Homogeneous actions on Urysohn spaces - Archive ouverte HAL
Article Dans Une Revue Colloquium Mathematicum Année : 2022

Homogeneous actions on Urysohn spaces

Résumé

We show that many countable groups acting on trees, including free prod-ucts of infinitely countable groups and surface groups, are isomorphic to dense subgroups of isometry groups of bounded Urysohn spaces. This extends previous results of the first and the last authors with Y. Stalder on dense subgroups of the automorphism group of the random graph. In the unbounded case, we also show that every free product of infinitely countable groups arises as a dense subgroup of the isometry group of the rational Urysohn space.
Fichier principal
Vignette du fichier
1805.02477v2.pdf (567.31 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03467614 , version 1 (14-11-2024)

Identifiants

Citer

Pierre Fima, François Le Maître, Julien Melleray, Soyoung Moon. Homogeneous actions on Urysohn spaces. Colloquium Mathematicum, 2022, 167 (1), pp.21-61. ⟨10.4064/cm7706-1-2021⟩. ⟨hal-03467614⟩
41 Consultations
0 Téléchargements

Altmetric

Partager

More