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ABSTRACT
With a single training image and using wavelet phase harmonic augmentation, we present polarized Cosmic Microwave
Background (CMB) foreground marginalization in a high-dimensional likelihood-free (Bayesian) framework. We demonstrate
robust foreground removal using only a single frequency of simulated data for a BICEP-like sky patch. Using Moment Networks,
we estimate the pixel-level posterior probability for the underlying {E, B} signal and validate the statistical model with a quantile-
type test using the estimated marginal posterior moments. The Moment Networks use a hierarchy of U-Net convolutional neural
networks. This work validates such an approach in the most difficult limiting case: pixel-level, noise-free, highly non-Gaussian
dust foregrounds with a single training image at a single frequency. For a real CMB experiment, a small number of representative
sky patches would provide the training data required for full cosmological inference. These results enable robust likelihood-free,
simulation-based parameter, and model inference for primordial B-mode detection using observed CMB polarization data.

Key words: methods: statistical – cosmology: cosmic background radiation.

1 IN T RO D U C T I O N

Polarized galactic foregrounds are the most significant challenge for
the detection of the polarized cosmic microwave background (CMB)
B-mode signal of primordial gravitational waves. Such a detection
would provide a direct probe of cosmic inflation in the early Universe.

Typically, the cosmological signal is recovered using multi-
frequency observations, for which there have been numerous recent
developments in the context of Planck and ground-based experiments
(Planck Collaboration 2020a; Darwish et al. 2021). The sensitivity
expected from the next generation of experiments poses further
challenges (Ade et al. 2019; CMB-S4 Collaboration 2020).

A significant hindrance is the difficulty either numerically simu-
lating the polarized galactic dust emission or constructing analytic
models. In particular, if it were possible to generate synthetic real-
izations of the dust polarization signal, the task could be remarkably
simplified. With the ability to forward model by generating mock
data, the use of simulation-based methods to perform likelihood-free
inference of unknown parameters is relatively straightforward.

Generating a significant number of polarized foreground signal
realizations has been so far impossible. Numerical simulations are
computationally costly and fraught with difficulties. Furthermore,
low-noise and high-precision observational data are also limited.

� E-mail: niall.jeffrey@phys.ens.fr

In this letter, we show that with only a single training image of
polarized dust emission we can use wavelet phase harmonic synthesis
to generate new representative samples. These samples form a
training set with which we can perform likelihood-free inference.
We test the high-dimensional posterior probability space of pixel
values directly, which proves to be a powerful general validation of
this combined synthesis and likelihood-free approach.

Using only a single frequency (143 GHz), we use a hierarchy of
convolutional neural networks to form a Moment Network (Jeffrey
& Wandelt 2020) to estimate posterior mean and marginal variance
per pixel of the extra-galactic CMB signal given the observed
polarization data. Summary of our approach:

(i) Simulate a single polarized foreground data patch.
(ii) Synthesize fast realizations using wavelet phase harmonics to

form a large augmented set of foreground maps.
(iii) Draw cosmological parameters from a prior probability dis-

tribution and generate mock CMB signals.
(iv) Draw foreground amplitude parameters from a prior proba-

bility distribution to match a BICEP-like sky at a single 143 GHz
frequency.

(v) Train Moment Network to estimate the marginal posterior
mean and variance for the CMB signal for each pixel.

(vi) Validate the per-pixel posterior estimates with a quantile-type
test using new unseen simulated (not synthesized) foreground data.

C© The Author(s) 2021.
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.
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L2 N. Jeffrey et al.

By validating the pixel-by-pixel statistical model, we have demon-
strated that this approach is robust for parameter inference and, by
extension, tensor-to-scalar r detection.

For application to real data, the inference task will be in many ways
easier. Here, we have chosen the set-up to be particularly difficult to
demonstrate the strengths of the method: Noise-free, a single training
image, and a single frequency. Measurement noise will Gaussianize
the data, so would limit our demonstration of highly non-Gaussian
dust foreground removal.

Aylor et al. (2020) previously demonstrated an adversarial net-
works, using >103 cleaned (Planck) training images, for total
intensity foreground cleaning. Using the results of this letter, we
can now use very few representative foreground data patches for
polarization (B-mode) analysis as part of our new Bayesian validated
likelihood-free approach.

2 STATISTICAL MODEL

2.1 Likelihood-free inference

2.1.1 Overview:

In Bayesian parameter inference of unknown parameters θ , we aim
to evaluate the posterior probability distribution

p(θ |dobs,M) = p(dobs|θ ,M) p(θ |M)

p(dobs|M)
, (1)

for some statistical model M given the observed data (or summary
statistics of the observed data) dobs (see Jaynes 2003 for details).

In a typical analysis, the likelihood L(θ ) = p(dobs|θ ,M) is
assumed or modelled analytically. In likelihood-free inference (also
known as simulation-based inference) the likelihood is not assumed.
Instead, the sampling distribution of the data p(d|θ ,M) as a function
of the unknown parameters is estimated from forward modelled data.

With density estimation likelihood-free inference (Papamakarios
& Murray 2016; Alsing, Wandelt & Feeney 2018; Alsing et al.
2019), the inference task is posed as a density estimation problem.
The simulated mock data d realizations and their respective
parameters θ form a cloud of points in {d, θ} space. In this space,
we could estimate the following distributions: The joint p(d, θ ,M),
the conditional p(θ |d,M), or the conditional p(d|θ ,M) known
as the sampling distribution (which becomes likelihood if evaluated
for observed data dobs).

Provided mock data d can be generated, with each realization
having an associated θ label, the problem of inference given the
actual observed data is relatively straightforward. Using this density
estimation approach, a number of cosmological analysis have now
been carried out (e.g. Brehmer et al. 2019; Kodi Ramanah et al.
2020; Jeffrey, Alsing & Lanusse 2021; Lemos et al. 2021) that infer
model parameters θ without needing to assume or approximate a
closed-form likelihood.

In this work, thanks to wavelet phase harmonic synthesis (Sec-
tion 2.3.1), we now have the means to generate fast realizations
of dust foregrounds for polarization CMB analysis (given our single
training image). However, rather than using likelihood-free inference
to infer only a set of cosmological parameters, here we choose to
demonstrate a pixel-by-pixel inference at the level of the map as a
powerful test of this approach.

2.1.2 Moment Networks:

These are a simple hierarchy of fast neural regression models that
compute increasing moments of any lower-dimensional marginal
posterior density (Jeffrey & Wandelt 2020).

For a pixel-level inference, each unknown pixel value of the un-
derlying CMB signal s is a parameter to be inferred. The probability
space of all pixels in a given B signal map sB has a dimension of
D = 256 × 256 > 6.5 × 104. Evaluation of the full joint posterior
probability at such a dimensionality D is intractable.

Moment Networks side-step the problem of estimating the pos-
terior density. Particularly useful for high-dimensional parameter
spaces, they directly estimate moments of the marginal posterior
distribution of single parameters or subsets of parameters. For
example, we could estimate the mean and variance of the marginal
posterior probability for each pixel of some unknown signal θ = s,

p(sα|dobs,M) =
∫

p(sα, s′|dobs,M) ds′, (2)

where sα is any given pixel (element of the signal vector) and s′ are
all other pixels. We could also estimate moments (e.g. covariance)
of two-dimensional marginal posteriors for pairs of parameters:

p(sα, sβ |dobs,M) =
∫

p(sα, sβ, s′|dobs,M) ds′. (3)

We require that the unknown parameters are drawn from prior distri-
bution si ∼ p(s|M) and, through the forward model, the associated
data are drawn from the sampling distribution d i ∼ p(d|si ,M).
The first layer of the hierarchy in the Moment Network finds some
function F (d) of our data that minimizes a squared loss over the
distribution of possible training examples {d i , si},

J0 =
∫

||s − F (d)||2p(d, s) dd ds, (4)

then F , which is a neural network, evaluated for the observed data
is the mean of the posterior distribution F (dobs) = 〈s〉p(s|dobs).

Moment Networks allow the use of far simpler neural network
architectures, which reduces training failure risks and improves
inference speed, and have recently been applied to Cosmic Void
inference (Kreisch et al. 2021).

In this work, at the next level of the hierarchy, the function G
minimizes

J1 =
∫

||(s − Ffixed(d))2 − G(d)||2p(d, s) dd ds, (5)

for fixed, already trained F . If J1 is minimized over the training data
(drawn from the correct prior and forward model) then G(dobs) gives
the posterior variance for the marginalized posterior of the signal for
each pixel. This result is exact and independent of the true underlying
posterior or prior distributions (Jaynes 2003; Adler & Öktem 2018).

In this work, we train the first networkF of the two-layer hierarchy
to return μB = 〈sB〉p(s|dobs), which is the mean of the marginal
posterior of the signal sB for each pixel given the data {dE, dB}:

F ({dE, dB}) =
∫

sB p(sB |dE, dB,M) dsB. (6)

The second network G gives the variance σ 2
B = 〈s2

B〉p(s|dobs) − μ2
B of

the marginal posterior distribution for each pixel of sB given the data
{dE, dB}:

G({dE, dB}) =
∫ (

s2
B − μ2

B

)
p(sB |dE, dB,M) dsB. (7)

In this work, we show the result for sB here as it is the most signif-
icantly contaminated by polarized dust foregrounds. Both stages of
the Moment Network use a UNet convolutional neural network from
the DeepMass1 package (Jeffrey et al. 2020) – see Section 3.

1https://github.com/NiallJeffrey/DeepMass
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B-mode inference with realistic foregrounds L3

2.2 CMB data model

We select a flat �-Cold Dark Matter cosmological model for this
analysis. This choice of model is not a requirement for this approach;
one could choose any cosmological model M provided it is possible
to generate mock observables where the unknown cosmological
parameters �C are drawn from some prior probability distribution
p(�C |M).

The parameters used for the CMB signal generation must be drawn
from the assumed prior �C,i ∼ p(�C |M), so that the Moment
Network output matches the expected properties of the posterior
probability distribution. In this work, we choose to use the Planck
Collaboration (2020b) base plikHM TTTEEE lowl lowE2 pa-
rameter posterior distribution as our prior.

Our sampled cosmological parameters are: The Hubble parameter
H0, the baryon density �b, the cold dark-matter density �c, the
Reionization optical depth τ , primordial amplitude As, scalar spectral
index ns. We fix the tensor-to-scalar ratio parameter r = 0, but this
could be easily allowed to vary over a wide prior range for such
an analysis. We thin the Markov chain Monte Carlo Planck chains
uniformly to sample approximately 3000 sets of parameters �C,i .

For each set of parameters drawn from the prior, we calculate the
theoretical CMB polarization EE and BB power spectrum C	(�C,i)
using the CAMB software (Lewis, Challinor & Lasenby 2000; Howlett
et al. 2012). For each C	(�C,i) sample, we generate a full-sky
Gaussian realization of the E and B signals with HEALPix (Górski
et al. 2005). These Gaussian signal realizations do not include higher
order N-point corrections caused by any primordial non-Gaussianity
or gravitational lensing, and therefore, would be insufficient for a
full delensing analysis, though such signals would not be difficult
to simulate if required (Millea, Anderes & Wandelt 2020). From
each full-sky HEALPix map (resolution nside=1024), we extract
18 non-overlapping patches using gnomonic projection for both sE

and sB. Each patch is 20
◦ × 20

◦
to match a BICEP-like survey

area (BICEP2 Collaboration 2018) with 256 × 256 pixels. Each sE

and sB map is convolved with a Gaussian beam smoothing with the
size of a single pixel width (σ ≈ 4.69 arcmin). In total, we generate
52 224 sets of {sE, sB} maps.

In reality, the CMB polarization signal is measured in terms
of the {Q, U} Stokes fields, rather than the pseudo-scalar{E,
B} fields (Zaldarriaga 2001), which generally introduces artefacts
when transforming between these representations for masked or
non-periodic data. However, this is already a solved problem in
a single frequency, unlike polarization dust foreground marginal-
ization. Again, though this E-B-leakage effect should be included
for analyses with actual observational data, adding this effect here
would diminish our clear demonstration of non-Gaussian foreground
marginalization.

The left hand of Fig. 1 shows an example B signal simulation. The
centre-left hand shows the same map with simulated foregrounds
significantly obscuring the signal.

2.3 Foreground modelling

2.3.1 Wavelet phase harmonic synthesis:

Using a single simulation of the polarized dust foregrounds f ∗
Q,

f ∗
U , we synthesize many further realizations using wavelet phase

harmonic synthesis { f Q, f U}. The original simulated foreground
image f ∗

Q, f ∗
U is of a polarization signal as produced by the thermal

2https://pla.esac.esa.int/

emission of dust in the diffuse ISM. It is built from the same
magnetohydrodynamic (MHD) simulation as described in Regaldo-
Saint Blancard et al. (2020).

Wavelet phase harmonic statistics are descriptions of signals
that have been designed taking advantage of comparisons between
convolutional neural networks and non-linear harmonic analysis
operations. These statistics form models that can be used to generate
new realizations of a given signal.

We can define the wavelet phase harmonic coefficients α of a fore-
ground map in relation to a wavelet phase harmonic operator, where
α = φ( f ∗). These statistics are designed to characterize the coherent
structures that appear in non-Gaussian random fields, by quantifying
the phase alignment between different scales (Mallat, Zhang &
Rochette 2020; Zhang & Mallat 2021). For cosmic-web density
fields, Allys et al. (2020) demonstrated that these statistics include
most of the information captured by various high-order statistics.

For a detailed mathematical description, we refer the reader to
Appendix A of Regaldo-Saint Blancard et al. (2021), in which these
statistics were measured for noisy dust polarization Planck data.
However, for an overall understanding of wavelet phase harmonic
statistics, the reader may consider that these statistics emulate similar
properties to information capture in a convolutional neural network.
Unlike neural networks, these statistics require no training, so it is
possible to estimate the phase harmonic coefficients from our single
training image α∗ = φ( f ∗). New synthesized f maps are generated
by minimizing a loss,

Wα( f ) = ||φ( f ) − α∗||2, (8)

with f initialized as Gaussian white noise. Using differentiable φ

operators, the pyWPH3 code uses gradient-based optimization.
As we are working in Q, U space to synthesize, we can apply the

operator directly on the complex field (as in Regaldo-Saint Blancard
et al. 2021). Here, we extend this to include the individual com-
ponents, giving a new loss: W ′

α = Wα( f Q) + Wα( f U ) + Wα( f Q +
i f U ).

A further development of phase harmonic synthesis in this work is
the use of differentiable histograms to match the Kullback–Leibler
divergence of the 1-point distributions of the synthesized f Q and f U

fields with the target (see Appendix B – Supporting Materials).
These techniques combine to give a realistic new set of synthesized

polarized foregrounds that match the single initial training simula-
tion. The robustness of the synthesized maps for this problem is
tested in the following section.

2.3.2 Foreground amplitude prior:

We match the synthesized foreground maps, which have 512 × 512
pixels, to a 40◦ × 40◦ area. For each periodic synthesized map, we
transform from Q, U to E, B. We then select sub-patches of 256 × 256
pixels to break the periodic boundary conditions and to match the
survey size of the simulated CMB signal maps. From 102 full
512 × 512 synthesized foreground maps, we use data augmentation
methods of image flips, translations, and rotations (applied equally
to f E and f B ) to generate a set of 52 224 foreground maps of size
256 × 256.

These synthesized foreground maps are matched to realistic
foreground properties for a BICEP-like experiment. We model the
polarized dust foreground amplitude of the BICEP field using the
Planck analysis values and uncertainties. We first assume that the

3https://github.com/bregaldo/pywph
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L4 N. Jeffrey et al.

Figure 1. The two left hands show the simulated clean signal sB and the foreground-contaminated data dB (validation data A – Section 3.3). The centre
right hand shows the mean of the marginal posterior probability per pixel F (dE, dB ) and the far right shows the variance of the marginal posterior per pixel
G(dE, dB ). This CMB signal has been inferred (the posterior probability estimated) using only a single frequency and a single training image. Patches of reduced
power in the pixel posterior mean are not artefacts; the mean is expected to move closer to 0 μ K when the posterior variance is higher.

large scale foregrounds are known well enough that we can subtract
the mean foreground signal so that 〈 f E〉 = 〈 f B〉 = 0 for each map.
The foreground amplitude parameters AE and AB are defined with
respect to a power-law spectrum:

CXX
	 = AX (	/80)−0.42 (2π ) / (	 (	 + 1)). (9)

The Planck analysis values and uncertainties for each AX contribute
to our prior p(AE, AB). As a conservative least-informative approach,
we assume independent Gaussians: p(AE) = N (0.358, 0.09172) &
N (0.172, 0.04402), where the model and values are derived from
Planck Collaboration (2020c) Section 3.2.

To match these amplitudes defined on the celestial sphere to the
pixel variance of our foregrounds patches, we generate 1000 full-
sky Gaussian realizations of foreground maps with power spectrum
parameters drawn from the above prior. From these full-sky realiza-
tions, we create patches with the correct angular size and resolution
(these realizations are then discarded). This Monte Carlo procedure
transforms the prior distribution with respect to the power spectrum
amplitude parameters p(AE, AB) to a prior on the pixel standard
deviation of the patches p(σ E, σ B). The synthesized foreground maps
{ f E,i , f B,i } are rescaled to match the sampled amplitudes.

3 R ESULTS

3.1 Marginal posterior moments

The previous section described the statistical model that generated
mock data samples. For each i sample, we have: Foreground contami-
nated data maps (dE,i , dB,i), clean signal maps (sE,i , sB,i), associated
cosmological and foreground parameters (AE, i, AB, i, �C,i).

In this work, we target the posterior probability distribution of
the pixel values of the B-mode signal given the data p(sB |dE, dB )
with all other parameters marginalized away. We choose the B-mode
signal for this demonstration as the signal power is much weaker than
E-mode (by a factor of 300) so is most obscured by polarized dust
foregrounds. By validating the posterior probability at pixel-level,
this is a powerful demonstration of the robustness of the synthesized
forward model and the likelihood-free inference.

For both stages of the Moment Network, the posterior mean and
variance networks, F (dE, dB ) and G(dE, dB ), we train the UNet

convolutional neural network from DeepMass for 100 epochs with
varied batch size and learning rates (Convergence is achieved at
epoch 50). From the synthesized training samples, we retain 5120
as a test set to confirm that over-fitting does not occur. Moment
Networks are fast and inexpensive, taking 94 s per epoch to train
with an Nvidia V100 32GB and evaluation of moments taking
≈1 ms per new data map.

To validate the inference, we do not use further synthesized
images, but we take a new unseen simulation. We use four non-
overlapping foreground patches from an approximately-independent
snapshot of the same steady-state MHD simulation (see section 3.1
of Regaldo-Saint Blancard et al. 2020 for details). The same steps
of the forward model are applied to these new patches, including
drawing the foreground amplitude from a prior for each map. Four
new simulated CMB signals are added to generate four new data sets,
which are labelled A, B, C, and D.

Fig. 1 shows the results of the trained Moment Network applied
to validation data A. The left hand shows the clean target sB

and the foreground-contaminated data dB , though the posterior is
conditioned on the E- and B-mode data. This figure is a demonstration
of 5 of the 6 targets of the ‘Summary of our approach’ described in
the Introduction (Section 1).

Though naively the behaviour of the mean map appears to match
what would be expected from a linear filter (e.g. Wiener filtering of
noise), here, at a single frequency, the ability to distinguish between
target signal and the statistically-homogeneous foregrounds is en-
tirely due to non-Gaussianity. Appendix B (Supporting Materials)
shows the same example with a Gaussian foreground model.

3.2 Posterior mean as foreground cleaning

The aim of this high-dimensional likelihood-free inference approach
is to estimate properties of the pixel posterior distribution. By
validating this procedure, we can be confident in the forward model
and the inference scheme for cosmological parameters or models.

However, the mean of the pixel posterior distribution is expected to
be close to the true pixel values. As such, we can interpret the centre
right hand of Fig. 1 as a foreground-cleaned map. It is important to
note that the mean of the posterior is not a sample from the posterior,
so it does not have the properties of in-painting; pixels with high
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B-mode inference with realistic foregrounds L5

Figure 2. Each pair of panels on the left and right correspond to the validation data examples ‘A’ and ‘B’, respectively. The right hand of each pair shows the
power spectra of data components and residuals. The left hand shows the ratio of the true power to the power of the residuals, between the posterior mean and
the truth (orange solid line) or between the data and the truth (blue dashed line); C(	)truth/C(	)residual can be interpreted as signal-to-noise (see Section 3.2 for
discussion). If interpreted as a foreground-cleaned map, the posterior mean per pixel shows a significant improvement over the data, as would be expected.

Figure 3. For each of the validation data maps (A, B, C, D), the distribution of the rescaled pixel residuals (μB − sB )/σB . This distribution is expected to
have mean zero and unit standard deviation; the apparent Gaussianity is not necessarily expected or required and, though surprising, shows that the marginal
posterior distributions are Gaussian for this data model. This result validates both the synthesis procedure with a single training image and the high-dimensional
likelihood-free inference with Moment Networks.

uncertainty are expected to have values close to the global mean 0 μ

K. This occurs when the foreground signal is particularly obscuring,
which are accompanied by an appropriate increase in the marginal
variance per pixel. We can test the accuracy of the recovered pixel
values, provided we remember they are the mean values of a high-
dimensional posterior probability p(sB |dE, dB ).

The two left hands of Fig. 2 show results from validation data A
and the two right hand show result from validation data B. The right
hand of each pair, shows the power spectra of the components and
residuals. We can see that the signal power dominates the foreground
at 	≈ 1000 for validation data A but the foregrounds always dominate
for validation data B. Though not shown, example C is neither
foreground- nor signal-dominated and D is signal dominated.

The residuals are defined as the difference between the truth and
a given map, either the original data dB or mean posterior map μB .
The left hand of each pair show the power spectrum of the truth
divided by the power spectrum of the residual; this quantity (truth
divided by an effective error) can be interpreted as a signal-to-noise.
We clearly see that if we take the mean per pixel as a cleaned map, we
significantly reduce the relative error compared with the foreground
contaminated data.

3.3 Posterior probability validation

For each pixel value, we have a marginal posterior mean and variance.
As this is simulated data and we have a large number of pixels, we can
validate that the true values are distributed around the mean with the

correct variance as predicted by our inference pipeline. In particular
the rescaled pixel residuals (μB − sB )/σB are expected to have zero
mean and unit variance.

Fig. 3 shows the rescaled residual distributions for each of the
validation data maps A, B, C, and D. The clear Gaussianity of the
residuals is not generally expected, but indicates that the marginal
posterior distributions are Gaussian for this data model. The high
level of agreement between a unit Normal distribution and the
rescaled residuals for each of the validation maps is a strong
demonstration that the forward model and the high-dimensional
likelihood-free inference is robust. This is the primarily validation of
our approach.

4 C O N C L U S I O N S

In this letter, we have described two significant contributions to
simulation-based inference of CMB polarization data. The first is the
development of WPH synthesis to take a single training image of
polarized dust foregrounds to create a large set of realistic training
images for use in a forward model. The second is the application
of high-dimensional likelihood-free methods, in particular Moment
Networks, to target the posterior probability of the CMB signal pixel
values given our observed data. Finally, we validate both aspects
by performing a quantile-type test using mock data derived from an
unseen (not synthesized) simulation of dust foregrounds.

The quantile-type test validates our approach in the most difficult
limiting case: Pixel-level, noise-free, highly non-Gaussian dust

MNRASL 510, L1–L6 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article/510/1/L1/6424934 by C
N

R
S - ISTO

 user on 22 N
ovem

ber 2022



L6 N. Jeffrey et al.

foregrounds with a single training image at a single frequency. It
would be straightforward to combine this single-frequency (morpho-
logical) approach with existing multi-frequency models. Future inter-
esting developments would include astrophysical modelling of dust
frequency decorrelation (Tassis & Pavlidou 2015), improvements in
the accuracy and efficiency of WPH synthesis, and extensions of the
likelihood-free inference methods. But now, with a few representative
patches of the galactic microwave sky, either simulated or data-
driven, we can overcome a significant challenge of dust emission for
CMB polarization analysis in a likelihood-free framework.
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