Efficient open surface reconstruction from lexicographic optimal chains and critical bases - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Efficient open surface reconstruction from lexicographic optimal chains and critical bases

Résumé

Previous works on lexicographic optimal chains have shown that they provide meaningful geometric homology representatives while being easier to compute than their l 1-norm optimal counterparts. This work presents a novel algorithm to efficiently compute lexicographic optimal chains with a given boundary in a triangulation of 3-space, by leveraging Lefschetz duality and an augmented version of the disjoint-set data structure. Furthermore, by observing that lexicographic minimization is a linear operation, we define a canonical basis of lexicographic optimal chains, called critical basis, and show how to compute it. In applications, the presented algorithms offer new promising ways of efficiently reconstructing open surfaces in difficult acquisition scenarios.
Fichier principal
Vignette du fichier
paper.pdf (29.41 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03456390 , version 1 (30-11-2021)
hal-03456390 , version 2 (03-12-2021)

Identifiants

  • HAL Id : hal-03456390 , version 2

Citer

David Cohen-Steiner, André Lieutier, Julien Vuillamy. Efficient open surface reconstruction from lexicographic optimal chains and critical bases. 2021. ⟨hal-03456390v2⟩
120 Consultations
31 Téléchargements

Partager

More