Samples collected from the floor of Jezero Crater with the Mars 2020 Perseverance Rover - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Geophysical Research. Planets Année : 2023

Samples collected from the floor of Jezero Crater with the Mars 2020 Perseverance Rover

1 JSC - NASA Johnson Space Center
2 NHM - The Natural History Museum [London]
3 UNIBO - Alma Mater Studiorum Università di Bologna = University of Bologna
4 NASA
5 Laboratoire Géochimie, Traçage Isotopique, Minéral et élémentaire - G-Time (Bruxelles, Belgium)
6 Department of Geoscience [Las Vegas]
7 EAPS - Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge]
8 CAB - Centro de Astrobiologia [Madrid]
9 PGP - Physics of Geological Processes [Oslo]
10 JPL - Jet Propulsion Laboratory
11 SESE - ASU School of Earth and Space Exploration
12 Department of Geology and Geography [Morgantown]
13 Service de Neurologie [CHRU Besançon]
14 IMPMC - Institut de minéralogie, de physique des matériaux et de cosmochimie
15 Plancius Research LLC
16 SSI - Space Science Institute [Boulder]
17 CELIA - Centre d'Etudes Lasers Intenses et Applications
18 NMMNHS - New Mexico Museum of Natural History and Science
19 CALTECH - California Institute of Technology
20 QUT - Queensland University of Technology [Brisbane]
21 OAA - INAF - Osservatorio Astrofisico di Arcetri
22 IRAP - Institut de recherche en astrophysique et planétologie
23 DTU Space - National Space Institute [Lyngby]
24 Purdue University [West Lafayette]
25 JHU - Johns Hopkins University
26 Department of Astronomy, Cornell University
27 LESIA - Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics
28 SBU - Stony Brook University [SUNY]
29 Aeolis Corporation
30 LGL-TPE - Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement
31 WWU - Western Washington University
32 Department of Earth Sciences, Brock University
33 UiB - Department of Earth Science [Bergen]
34 UHM - University of Hawai‘i [Mānoa]
35 RISE Research Institutes of Sweden
36 Geophysical Laboratory [Carnegie Institution]
37 EPS - Department of Earth and Planetary Sciences [Albuquerque]
38 ASU - Arizona State University [Tempe]
39 LANL - Los Alamos National Laboratory
40 CSIRO Marine and Atmosphere Research [Hobart]
41 BMSIS - Blue Marble Space Institute of Science
J. Simon
B. Cohen
  • Fonction : Auteur
L. Mayhew
D. Shuster
  • Fonction : Auteur
E. Hausrath
M.‐p. Zorzano
A. Brown
F. Calef
T. Casademont
B. Clark
A. Czaja
A. Fairén
T. Fornaro
F. Gómez
Y. Goreva
A. Gorin
K. Hand
S.‐e. Hamran
  • Fonction : Auteur
J. Henneke
C. Herd
B. Horgan
J. Joseph
R. Kronyak
Juan Manuel Madariaga
  • Fonction : Auteur
J. Maki
F. Mccubbin
  • Fonction : Auteur
Scott M Mclennan
R. Moeller
  • Fonction : Auteur
C. Newman
J. Núñez
A. Pascuzzo
  • Fonction : Auteur
D. Pedersen
G. Poggiali
M. Sephton
K. Stack
A. Steele
V. Sun
A. Udry
M. Wadhwa
Roger C Wiens

Résumé

The collection of samples from Mars for future return to Earth has been a high priority for the international planetary science community for decades. Here we describe the first samples collected by the Perseverance rover within Jezero crater, Mars. The sampled rocks represent the diversity of units exposed across the crater floor, from the oldest outcrops that comprise the Séítah formation to the potentially youngest rocks of the Máaz formation that spreads across much of the crater floor and includes heavily cratered terrains. Surface investigations using cameras and analytical instruments reveal landscape-to-microscopic morphological, textural, mineralogical, and geochemical evidence for igneous lithologies, some possibly emplaced as lava flows. The rocks contain major rock forming igneous minerals such as pyroxene, olivine, and feldspar; accessory minerals including oxides and phosphates, and also exhibit evidence for various degrees of aqueous activity in the form of water-soluble salts, carbonate minerals, sulfates, iron oxides, and iron silicates. Following sample return, the compositions and ages of these variably altered igneous rocks are expected to reveal the geophysical and geochemical nature of the planet’s interior at the time of emplacement, characterize martian magmatism, and place timing constraints on geologic processes, both in Jezero crater and more widely on Mars. Petrographic observations and geochemical analyses, coupled with geochronology of secondary minerals, can also reveal the timing of aqueous activity as well as constrain the chemical and physical conditions of the environments in which these minerals precipitated and the nature of organic compounds preserved in association with these phases. Returned samples from these units will be indispensable for determining the crater chronology of Mars and global evolution of the planet’s interior, for understanding the processes that formed Jezero floor units and for constraining the style and duration of aqueous activity in Jezero crater, past habitability, and cycling of organic elements.
Fichier principal
Vignette du fichier
SimLew23.pdf (11.47 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Licence : CC BY - Paternité

Dates et versions

hal-03455596 , version 1 (14-11-2023)

Licence

Paternité

Identifiants

Citer

J. Simon, K. Hickman-Lewis, B. Cohen, L. Mayhew, D. Shuster, et al.. Samples collected from the floor of Jezero Crater with the Mars 2020 Perseverance Rover. Journal of Geophysical Research. Planets, 2023, 128 (6), pp.e2022JE007474. ⟨10.1029/2022JE007474⟩. ⟨hal-03455596⟩
58 Consultations
9 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More