Bounds in $L^1$ Wasserstein distance on the normal approximation of general M-estimators - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2023

Bounds in $L^1$ Wasserstein distance on the normal approximation of general M-estimators

Résumé

We derive quantitative bounds on the rate of convergence in $L^1$ Wasserstein distance of general M-estimators, with an almost sharp (up to a logarithmic term) behavior in the number of observations. We focus on situations where the estimator does not have an explicit expression as a function of the data. The general method may be applied even in situations where the observations are not independent. Our main application is a rate of convergence for cross validation estimation of covariance parameters of Gaussian processes.
Fichier principal
Vignette du fichier
Wasserstein_bounds_M_estimators_11.pdf (369.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03432921 , version 1 (17-11-2021)

Identifiants

Citer

François Bachoc, Max Fathi. Bounds in $L^1$ Wasserstein distance on the normal approximation of general M-estimators. Electronic Journal of Statistics , 2023, 17 (1), ⟨10.1214/23-EJS2132⟩. ⟨hal-03432921⟩
62 Consultations
414 Téléchargements

Altmetric

Partager

More