti�cially constructed as follow: G4

toy = (V,E) where V is the
union of 3 sets of 8 vertices, γ1 = {0, ..., 7}, γ2 = {8, ..., 15}, γ3 = {16, ..., 23}, and edges are
randomly drawn using two di�erent probabilities: we use a probability of 0.5 for drawing
an edge between two vertices from the same γi, and a probability of 0.25 when the two
vertices come from di�erent sets.

Vertices from a given γi are expected to have as many internal links (within γi) as they
have links to vertices from the two other sets. At every single step, the random walker is
equally likely to leave a γi or stay within it, which e�ectively prevents any path compression
to take place in G4

toy.

6Note that this quality function cannot be expressed as
∑
γ∈Γ

∑
i,j∈γ sim(G, i, j), with sim(G, ., .) an

R-valued symmetric similarity measure between vertices of G. We therefore left out this quality function in
our study of optimality in section 3.3, not having the ability to de�ne the corresponding objective function
to maximize in a similar fashion to what was done for QPedge and QConf with the formulas 18.
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(a) G1
toy (b) G2

toy (c) G3
toy (d) G4

toy

Figure 3: Clusterings with Louvain, Infomap and Kodex: shapes describeKodex(G),
colors describe Louvain(G), and blocks describe Infomap(G).

� On G1
toy: Louvain(G1

toy) = ∆
G1
toy

Pedge, Infomap(G
1
toy) = {V }, Kodex(G1

toy) = ∆
G1
toy

Conf

� On G2
toy: Louvain(G2

toy) = ∆
G2
toy

Pedge, Infomap(G
2
toy) = Kodex(G2

toy) = ∆
G2
toy

Conf

� On G3
toy: Louvain(G3

toy) = ∆
G3
toy

Pedge, Infomap(G
3
toy) = Kodex(G3

toy) = ∆
G3
toy

Conf

� On G4
toy: Louvain(G4

toy) = Kodex(G4
toy) = ∆

G4
toy

Conf = ∆
G4
toy

Pedge, Infomap(G
4
toy) =

{V }

4.2.2 Louvain, Infomap and Kodex on terrain graphs

We now compare Louvain, Infomap and Kodex on four state-of-the-art terrain graphs.

� GFrSynV: The Dicosyn resource comes from a collaboration between IBM and the
CNRS laboratory ATILF http://www.atilf.fr/. Starting with seven classi-
cal French dictionaries (Bailly, Benac, Du Chazaud, Guizot, Lafaye, Larousse and
Robert), they extracted synonymic relationships, and the resulting graph GFrSyn was
then symmetrized and split by PoS into three graphs: GFrSynV for verbs, GFrSyn.N
for nouns and GFrSyn.A for adjectives.

� GActors: The well known network of actors [Watts and Strogatz, 1998] has been built
from the Internet Movie Database (April 1997) http://us.imdb.com; nodes are
actors, and two actors are linked if they have played in a �lm together [Rossi and Ahmed, 2015]
https://networkrepository.com/actor-collaboration.php.

� GDBLP: The DBLP computer science bibliography provides a comprehensive list
of research papers in computer science [Leskovec and Krevl, 2014]. Two authors
are connected if they have published at least one paper together https://snap.
stanford.edu/data/com-DBLP.html.
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� GAmazon: A network was collected by crawling the Amazon website. It is based on
the Customers Who Bought This Item Also Bought feature of the Amazon website
[Leskovec and Krevl, 2014]. If a product i is frequently co-purchased with product
j, the graph contains an undirected edge from i to j https://snap.stanford.
edu/data/com-Amazon.html.

Table 1 illustrates the pedigrees7 of these terrain graphs, and Table 2 illustrates the execu-
tion times, number of modules, and the length of the biggest module found by the di�erent
methods..

Table 1: Pedigrees: n and m are the number of vertices and edges, 〈k〉 is the mean degree
of vertices, C is the clustering coe�cient of the graph, Llcc is the average shortest path length
between any two nodes of the largest connected component (largest subgraph in which there exist
at least one path between any two nodes) and nlcc the number of vertices of this component, λ
is the coe�cient of the best �tting power law of the degree distribution and r2 is the correlation
coe�cient of the �t, measuring how well the data is modelled by the power law.

Graph n m 〈k〉 C Llcc(nlcc) λ(r2)

GFrSynV 9,147 51,423 11.24 0.14 4.20(8,993) -1.88(0.91)

GActors 68,684 3,007,298 87.57 0.20 3.51(68,019) -1.49(0.90)

GDBLP 317,080 1,049,866 6.62 0.31 6.79(317,080) -2.71(0.95)

GAmazon 334,863 925,872 5.53 0.21 11.95(334,863) -2.81(0.93)

(TODO: Commenter les resultats de la table 2: Bruno)

7The power law estimation we give, λ(r2) is not very accurate (see for instance [Newman, 2005]). How-
ever, giving a correct estimation of the odds that a given discrete distribution is heavy-tailed is a di�cult
issue ([Goldstein et al., 2004, Clauset et al., 2009]), and re�ning the power-law estimates is beyond the
scope of this paper.

Table 2: Clusterings of four Terrain Graphs with Louvain, Kodex, Infomap: (T)
Time computation in seconds (Louvain and Infomap in C++, Kodex in Haskell (see section
4.1), (N) Number of modules, (M) Length of the biggest module and 〈− ; − ; −〉 for
〈Louvain ; Kodex ; Infomap〉

GFrSynV GActors GDBLP GAmazon

(T) 〈0 ; ?? ; 13〉 〈?? ; ?? ; ??〉 〈11 ; 9, 639 ; 1, 933〉 〈6 ; 7, 830 ; 1, 795〉
(N) 〈90 ; 671 ; 575〉 〈?? ; ?? ; ??〉 〈238 ; 17, 437 ; 16, 960〉 〈234 ; 20, 703 ; 17, 292〉
(M) 〈1, 189 ; 155 ; 173〉 〈???? ; ??? ; ???〉 〈25, 893 ; 249 ; 599〉 〈12, 783 ; 535 ; 347〉
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5 Modulating the size of modules

In many domains such as linguistics, sociology or biology, it can be useful to look into sets of
objects (documents, sentences, words, individuals, cells, ...) at di�erent levels of granularity.
In order to gain some control over the size of modules, we introduce a β parameter into
QConf , resulting in the following QβConf (G,Γ) quality function:

QβConf (G,Γ) =
∑
γ∈Γ

∑
i 6=j∈γ

 Conf(G, i, j) +
(
1− dG(i).dG(j)

2m

)
if {i, j} ∈ E,

Conf(G, i, j)−
(dG(i).dG(j)

2m

)
− β ∗

(
1− Conf(G, i, j)

)
otherwise.

=
∑
γ∈Γ

∑
i 6=j∈γ


P 3
G(i j)− dG(j)

2m

P 3
G(i j)+

dG(j)

2m

+
(
1− dG(i).dG(j)

2m

)
if {i, j} ∈ E,

P 3
G(i j)− dG(j)

2m

P 3
G(i j)+

dG(j)

2m

−
(dG(i).dG(j)

2m

)
− β ∗

(
1− P 3

G(i j)− dG(j)

2m

P 3
G(i j)+

dG(j)

2m

)
otherwise.

(21)

Since P 3
G(i j) ∈ [0, 1], it follows that

P 3
G(i j)− dG(j)

2m

P 3
G(i j)+

dG(j)

2m

∈ [−1, 1], and therefore:

if β > 0, then −β ∗
(
1− P 3

G(i j)− dG(j)

2m

P 3
G(i j)+

dG(j)

2m

)
0 0. That is, with β > 0:

� If {i, j} ∈ E, then noting changes ;

� If {i, j} /∈ E and i, j are in the same high density region, then we slightly penalize
the {i, j} pair (by 13);

� If {i, j} /∈ E and i, j are in two distinct high density regions, then we strongly penalize
the {i, j} pair (by 14).

Because we must avoid as much as possible that the modules contain pairs {i, j} /∈ E (with
increasing e�ciency as β grows), this forces modules to be smaller, as illustrated by Figure
4 on graph G3

toy. Increasing β does not simply split modules (resulting in a hierarchical
approach). This can be observed when going from β = 0.5 to β = 1.0, noticing that there

is no δ ∈ ∆
G3
toy

Q0.5
Conf

such that δ2
Q1.0
Conf

= {0, 2, 4} ⊂ δ.

Revisiting the previous algorithm to account for the β parameter, yieldingKodex(G, β),
simply amounts to replacing line I(b) in algorithm 1 by:

qcandidate� q+2.
∑
x∈mi

∑
y∈mj

{
Conf(G, x, y) + Pedge(G, x, y)− Pedge(Gnull, x, y) if {x, y} ∈ E,

(1 + β).Conf(G, x, y) + Pedge(G, x, y)− Pedge(Gnull, x, y)− β otherwise.
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(a) G3
toy

Figure 4: Optimal clusterings of G3
toy for Qβ=0.0

Conf , Qβ=0.5
Conf , Qβ=1.0

Conf : In Fig. 4(a),

blocks describe ∆
G3
toy

Q0.0
Conf

an optimal clustering of G3
toy for Qβ=0.0

Conf , shapes describe ∆
G3
toy

Q0.5
Conf

for Qβ=0.5
Conf , and colors describe ∆

G3
toy

Q1.0
Conf

for Qβ=1.0
Conf .

◦ ∆
G3

toy

Q0.0
Conf

=
{
δ1
Q0.0

Conf
={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} 〈0.10〉, δ2

Q0.0
Conf

={10, 11, 12} 〈0.65〉,

δ3
Q0.0

Conf
={13, 14, 15} 〈0.66〉

}
;

◦ ∆
G3

toy

Q0.5
Conf

=
{
δ1
Q0.5

Conf
={0, 2, 6, 7, 8} 〈0.17〉, δ2

Q0.5
Conf

={1, 3, 4, 5, 9} 〈0.15〉, δ3
Q0.5

Conf
={10, 11, 12} 〈0.65〉,

δ4
Q0.5

Conf
={13, 14, 15} 〈0.66〉

}
;

◦ ∆
G3

toy

Q1.0
Conf

=
{
δ1
Q1.0

Conf
={1, 3, 5, 9} 〈0.17〉, δ2Q1.0

Conf
={0,2,4} 〈0.14〉, δ3

Q1.0
Conf

={6, 7, 8} 〈0.27〉,

δ4
Q1.0

Conf
={10, 11, 12} 〈0.65〉, δ5

Q1.0
Conf

={13, 14, 15} 〈0.66〉
}
.

Table 3 shows the results for Kodex(G, β) with β = 0.0, β = 0.5, β = 1.0 on four real
terrain graphs. To compare two clusterings Γ1 and Γ2, of a graph G = (V,E) we de�ne:

Precision(Γ1,Γ2) =

∣∣(⋃
γ∈Γ1

{
{x, y} ∈ γ × γ

})⋂(⋃
γ∈Γ2

{
{x, y} ∈ γ × γ

})∣∣∣∣⋃
γ∈Γ1

{
{x, y} ∈ γ × γ

}∣∣
Recall(Γ1,Γ2) =

∣∣(⋃
γ∈Γ1

{
{x, y} ∈ γ × γ

})⋂(⋃
γ∈Γ2

{
{x, y} ∈ γ × γ

})∣∣∣∣⋃
γ∈Γ2

{
{x, y} ∈ γ × γ

}∣∣
Fscore(Γ1,Γ2) = 2.

P recision(Γ1,Γ2).Recall(Γ1,Γ2)

Precision(Γ1,Γ2) +Recall(Γ1,Γ2)

22



Figure 5 shows Fscore(Γ1,Γ2) between clusteringsKodex(G, 0.0),Kodex(G, 0.5),Kodex(G, 1.0),
Louvain(G) et Infomap(G) on the graphs GFrSynV , GActors, GDBLP and GAmazon.

Table 3: Kodex clusterings of four terrain graphs with β = 0.0, β = 0.5, β = 1.0
〈− ; −〉 for 〈 Number of modules ; Length of the biggest modules 〉

GFrSynV GActors GDBLP GAmazon

β = 0.0 〈671 ; 155〉 〈?? ; ??〉 〈17, 437 ; 249〉 〈20, 703 ; 535〉
β = 0.5 〈785 ; 126〉 〈?? ; ??〉 〈?? ; ??〉 〈?? ; ??〉
β = 1.0 〈861 ; 89〉 〈?? ; ??〉 〈?? ; ??〉 〈?? ; ??〉

(a) GFrSynV (b) GActors (c) GDBLP (d) GAmazon

Figure 5: Fscore(Γ1,Γ2): Comparison of clusterings Kodex(G, 0.0), Kodex(G, 0.5),
Kodex(G, 1.0), Louvain(G) and Infomap(G) on GFrSynV , GActors, GDBLP et GAmazon.

(TODO: Commenter les resultats de la table 3 et de la �gure 5: Bruno)

6 Conclusions and perspectives

In this paper, we de�ned Confluence, a mesoscopic vertex closeness measure based on
short random walks, that we introduced intoModularity to de�ne QConf , a new clustering
quality function. With four small toy graphs, we showed that optimal clusterings for QConf
improve the resolution of optimal clusterings for Modularity.

We then introduced Kodex(G), a heuristic based on the Confluence of edges to op-
timize QConf on a graph G. On the same four little toy graphs, we showed that Kodex
�nds an optimal clustering for QConf and that for two of those toy graphs, Kodex(G) =
Infomap(G), while on the other two, Kodex(G) identi�es the modules we expected while
Infomap(G) regroups all vertices into a single module.

We showed that Kodex avoids the resolution problem of Louvain on four real terrain
graphs, and that the modules computed by Infomap are closer to those computed by
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Kodex than the ones produced by Louvain.
Finally, to get a handle on the size of modules, we introduced the β ∈ R parameter,

resulting in the QβConf quality function and the Kodex(G, β) variant of the algorithm. We

then showed that this approach is not hierarchical8.

(TODO: Alp et Alexandre: Avantages de l'implémentation Haskel: Monotache/Parallelisme,
Complexité/E�cacité, Maintenance, Portabilité ...)

Length of Random Walks:

For clarity and simplicity, we restricted the random walks of P tG(i j) to a length of
t = 3. A �rst study of the impact of the length of those random walks was done in
[Gaume et al., 2010], but a deeper one should be carried to understand how the length
in�uences the mesoscopicity of Confluence and its e�ect on QConf and Kodex. Indeed,
if G is connected and i 6= j:

� When t = 1: Conf t(G, i, j) =

{
2m−dG(i).dG(j)
2m+dG(i).dG(j) if {i, j} ∈ E,
−1 otherwise.

Confluence is inde-

pendent of the intermediate structures between the two vertices i and j ;

� When 1 < t < ∞: Conf t(G, i, j) =
P tG(i j)− dG(j)

2m

P tG(i j)+
dG(j)

2m

, Confluence is dependent of

the t-intermediate structures (t-mesoscopicity) between the two vertices i and
j (see13 and 14);

� When t→∞: limt→∞Conf
t(G, i, j) = 0, Confluence is constant9.

For example we can build the graph G1F
toy from G1

toy by inserting a new vertex in the middle

of each edge. Figure 6 illustrates the optimal clusterings on G1
toy and on G

1Fself.memory
toy for

Q0.0
Conf with t = 3 and with t = 6, allowing us to see that:

G1F
toy with t = 6: we get the modules ∆

G1
toy

Conf =
{
δ1
Conf = {0, 4, 5, 6}, δ2

Conf =

{1, 2, 3, }, δ3
Conf = {7, 8}

}
i.e the optimal clusters of G1

toy for Q
0.0
Conf with t = 3 :

� δ1
Conf = {0, 4, 5, 6} ⊂ {0, 4, 5, 6, cut(0/4), cut(0/5), cut(0/6), cut(4/5), cut(4/6), cut(5/6)};

� δ2
Conf = {1, 2, 3, } ⊂ {1, 2, 3, cut(0/1), cut(0/2), cut(0/3), cut(1/2), cut(1/3), cut(2/3)};

8If β1 < β2 then the optimal modules for Qβ2Conf are not necessarily subsets of the optimal modules for

Qβ1Conf .
9We can prove with the Perron-Frobenius theorem [Stewart, 1994] that if G is connected, then

limt→∞ P
t
G(i j) = dG(j)

2m
and so by proposition 1: P tG(i j) = P tGnull

(i j), therefore Conf t(G, i, j) = 0.
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� δ3
Conf = {7, 8} ⊂ {7, 8, cut(7/8), cut(3/7), cut(4/7), cut(2/8), cut(5/8)}.

On G1F
toy with t = 3: we do not get the modules of ∆

G1
toy

Conf .

(a) G1
toy (b) G1F

toy

Figure 6: Optimal clusterings for Q0.0
Conf with t = 3 and with t = 6: shapes describe

an optimal clustering for Q0.0
Conf with t = 3, colors describe an optimal clustering for Q0.0

Conf

with t = 6.

Directed graphs:

If G is a positively weighted graph by W = {wi,j such {i, j} ∈ E}, then we can apply
QConf and Kodex by replacing equations 6 and 9 by 22 and 23 respectively:

[G] = (gi,j)i,j∈V with gi,j =


wi,j∑
k∈V wi,k

if {i, j} ∈ E,

0 otherwise.
(22)

Conf t(G, i, j) =


0 if i = j,

P tG(i j)−
∑
k∈V wk,j∑
w∈W w

P tG(i j)+
∑
k∈V wk,j∑
w∈W w

otherwise.
(23)

IfG is a directed graph, one can also consider using a variant of page rank [Gaume and Mathieu, 2016]
in place of equation 7.
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Overlaps:

In order to de�ne a heuristic for computing clusters with potential overlaps between mod-
ules, one could consider using Hbec to isolate vertices between several dense regions of the
graph (see section 4) and allowing them to belong to the modules corresponding to those
dense regions, identi�ed with the help of ConFness (see 17).
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