Single frequency CMB B-mode inference with realistic foregrounds from a single training image - Archive ouverte HAL
Article Dans Une Revue Monthly Notices of the Royal Astronomical Society Année : 2022

Single frequency CMB B-mode inference with realistic foregrounds from a single training image

Résumé

With a single training image and using wavelet phase harmonic augmentation, we present polarized Cosmic Microwave Background (CMB) foreground marginalization in a high-dimensional likelihood-free (Bayesian) framework. We demonstrate robust foreground removal using only a single frequency of simulated data for a BICEP-like sky patch. Using Moment Networks, we estimate the pixel-level posterior probability for the underlying {E, B} signal and validate the statistical model with a quantile-type test using the estimated marginal posterior moments. The Moment Networks use a hierarchy of U-Net convolutional neural networks. This work validates such an approach in the most difficult limiting case: pixel-level, noise-free, highly non-Gaussian dust foregrounds with a single training image at a single frequency. For a real CMB experiment, a small number of representative sky patches would provide the training data required for full cosmological inference. These results enable robust likelihood-free, simulation-based parameter, and model inference for primordial B-mode detection using observed CMB polarization data.
Fichier principal
Vignette du fichier
slab120.pdf (1.04 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03440924 , version 1 (22-11-2022)

Licence

Identifiants

Citer

Niall Jeffrey, François Boulanger, Benjamin D. Wandelt, Bruno Regaldo-Saint Blancard, Erwan Allys, et al.. Single frequency CMB B-mode inference with realistic foregrounds from a single training image. Monthly Notices of the Royal Astronomical Society, 2022, 510 (1), pp.L1-L6. ⟨10.1093/mnrasl/slab120⟩. ⟨hal-03440924⟩
99 Consultations
20 Téléchargements

Altmetric

Partager

More