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Abstract

We derive quantitative bounds on the rate of convergence in L1 Wasserstein distance of gen-
eral M-estimators, with an almost sharp (up to a logarithmic term) behavior in the number of
observations. We focus on situations where the estimator does not have an explicit expression as a
function of the data. The general method may be applied even in situations where the observations
are not independent. Our main application is a rate of convergence for cross validation estimation
of covariance parameters of Gaussian processes.
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1 Introduction

Our goal here is to derive quantitative bounds for approximate normality of parameter estimators
that arise as minimizers of certain random functions. The main example to keep in mind is max-
imum likelihood estimation [51, Chapter 5.5], but other problems fit in the framework we shall
consider, including least square estimators [48] and cross validation [9, 56].

Consider a fixed compact parameter space Θ ⊂ R
p and a sequence of random functions (Mn)n∈N,

where for n ∈ N, Mn : Θ → R. Throughout, N is the set of non-zero natural numbers. The variable
n should be thought of as a sample size, and Mn the function for which a minimizer will be the
M-estimator of interest, which is a (measurable) random vector θ̂n ∈ Θ such that

θ̂n ∈ argmin
θ∈Θ

Mn(θ). (1)

A classical family of M-estimators is given by functions of the form

Mn(θ) =
1

n

n
∑

i=1

ρ(θ,Xi) (2)

where the Xi are the sample independent data, valued in a space X , and ρ : Θ × X → R is a
fixed function. We shall address in details this class in Sections 3.1 and 3.2, but investigation shall
go beyond this framework, in particular to cover covariance estimation for Gaussian processes,
addressed in Section 3.3.

Our goal will be to derive quantitative central limit theorems in L1 Wasserstein (or optimal

transport) distance for the fluctuations of θ̂n around a deterministic parameter θ0,n (that is allowed
to depend on n). The simplest example is when θ0,n = θ0 is fixed, typically when Mn stems from
the likelihood function and there is a fixed data generating process characterized by the “true”
parameter θ0 [51, Chapter 5.5]. Nevertheless, we allow for a sample-size dependent θ0,n which
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enables to address relevant situations such as misspecified models [15, 17, 34, 54]. In particular, in

[15, 17], the parameter of interest θ0,n that θ̂n estimates explicitly depends on sample size.

In the context of this paper, it is typically already known that the distribution of n1/2(θ̂n−θ0,n)
converges to a Gaussian distribution. General techniques for showing this convergence are available
in a wealth of contributions, see for instance [20, 47, 51] and references therein. Our goal is then
to go beyond the convergence between these two distributions (for which, usually, no rates are
available) by providing quantitative bounds on their L1 Wasserstein distance. In this view, the

main challenge is the M-estimation setting, which often entails that no explicit expression of θ̂n is
available. Our main abstract result, Theorem 1, is a general statement about reducing the problem
to a central limit theorem for an explicit function of the data. More precisely, the L1 Wasserstein
distance between the distribution of n1/2(θ̂n − θ0,n) and a Gaussian distribution is bounded by the
sum of a term of order n−1/2 (up to a log factor) and the distance between a Gaussian distribution
and the normalized gradient of Mn at θ0,n.

Hence, Theorem 1 enables to reduce the problem to quantifying the asymptotic normality of
this normalized gradient. Since this quantity is explicit, there are many techniques in the literature
that can be applied. We shall discuss this aspect of the problem in Section 2.3.

We shall illustrate the benefits of Theorem 1 with several examples of functions Mn: averages
of independent functions in Section 3.1, maximum likelihood for logistic regression in Section 3.2
and cross validation estimation of covariance parameters of Gaussian processes in Section 3.3. This
last example highlights the flexibility of our techniques, since the observations are dependent and
the function Mn is not based on the likelihood. In all these three cases, eventually, we provide a
bound, for the L1 Wasserstein distance between the distribution of n1/2(θ̂n − θ0,n) and a Gaussian
distribution, of order n−1/2 (up to a log factor).

There has been a recent interest for bounding the normal approximation of M-estimators, as we
do here. On connected topics, the normal approximation is quantified in [46] for the Delta method,
in [8] for likelihood ratios and in [3] for gradient descent. Considering now specifically M-estimators,
a series of articles successfully addressed them: [1, 2, 4, 5, 6, 7, 16, 45, 50]. These articles address
not only the univariate case (for θ) [1, 6, 7, 16, 45], but also the general multivariate one [2, 4, 5, 50].
In particular, some of these references exploit the characterization of the L1 Wasserstein distance
as a supremum of expectation differences, over Lipschitz functions. This enables to decompose the
target Wasserstein distance into several terms that can be addressed independently with different
approaches. This idea appears for instance in [1, (9), (10) and (20)], as well as some of the other
articles above. We also rely on it, see (19) and (21).

We shall now highlight the novelty of our results compared to the above articles. First, the
references [2, 4, 6, 7, 16, 45, 50] do not address the L1 Wasserstein distance as we do. Only
[1, 5] do. In [50], the distance is the supremum probability difference over convex sets, which is of
the Berry-Esseen type. Earlier and similarly, [16, 45] considered the Kolmogorov distance in the
univariate case. Also, [6, 7] address Zolotarev-type distances based on supremums of expectation
differences over absolutely continuous bounded test functions (and Lipschitz in [7], yielding the
bounded-Wasserstein distance). Similarly, [2, 4] consider test functions that are bounded with
bounded derivatives of various orders. Remark that while the L1 Wasserstein and Kolmogorov
distances can be compared under regularity conditions and a priori moment bounds, using general
comparison results typically worsens the quantitative estimates. Note also that bounding the L1

Wasserstein distance is stronger than in [2, 4, 7], as it allows for a larger class of test functions.
Remark furthermore that Berry-Esseen-type and Kolmogorov distances may be less sensitive than
Wasserstein distances to, for instance, the moments of θ̂n − θ0,n. Thus, the Wasserstein distances
necessitate specific treatments compared to them (for instance, see the proof and use of Lemma 7

here, or the terms in Theorem 2.1 in [7] involving the moments of θ̂n − θ0,n).
In addition, we allow for general functions Mn, while most of the above references focus on

maximum likelihood. Some arguments provided for maximum likelihood do carry over to general
functions Mn, but it is not clear that this is the case for all of them. Also, most of the above
references focus on independent observations (often also identically distributed) defining the func-
tion Mn (with the exception of [1]), while we allow for Mn stemming from dependent observations.
Again, some but not all arguments for independent observations can be extended to dependent
observations. In the case of independent observations, as in [5] we shall rely on a result of Bonis
[18] to bound the rate of convergence in the multivariate central limit theorem.

Furthermore, in comparison to [1, 2, 4, 5, 6, 7], our general bound in Theorem 1 only depends

on Mn and its derivatives, and does not feature θ̂n − θ0,n. In contrast, most of the general bounds

in these references contain moments of θ̂n − θ0,n (see for instance Theorem 2.1 in [7]). Hence, our

general bound seems more convenient to apply to examples, particularly when θ̂n does not have
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an explicit expression, which is often the case. In agreement with this, in most of the examples
provided by [1, 2, 4, 5, 6, 7], θ̂n has an explicit expression. As an exception, [2, 7] address maximum
likelihood estimation of the shape parameters of the Beta distribution. Finally, [1, 2, 4, 5, 6, 7]

usually make the assumption that there is a unique θ̂n satisfying (1), while Theorem 1 here holds

for any θ̂n satisfying (1). In many statistical models of interest, there is no guarantee that Mn has
a unique minimizer over Θ, almost surely.

The examples we address are representative of the flexibility of Theorem 1. In particular we
address general averages of independent functions in Section 3.1. We treat logistic regression in
Section 3.2, with a simple proof once Theorem 1 is established, which illustrates that this theorem is
efficient even when θ̂n does not have an explicit expression, and is not necessarily unique. Finally, in
Section 3.3 we address cross validation estimation of covariance parameters of Gaussian processes.
This last example highlights our flexibility to dependent observations and to Mn not stemming
from a likelihood and even not being an average of functions of individual observations (most of the

discussed references above consider these averages of functions for Mn). Again, θ̂n has no explicit
expression in this cross validation example.

The rest of the paper is organized as follows. Section 2 provides the general technical conditions
and the general bound of Theorem 1, reducing the problem to the asymptotic normality of the
normalized gradient. It also discusses many references to address this asymptotic normality in the
probabilistic literature. Section 3 addresses the three examples discussed above. Some of the proofs
are postponed to the appendix.

2 General bounds

For a ℓ × ℓ matrix A, we write ρℓ(A) ≤ · · · ≤ ρ1(A) for its singular values, and for a symmetric
matrix, we write λℓ(A) ≤ · · · ≤ λ1(A) for its eigenvalues.

2.1 Technical conditions

For u, v ∈ R
p, we write [u, v] = {tu+ (1− t)v; t ∈ [0, 1]} and (u, v) = {tu+ (1− t)v; t ∈ (0, 1)}. We

write Θ̊ for the interior of the parameter space Θ. The next condition means that Θ is, so to speak,
well-behaved. It can be checked that this condition holds for most common compact parameter
spaces, in particular hypercubes, balls, ellipsoids and polyhedral sets.

Condition 1. There exist two constants 0 < CΘ < ∞ and 0 < c′Θ < ∞ such that for each
0 < ǫ ≤ c′Θ, there exist N ≤ Cθǫ

−p and θ1, . . . , θN ∈ Θ satisfying the following. For each θ ∈ Θ,

there exists i ∈ {1, . . . , N} such that (θ, θi) ⊆ Θ̊ and ||θ − θi|| ≤ ǫ.

Then, the next condition basically consists in asking for enough integrability on the derivatives
of Mn to be able to commute expectation and derivation, which is usually established using the
dominated convergence theorem. Remark that the conditions on the first two derivative orders
will actually be implied by some of our later conditions, but we state them here independently for
convenience of writing.

Condition 2. Consider n ∈ N. For θ ∈ Θ, the random variable Mn(θ) is absolutely summable.
Almost surely, the function Mn is three times differentiable on Θ̊. For i, j, k ∈ {1, . . . , p} and
θ ∈ Θ̊, the random variables ∂Mn(θ)/∂θi, ∂

2Mn(θ)/∂θi∂θj and ∂3Mn(θ)/∂θi∂θj∂θk are absolutely
summable. Furthermore,

E

(

∂Mn(θ)

∂θi

)

=
∂E(Mn(θ))

∂θi
, E

(

∂2Mn(θ)

∂θi∂θj

)

=
∂2

E(Mn(θ))

∂θi∂θj

and

E

(

∂3Mn(θ)

∂θi∂θj∂θk

)

=
∂3

E(Mn(θ))

∂θi∂θj∂θk
.

The next condition means that, for a fixed θ, Mn(θ) and ∂Mn(θ)/∂θi, i ∈ {1, . . . , p}, concentrate
around their expectations at rate n−1/2, with an exponential decay for deviations of order larger
than n−1/2. Many tools from concentration inequalities (for instance [19, 23]) enable to check this
condition in specific settings (see for instance those of Section 3). The rate n in the exponential is
sharp in general for averages of i.i.d. random variables.
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Condition 3. There are constants 0 < cM < ∞, 0 < c′M < ∞ and 0 < CM < ∞ such that for
n ∈ N and 0 < ǫ ≤ c′M ,

sup
θ∈Θ

P(|Mn(θ) − E(Mn(θ))| ≥ ǫ) ≤ CM exp(−ncM ǫ2)

and
sup
θ∈Θ̊

P(||∇Mn(θ)− E(∇Mn(θ))|| ≥ ǫ) ≤ CM exp(−ncMǫ2).

For a function f : Θ̊ → R and for θ ∈ Θ̊, we write ∇f(θ) the gradient column vector of f at θ
and we write ∇2f(θ) the Hessian matrix of f at θ. The next condition is a control on the deviations
of the derivatives of Mn of order 1 and 2, that is uniform over Θ̊. Remark that the deviations that
are controlled are of larger order than those in Condition 3. Hence, again, the condition can be
checked in many settings.

Condition 4. There are constants 0 < cd,1 < ∞, 0 < Cd,1 < ∞ and 0 < C′
d,1 < ∞ such that for

n ∈ N and K ≥ C′
d,1,

P

(

sup
θ∈Θ̊

||∇Mn(θ)|| ≥ K

)

≤ Cd,1n exp(−cd,1K)

and

P

(

sup
θ∈Θ̊

p
max
i,j=1

∣

∣

∣

∣

∂2Mn(θ)

∂θi∂θj

∣

∣

∣

∣

≥ K

)

≤ Cd,1n exp(−cd,1K).

We then require the derivatives of order 1, 2 and 3 of Mn to have bounded moments of order
1, 1 and 2.

Condition 5. There is a constant Cd,2 such that for n ∈ N,

sup
θ∈Θ̊

E (||∇Mn(θ)||) ≤ Cd,2, sup
θ∈Θ̊

p
max
i,j=1

E

(
∣

∣

∣

∣

∂2Mn(θ)

∂θi∂θj

∣

∣

∣

∣

)

≤ Cd,2 (3)

and
p

max
j,k,ℓ=1

E

(

sup
θ∈Θ̊

∣

∣

∣

∣

∂3Mn(θ)

∂θj∂θk∂θℓ

∣

∣

∣

∣

2
)

≤ Cd,2. (4)

Above, the moments are for fixed θ for the order 1 and 2. The moments for the order 3 are
uniform over Θ̊. Note that it can be seen from the proof of Theorem 1 that assuming uniformity
only locally around θ0,n (see Condition 7) would be sufficient. For instance, [4] has a similar locally
uniform moment bound on the third-derivatives of the log-likelihood function (see (R.C.3) there).

The next condition requires the variances of the derivatives of order 1 and 2 of Mn to be of order
1/n. This condition is natural and easy to check in many settings, for example for i.i.d. random
variables.

Condition 6. There is a constant CVar such that for n ∈ N, j, k ∈ {1, . . . , p},

sup
θ∈Θ̊

p
max
j=1

Var

(

∂Mn(θ)

∂θj

)

≤ CVar

n

and

sup
θ∈Θ̊

p
max
j,k=1

Var

(

∂2Mn(θ)

∂θj∂θk

)

≤ CVar

n
.

For x ∈ R
p and r ≥ 0, we let B(x, r) be the closed Euclidean ball in R

p with center x and
radius r. The next condition introduces the sequence of deterministic parameters (θ0,n)n∈N, to

which (θ̂n)n∈N is asymptotically close. In the applications of Sections 3.2 and 3.3, θ0,n = θ0
does not depend on the sample size and determines the fixed unknown data generating process.
Nevertheless, it is beneficial to allow for a n-dependent θ0,n, to cover general cases of misspecified
models, for instance as in [15, 17, 34, 54].

Condition 7. There exists a sequence (θ0,n)n∈N and a constant 0 < cθ0 < ∞ such that for

each n ∈ N, B(θ0,n, cθ0) ⊆ Θ̊. We each n ∈ N, E(∇Mn(θ0,n)) = 0. For each r > 0 such that
Θ\B(θ0,n, r) 6= ∅, there exist constants Nr ∈ N and 0 < cr < ∞ such that for n ≥ Nr,

inf
θ∈Θ

||θ−θ0,n||≥r

(E(Mn(θ)) − E(Mn(θ0,n))) ≥ cr.
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Condition 7 is a usual one in M-estimation: θ0,n cancels out the expected gradient of Mn and
is asymptotically the minimizer of E(Mn), so to speak.

Remark 1. In Condition 6, it is actually sufficient that the second inequality holds only for θ =
θ0,n. We state Condition 6 as it is only for convenience of writing, and because checking the

inequality uniformly over θ in the bounded Θ̊ usually brings no additional difficulty.

Then, define the covariance matrix of the normalized gradient

C̄n,0 = Cov(
√
n∇Mn(θ0,n)) (5)

and the expected Hessian
H̄n,0 = E(∇2Mn(θ0,n)). (6)

The next condition requires the expected Hessian matrix of Mn at θ0,n to be asymptotically strictly

positive definite. Similarly to Condition 7, this is a usual requirement for θ0,n and θ̂n to be close
at asymptotic rate n−1/2.

Condition 8. There are constants 0 < cθ0,H < ∞ and Nθ0,H ∈ N such that for n ≥ Nθ0,H

λp(H̄n,0) ≥ cθ0,H .

We finally require the covariance matrix of the normalized gradient to be asymptotically strictly
positive definite, so that the Gaussian limit in the central limit theorem is non-degenerate.

Condition 9. There are constants cθ0,∇ > 0 and Nθ0,∇ ∈ N such that for n ≥ Nθ0,∇,

λp(C̄n,0) ≥ cθ0,∇.

2.2 Reduction to the normal approximation of the normalized gradient

We let L1 be the set of 1-Lipschitz continuous functions from R
p to R, that is the set of functions

g such that, for all x1, x2 ∈ R
p,

|g(x1)− g(x2)| ≤ ||x1 − x2||.

Then, for two random vectors U and V in R
p, the L1 Wasserstein distance between the distri-

butions of U and V is
W1(U, V ) = sup

f∈L1

|E(f(U))− E(f(V ))|.

Equivalently,W1(U, V ) is also the well known L1 optimal transport cost, according to the Kantorovitch-
Rubinstein duality formula:

W1(U, V ) = inf
(Ũ,Ṽ )∼Π(U,V )

E(||U − V ||),

where Π(U, V ) is the set of pairs of random vectors for which the first one is distributed as U and
the second one as V .

For a symmetric non-negative definite matrix A, we write A1/2 for its unique symmetric non-
negative definite square root. When A is also invertible, we write A−1/2 = (A1/2)−1 = (A−1)1/2.

The next theorem is the main result of this paper. It can be checked, using standard argu-
ments, that the conditions of Section 2.1 imply that n1/2(θ̂n − θ0,n) is asymptotically normally
distributed, with asymptotic covariance matrix taking the “sandwich” form H̄−1

n,0C̄n,0H̄
−1
n,0. Equiv-

alently, C̄
−1/2
n,0 H̄n,0n

1/2(θ̂n−θ0,n) converges to a standard Gaussian distribution. We are interested
in the Wasserstein distance between the distribution of this latter random vector and the standard
Gaussian one. We show that this distance is bounded by the sum of a term of order n−1/2 (up

to a log factor) and the distance between C̄
−1/2
n,0 n1/2∇Mn(θ0,n) and the standard Gaussian dis-

tribution. The benefit on Theorem 1 is then that C̄
−1/2
n,0 n1/2∇Mn(θ0,n) is usually much easier to

analyze than C̄
−1/2
n,0 H̄n,0n

1/2(θ̂n − θ0,n), since it takes an explicit form and is not defined as a min-
imizer. In Section 2.3, we discuss many existing possibilities to quantify the asymptotic normality

of C̄
−1/2
n,0 n1/2∇Mn(θ0,n).

Theorem 1. Assume that Conditions 1 to 9 hold. Consider θ̂n as in (1). There are constants
0 < CW,1 < ∞, 0 < CW,2 < ∞ and NW ∈ N such that for n ≥ NW , with Z following the standard
Gaussian distribution on R

p,

W1(C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n), Z) ≤ W1

(

C̄
−1/2
n,0

√
n∇Mn(θ0,n), Z

)

+ CW,1
(log n)CW,2

√
n

.
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Remark 2. In Theorem 1, the bound on W1(C̄
−1/2
n,0 H̄n,0n

1/2(θ̂n − θ0,n), Z) directly provides a

similar bound on W1(n
1/2(θ̂n−θ0,n), Zn), where Zn follows the centered Gaussian distribution with

covariance matrix H̄−1
n,0C̄n,0H̄

−1
n,0. Indeed the matrix H̄−1

n,0C̄
1/2
n,0 is bounded and we can apply the

well-known Lemma 1 below. The same remark applies to Theorems 2, 3 and 4, since the matrix

H̄−1
n,0C̄

1/2
n,0 is also bounded in these latter contexts (as is shown in the proofs).

Lemma 1. Let U, V be two random vectors of Rp and h : Rp → R
p be such that for u, v ∈ R

p,
||h(u)− h(v)|| ≤ C||u− v|| with 0 < C < ∞. Then W1(h(U), h(V )) ≤ CW1(U, V ).

2.3 Background on approximate normality for functions of many random

variables

Theorem 1 reduces the problem of proving a quantitative bound on distance to the Gaussian for a
general M-estimator to proving the same statement for an explicit function of the data. We shall
now describe some of the broad ideas for proving such statements, some of which will be used in
the applications described in Section 3. We do not aim at being exhaustive, and other techniques
can also be used in this context.

The abstract setting is to consider a random variable of the form f(X1, ..., Xn) where the Xi

are random variables. The classical central limit theorem consists in taking the Xi to be i.i.d. and
f to be a normalized sum.

When f is a sum, which arises for M-estimators of the form (2) (see Sections 3.1 and 3.2), there
is a vast literature on quantitative central limit theorems, beyond the classical i.i.d. assumptions.
For independent variables, we shall use here a very general result of Bonis [18], but many other
results can be used in such a situation.

If f is not a sum, but is approximately affine, and all variables have some influence on the value,
we still expect approximate normality. This heuristic has been made rigorous by second-order
Poincaré inequalities, which bound distances to the Gaussian when certain functions of the first
and second derivatives are small. They have been introduced in the Gaussian setting by Chatterjee
[22], extended in [41], and analogues for general independent random variables via discrete second-
order derivatives were studied in [21, 26, 28]. Second-order Poincaré inequalities for non-Gaussian,
non-independent random variables do not seem to have been yet addressed in the literature, and
warrant further investigation.

Another method for proving approximate normality in the Gaussian setting when the function
f is a multivariate polynomial is via the quantitative fourth moment theorem of Nourdin and
Peccati [38], which for example applies to U-statistics. When the polynomial is square-free and has
low influences, it is possible to extend this phenomenon to more general i.i.d. random variables
[42]. The approach extends to non-independent functions of Gaussian variables, a result known as
the quantitative Breuer-Major theorem [37, 40]. We refer to the monograph [39] for a thorough
discussion of this approach. We shall use a variant of it in Section 3.3.

For non-independent random variables, there have been successful implementations of variants
of Stein’s method, often in situations where there is some symmetry. Classical techniques include
the exchangeable pairs method and the zero-bias transform, and we refer to [49] for a survey.

3 Applications

3.1 Minimization of averages of independent functions

We now show how Theorem 1 applies to estimators provided by

Mn(θ) =
1

n

n
∑

i=1

ρ(θ,Xi),

as in (2) with independent random vectors X1, . . . , Xn.
We introduce the property of sub-Gaussianity, that holds for a large class of random variables,

including Gaussian random variables, bounded random variables and uniformly log-concave random
variables.

Definition 1. A real-valued random variable X is said to be sub-Gaussian with constant σ2 if for
any t ≥ 0 we have

E (exp(t(X − E[X ]))) ≤ exp(t2σ2/2).
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The next theorem, based on Theorem 1, provides a bound of order n−1/2 (up to a log factor)
in Wasserstein distance for the asymptotic normality of M-estimators based on (2), under uniform
sub-Gaussiannity for ρ and its derivatives with respect to θ.

Theorem 2. Assume that X1, . . . , Xn are independent. Assume moreover that there are constants
0 < σ2 < ∞ and 0 < Esup < ∞ such that for any i ∈ {1, . . . , n}, for any j, k, ℓ ∈ {1, . . . , p}, for
any θ1 ∈ Θ, for any θ2 ∈ Θ̊,

for any Y ∈
{

ρ(θ1, Xi), ∂ρ(θ2, Xi)/∂θj, ∂
2ρ(θ2, Xi)/∂θj∂θk, ∂

3ρ(θ2, Xi)/∂θj∂θk∂θℓ
}

,

Y is sub-Gaussian with constant σ2 and has absolute expectation bounded by Esup. (7)

Assume moreover that Conditions 1, 2 and 7 to 9 hold. Consider Mn, θ̂n, C̄n,0 and H̄n,0 as in (2),
(1), (5) and (6). Finally, assume that one of the two following conditions hold: either

1. There exist fixed constants λ > 0 and C < ∞ such that

E

(

exp

(

λ sup
θ∈Θ̊

||∇ρ(θ,Xk)||
))

≤ C; E

(

exp

(

λ sup
θ∈Θ̊

∣

∣

∣

∣

∂2ρ

∂θi∂θj
(θ,Xk)

∣

∣

∣

∣

))

≤ C

and

E

(

exp

(

λ sup
θ∈Θ̊

∣

∣

∣

∣

∂3ρ

∂θi∂θj∂θℓ
(θ,Xk)

∣

∣

∣

∣

))

≤ C

for all k ∈ {1, . . . , n} and i, j, ℓ ∈ {1, . . . , p}.
Or

2. All the functions ||∇ρ(·, x)||, ∂2ρ(·, x)/∂θi∂θj and ∂3ρ(·, x)/∂θi∂θj∂θℓ have a modulus of con-
tinuity bounded by some function ω, uniformly in x ∈ X and in i, j, ℓ ∈ {1, . . . , p}.

Then there are constants 0 < Cρ,1 < ∞, 0 < Cρ,2 < ∞ and Nρ ∈ N such that, for n ≥ Nρ, with Z
following the standard Gaussian distribution,

W1(C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n), Z) ≤ Cρ,1(logn)

Cρ,2

√
n

.

Remark 3. The sub-Gaussianity assumption (7) of Theorem 2 on the partial derivatives of ρ(θ,Xi)
with respect to θ can be checked based on the sub-Gaussianity of X1, . . . , Xn only and on regularity
properties of ρ.

Indeed, it is known that if a random vector V with values in R
k has components that are sub-

Gaussian with constant σ2, then for any c-Lipschitz function f : Rk → R, the variable f(V ) is
sub-Gaussian with constant at most of order kc2σ2. The dimensional prefactor can be eliminated
for example when the components are independent and satisfy Talagrand’s L2 transport-entropy
inequality [32]. Consider then the case where X1, . . . , Xn are uniformly sub-Gaussian and for any
j, k, ℓ ∈ {1, . . . , p}, for any f ∈

{

ρ , ∂ρ/∂θj, ∂
2ρ/∂θj∂θk, ∂

3ρ/∂θj∂θk∂θℓ
}

, f is Lipschitz in its
second variable, uniformly in θ, and |f(θ, xi,0)| is bounded, also uniformly in θ, for some reference
values xi,0 of Xi, i = 1, . . . , n. In this case then the uniform sub-Gaussianity assumption (7) of
Theorem 2 holds.

Note also that these latter assumptions are not minimal. For example, we could relax the
Lipschitz assumption on the second derivatives into some quadratic growth. The assumptions on the
third derivatives are much stronger than what is necessary to ensure (4) to streamline applications:
one can check essentially the same conditions on all derivatives up to order three, rather than single
out a weaker condition for third derivatives.

Remark 4. The two possible conditions 1 and 2 in Theorem 2 are used to ensure that Condition
4 holds. There are other possible ways of verifying it, such as classical chaining techniques used to
bound the suprema of stochastic processes when stochastic forms of continuity (in θ) hold, see for
example [52, Chapter 8].

Proof of Theorem 2. First we must check that the conditions required by Theorem 1 are satisfied.
By assumptions, this means checking conditions 3 to 6.

From the sub-Gaussianity and bounded expectation assumption (7), we uniformly control mo-
ments of all order, and the first two parts of Condition 5 hold. Condition 3 is an immediate
consequence of the Gaussian concentration assumption and Chernoff’s concentration bound. Con-
dition 6 can be established using the fact that we wish to control the variances of averages of
independent variables, and the uniform moment bounds.
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Finally, we need to check that Condition 4 holds, assuming either 1 or 2 holds. If the first
one holds, Condition 4 is just a consequence of Markov’s inequality. If the second one holds, by
continuity, Condition 1 and fixing some λ > 0, and some ǫ > 0 small enough, we have for any
k ∈ {1, . . . , n},

E

(

exp

(

λ sup
θ∈Θ̊

||∇ρ(θ,Xk)||
))

≤ E

(

exp

(

λ sup
θi,i≤N

||∇ρ(θi, Xk)||+ λω(ǫ)

))

≤ eλω(ǫ)
∑

i≤N

E(exp(λ||∇ρ(θi, Xk)||))

≤ C′,

for some constant 0 < C′ < ∞, where the final bound uses the Gaussian concentration of
||∇ρ(θ,Xk)|| for fixed θ and the uniform bound on its expectation. The same reasoning applies for
the second derivatives, and therefore Condition 4 holds with the same argument as when 1 holds.
One can also check (4) with the same reasoning.

Since Theorem 1 applies, we are reduced to understanding the asymptotic behavior of

√
n∇Mn(θ0,n) =

1√
n

n
∑

i=1

∇ρ(θ0,n, Xi).

Hence we are in the setting of a quantitative central limit theorem for sums of independent random
vectors. From the sub-Gaussianity assumption (7), we see that the fourth moments of ∇ρ(θ0,n, Xi),
i = 1, . . . , n, are uniformly bounded. Moreover, by Condition 9, this is not modified by multiplying

these vectors by C̄
−1/2
n,0 . Hence we are considering a sum of independent random vectors with

covariances summing to the identity matrix Ip, and we can apply the following statement to conclude
the proof, which is a particular case of a result of Bonis [18, Theorem 11].

Proposition 1. Let (Zi)i=1,...,n be a sequence of independent random vectors taking values in R
p,

each centered, and such that Cov(
∑n

i=1 Zi) = nIp. Assume moreover that for any i ∈ {1, . . . , n},
E[||Zi||4] ≤ β, for a given 0 < β < ∞. Then

W1

(

1√
n

n
∑

i=1

Zi, Z

)

≤ C0(β
3/2 + pβ)√

n

where Z is a standard Gaussian vector on R
p, and the constant C0 is a numerical constant that

does not depend on p or on the distribution of the Zi’s.

3.2 Parameter estimation in logistic regression

We shall now present the simple example of logistic regression, where Theorem 2 is applied to a
maximum likelihood estimator. We consider a deterministic sequence (xi)i∈N of vectors in R

p. To
match the assumptions of Theorem 2, we assume this sequence to be bounded.

Condition 10. There is a constant 0 < Cx,1 < ∞ such that for i ∈ N,

||xi|| ≤ Cx,1.

As previously, we let Θ be a fixed compact subset of Rp. We let θ0 ∈ Θ̊ be fixed. We consider
a sequence (yi)i∈N of independent random variables with, for i ∈ N, yi ∈ {0, 1} and

P (yi = 1) =
ex

⊤
i θ0

1 + ex
⊤
i θ0

. (8)

We let, for θ ∈ Θ,

pi,θ =
ex

⊤
i θ

1 + ex
⊤
i θ

.

Hence, we are in the classical well-specified case where the parameter θ0 ∈ Θ characterizes the
data generating process, or distribution, of y1, . . . , yn. The likelihood function of yi is, for θ ∈ Θ,

L(θ, yi) = pyi

i,θ(1− pi,θ)
1−yi .
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Minus the logarithm of the likelihood of yi is, for θ ∈ Θ,

ρ(θ, xi, yi) = −yi log(pi,θ)− (1 − yi) log(1 − pi,θ)

= −yix
⊤
i θ + log

(

1 + ex
⊤
i θ
)

.

Hence minus the normalized log likelihood function is, for θ ∈ Θ,

Mn(θ) =
1

n

n
∑

i=1

(

−yix
⊤
i θ + log

(

1 + ex
⊤
i θ
))

. (9)

Note that we do not have an explicit expression for the minimizer of Mn. We have, for θ ∈ Θ̊,

∇Mn(θ) =
1

n

n
∑

i=1

(

−yixi +
ex

⊤
i θ

1 + ex
⊤
i θ

xi

)

=
1

n

n
∑

i=1

(−yixi + pi,θxi) . (10)

We also have, for θ ∈ Θ̊,

∇2Mn(θ) =
1

n

n
∑

i=1

ex
⊤
i θ(1 + ex

⊤
i θ)− ex

⊤
i θex

⊤
i θ

(1 + ex
⊤
i θ)2

xix
⊤
i =

1

n

n
∑

i=1

ex
⊤
i θ

(1 + ex
⊤
i θ)2

xix
⊤
i . (11)

Hence we see that Mn(θ) is convex with respect to θ. Next, we assume that the empirical second
moment matrix of the xi’s is asymptotically strictly positive definite. This type of condition is com-
mon with logistic regression [15, 29, 35] and enables to have asymptotic identifiability (Condition
8).

Condition 11. There are constants 0 < cx,2 < ∞ and Nx,2 ∈ N such that, for n ≥ Nx,2,

λp

(

1

n

n
∑

i=1

xix
⊤
i

)

≥ cx,2.

We can now state theWasserstein bound on the asymptotic normality of the maximum likelihood
estimator, in logistic regression. To our knowledge, this is the first established rate of convergence
of asymptotic normality in logistic regression.

Theorem 3. Assume that Θ satisfies Condition 1. Assume that Conditions 10 and 11 hold.
Consider Mn in (9), θ̂n as in (1), θ0 as defined in (8), C̄n,0 as in (5) and H̄n,0 as in (6). Then,
there are constants 0 < Clog,1 < ∞, 0 < Clog,2 < ∞ and Nlog ∈ N such that for n ≥ Nlog, with Z
following the standard Gaussian distribution on R

p,

W1

(

C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0), Z

)

≤ Clog,1
(log n)Clog,2

√
n

.

3.3 Covariance parameter estimation for Gaussian processes by cross

validation

Our last example stems from the field of spatial statistics [9, 10, 14, 24, 25, 33, 53, 55, 56]. The
goal is to illustrate the benefit of Theorem 1 to a situation where the observations are dependent
and where Mn does not correspond to a likelihood. We stress that θ̂n has no explicit expression.

We consider a sequence (xi)i∈N of deterministic vectors in R
d, that we call observation points.

Then, for n ∈ N, the observed data consist in a vector y(n) of size n×1 which component i is ξ(xi),
where ξ : Rd → R is a centered Gaussian process.

We are interested in the parametric estimation of the correlation function of ξ, based on a
parametric set of stationary correlation functions {kθ; θ ∈ Θ}, where for θ ∈ Θ, kθ : Rd → R and
(u, v) ∈ R

2d 7→ kθ(u− v) is a correlation function. For an introduction to usual parametric sets of
stationary correlation functions in spatial statistics, we refer for instance to [11, 24, 25, 31, 53].

As an estimator for θ, we consider the minimization of the average of square leave-one-out
errors, letting, for θ ∈ Θ,

Mn(θ) =
1

n

n
∑

i=1

(

y
(n)
i − Eθ(y

(n)
i |y(n)−i )

)2

.
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Above, y
(n)
−i is obtained from y(n) by deleting the component i and Eθ(·|·) means that the conditional

expectation is computed as if the Gaussian process ξ had correlation function (u, v) ∈ R
2d 7→

kθ(u − v). Now, for θ ∈ Θ, let Rn,θ be the n× n matrix with coefficient i, j equal to kθ(xi − xj),
that is, the correlation matrix of y(n) under correlation function given by kθ. Then, from for
instance [9, 27, 56] (to which we refer for more background and discussions on cross validation for
Gaussian processes), we have

Mn(θ) =
1

n
y(n)⊤R−1

n,θdiag(R
−1
n,θ)

−2R−1
n,θy

(n), (12)

where diag(M) is obtained by setting the off-diagonal elements of a square matrix M to zero.
For n ∈ N, we let θ0,n = θ0, where θ0 is a fixed element of Θ̊ such that ξ has correlation

function kθ0 , which also implies that y(n) has correlation matrix Rn,θ0 . This corresponds to a well-
specified parametric set of correlation functions. The next condition means that we consider the
increasing-domain asymptotic framework, where the sequence of observation points is unbounded,
with a minimal distance between any two distinct points [10, 25, 36].

Condition 12. There is a constant cx > 0 such that for i, j ∈ N, i 6= j,

||xi − xj || ≥ cx.

The next condition is a lower bound on the smallest eigenvalues of the correlation matrices
from the parametric model. Given the increasing-domain asymptotic framework (Condition 12),
this lower bound indeed holds for a large class of families of stationary correlation functions [10, 13].

Condition 13. There is a constant 0 < cR,1 < ∞ such that

inf
n∈N

inf
θ∈Θ

λn(Rn,θ) ≥ cR,1.

Next, we assume a third-order smoothness with respect to θ as well as a decay of the correlation
at large distance. As before, many families of stationary correlation functions do satisfy this.

Condition 14. For any x ∈ R
d, kθ(x) is three times continuously differentiable with respect to θ

on Θ̊. There exist constants 0 < CR,2 < ∞ and 0 < cR,2 < ∞ such that for θ ∈ Θ, for x ∈ R
d,

|kθ(x)| ≤
CR,2

1 + ||x||d+cR,2
, n ∈ N (13)

and for θ ∈ Θ̊, for x ∈ R
d,

max
k∈{1,2,3}

i1,...,ik∈{1,...,p}

∣

∣

∣

∣

∂k

∂θi1 , . . . , ∂θik
kθ(x)

∣

∣

∣

∣

≤ CR,2

1 + ||x||d+cR,2
, n ∈ N. (14)

The next condition is interpreted as a global identifiability of the correlation parameter. This
condition is already made in the increasing-domain asymptotic literature on cross validation and
is not restrictive on the sequence (xi)i∈N and the set {kθ} [10, 12].

Condition 15. For all X > 0, there are constants 0 < cX < ∞ and NX ∈ N such that for n ≥ NX ,

inf
θ∈Θ

||θ−θ0||≥X

1

n

n
∑

i,j=1

(kθ(xi − xj)− kθ0(xi − xj))
2 ≥ cX .

Finally, the last condition is interpreted as a local identifiability of the correlation parameter
around θ0. Its discussion is similar to the previous one.

Condition 16. For all α1, . . . , αp ∈ R, with α2
1 + · · · + α2

p > 0, there are constants 0 < cα < ∞
and Nα ∈ N such that for n ≥ Nα,

1

n

n
∑

i,j=1

(

p
∑

ℓ=1

αℓ
∂kθ0(xi − xj)

∂θℓ

)2

≥ cα.

Under the above conditions, it is known from [10, 12] that n1/2(θ̂n−θ0) converges in distribution
to a centered Gaussian vector with covariance matrix H̄−1

n,0C̄n,0H̄
−1
n,0, with the notation of (5) and

(6). Based on Theorem 1, we can show that the rate of this convergence is n−1/2 (up to a log factor)
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in Wasserstein distance. To the best of our knowledge, this is the first result of this kind for cross
validation estimation for spatial Gaussian processes. We remark that Theorem 1 also enables to
address maximum likelihood estimation of covariance parameters (see for instance [10, 25]), but we
focus on cross validation for the sake of brevity and to highlight the benefits of Theorem 1 beyond
maximum likelihood.

Theorem 4. Assume that Θ satisfies Condition 1. Assume that Conditions 12 to 16 hold. Consider
Mn in (12). Consider then θ̂n as in (1), θ0 as defined after (12), C̄n,0 as in (5) and H̄n,0 as in (6).
Then, there are constants 0 < CCV,1 < ∞, 0 < CCV,2 < ∞ and NCV ∈ N such that for n ≥ NCV,
with Z following the standard Gaussian distribution on R

p,

W1

(

C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0), Z

)

≤ CCV,1
(logn)CCV,2

√
n

.

A Proofs for Section 2

Lemma 2. Assume that Conditions 1 to 5 hold. Then there are constants 0 < cM,1 < ∞, 0 <
c′M,1 < ∞, 0 < CM,1 < ∞ and 0 < C′

M,1 < ∞ such that, for 0 < t ≤ c′M,1 and K ≥ C′
M,1,

P

(

sup
θ∈Θ

|Mn(θ)− E(Mn(θ))| ≥ t

)

≤ CM,1
Kp

tp
exp(−ncM,1t

2) + CM,1n exp(−cM,1K).

Proof of Lemma 2. From Condition 1, and with c′M and C′
d,1 from Conditions 3 and 4, there exists

a constant CΘ,2 such that for 0 < r ≤ c′M/2C′
d,1, there exists N ≤ CΘ,2r

−p and Sr = {θ1, . . . , θN} ⊆
Θ such that for each θ ∈ Θ, there exists i ∈ {1, . . . , N} such that (θ, θi) ⊆ Θ̊ and ||θ− θi|| ≤ r. We
then have, for each K ≥ C′

d,1, 0 < t ≤ c′M , using the mean value theorem,

P

(

sup
θ∈Θ

|Mn(θ) − E(Mn(θ))| ≥ t

)

≤ P

(

max
θ∈St/2K

|Mn(θ) − E(Mn(θ))| ≥
t

2

)

+ P

(

sup
θ∈Θ̊

||∇Mn(θ)|| ≥
K

2

)

+ P

(

sup
θ∈Θ̊

||∇E(Mn(θ))|| ≥
K

2

)

.

Hence, because ∇E(Mn(θ)) = E(∇Mn(θ)) is bounded from Conditions 2 and 5, and using a union
bound, there is a constant C′

d,1 ≤ C1 < ∞ such that when K ≥ C1, 0 < t ≤ c′M , we obtain

P

(

sup
θ∈Θ

|Mn(θ)− E(Mn(θ))| ≥ t

)

≤ CΘ,22
pKp

tp
max
θ∈Θ

P

(

|Mn(θ)− E(Mn(θ))| ≥
t

2

)

(15)

+ P

(

sup
θ∈Θ

||∇Mn(θ)|| ≥
K

2

)

.

Hence, using Conditions 3 and 4, we obtain, for 0 < t ≤ c′M and K ≥ C1,

P

(

sup
θ∈Θ

|Mn(θ)− E(Mn(θ))| ≥ t

)

≤ CΘ,22
pK

p

tp
CM exp(−ncM t2/4) + Cd,1n exp(−cd,1K/2).

This concludes the proof.

Lemma 3. Assume that Conditions 1 to 5 hold. Then there are constants 0 < c∇,1 < ∞, 0 <
c′∇,1 < ∞, 0 < C∇,1 < ∞ and 0 < C′

∇,1 < ∞ such that, for 0 < t ≤ c′∇,1 and K ≥ C′
∇,1,

P

(

sup
θ∈Θ

||∇Mn(θ)− E(∇Mn(θ))|| ≥ t

)

≤ C∇,1
Kp

tp
exp(−nc∇,1t

2) + C∇,1n exp(−c∇,1K).

Proof of Lemma 3. The proof is identical to that of Lemma 2.

Lemma 4. Assume that Conditions 1 to 5 and 7 hold. For any r > 0, there are constants
0 < cθ̂,r < ∞ and 0 < Cθ̂,r < ∞ such that

P(||θ̂n − θ0,n|| ≥ r) ≤ Cθ̂,rn exp(−cθ̂,rn
1/4).
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Proof of Lemma 4. The event ||θ̂n − θ0,n|| ≥ r implies

inf
θ∈Θ

||θ−θ0,n||≥r

(Mn(θ) −Mn(θ0,n)) ≤ 0.

From Condition 7 and the triangle inequality, this implies, with a constant 0 < c1 < ∞, for n large
enough,

sup
θ∈Θ

|Mn(θ)− E(Mn(θ))| ≥ c1.

Hence

P(||θ̂n − θ0,n|| ≥ r) ≤ P

(

sup
θ∈Θ

|Mn(θ)− E(Mn(θ))| ≥ c1

)

.

Using now Lemma 2 with K = n1/4 and n large enough, we obtain, for some constants 0 < c2 < ∞,
0 < C2 < ∞, 0 < c3 < ∞ and 0 < C3 < ∞, for n large enough,

P(||θ̂n − θ0,n|| ≥ r) ≤ C2n
p/4 exp(−nc2) + C2n exp(−c2n

1/4) ≤ C3n exp(−c3n
1/4).

Lemma 5. Assume that Conditions 2, 5 and 8 hold. There exist constants 0 < c∇2,1 < ∞,
0 < c′∇2,1 < ∞ and N∇2,1 ∈ N such that for n ≥ N∇2,1

inf
θ∈Θ̊

||θ−θ0,n||≤c′∇2,1

λp(E(∇2Mn(θ))) ≥ c∇2,1.

Proof of Lemma 5. Condition 5, together with the fact that we can exchange derivatives and ex-
pectation for Mn (Condition 2) imply that the derivatives of E(∇2Mn) are bounded uniformly in
θ ∈ Θ̊. Hence, from Condition 8, we can conclude the proof.

Lemma 6. Assume that Conditions 2, 5, 7 and 8 hold. There are constants 0 < c∇,2 < ∞,
0 < c′∇,2 < ∞ and N∇,2 ∈ N such that for n ≥ N∇,2, for ||θ − θ0,n|| ≤ c′∇,2,

||E(∇Mn(θ))|| ≥ c∇,2||θ − θ0,n||.

Proof of Lemma 6. Using Lemma 5 and E(∇2Mn(θ)) = ∇2
E(Mn(θ)) (Condition 2), we have, for

||θ − θ0,n|| ≤ c′∇2,1 and for n large enough,

||∇E(Mn(θ))−∇E(Mn(θ0,n))|| ||θ−θ0,n|| ≥ (∇E(Mn(θ))−∇E(Mn(θ0,n)))
⊤
(θ−θ0,n) ≥ c∇2,1||θ−θ0,n||2.

From Conditions 2 and 7,
∇E(Mn(θ0,n)) = 0.

Hence we have, for ||θ − θ0,n|| ≤ c′∇2,1 and for n large enough,

||∇E(Mn(θ))|| ≥ c∇2,1||θ − θ0,n||.

We conclude from Condition 2.

Lemma 7. Assume that Conditions 1 to 5, 7 and 8 hold. Recall cθ0 from Condition 7. For any
constant γ1 > 0, there are constants 0 < c∇,θ̂,1 < ∞, 0 < c′∇,θ̂,1

≤ cθ0 , 0 < C∇,θ̂,1 < ∞ and

N∇,θ̂,1 ∈ N such that for n ≥ N∇,θ̂,1 and t ≤ c′∇,θ̂,1
,

P

(

∇Mn(θ̂n) = 0, t ≤ ||θ̂n − θ0,n|| ≤ cθ0

)

≤C∇,θ̂,1

log(n)pγ1

tp
exp(−nc∇,θ̂,1t

2)

+ C∇,θ̂,1n exp(−c∇,θ̂,1(log n)
γ1) + C∇,θ̂,1n exp(−c∇,θ̂,1n

1/4).

Proof of Lemma 7. Recall c′∇,2 from Lemma 6. For 0 < t < c′∇,2, we have, using Lemmas 4 and 6,

P

(

∇Mn(θ̂n) = 0, t ≤ ||θ̂n − θ0,n|| ≤ cθ0

)

≤ P

(

inf
θ∈B(θ0,n,c′∇,2)\B(θ0,n,t)

||∇Mn(θ)|| = 0

)

+ P

(

||θ̂n − θ0,n|| ≥ c′∇,2

)

≤ P

(

sup
θ∈Θ̊

||∇Mn(θ)− E(∇Mn(θ))|| ≥ c∇,2t

)

+ Cθ̂,c′∇,2
n exp(−cθ̂,c′∇,2

n1/4). (16)
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For any constant 0 < γ1 < ∞, we can now use Lemma 3 with K = (logn)γ1 to obtain, for
0 < t < min(c′∇,2, c

′
∇,1), for n large enough,

P

(

∇Mn(θ̂n) = 0, t ≤ ||θ̂n − θ0,n|| ≤ cθ0

)

≤ C∇,1
log(n)pγ1

cp∇,2t
p

exp(−nc∇,1c
2
∇,2t

2) (17)

+ C∇,1n exp(−c∇,1(log n)
γ1) + Cθ̂,c′∇,2

n exp(−cθ̂,c′∇,2
n1/4). (18)

This concludes the proof.

Proof of Theorem 1. From the triangle inequality, we have

W1

(

C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n), Z

)

≤W1

(

C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n),−C̄

−1/2
n,0

√
n∇Mn(θ0,n)

)

+W1

(

−C̄
−1/2
n,0

√
n∇Mn(θ0,n), Z

)

=:W1 +W2. (19)

Observe first that

W2 = W1

(

−C̄
−1/2
n,0

√
n∇Mn(θ0,n), Z

)

= W1

(

−C̄
−1/2
n,0

√
n∇Mn(θ0,n),−Z

)

= W1

(

C̄
−1/2
n,0

√
n∇Mn(θ0,n), Z

)

.

(20)

Hence, it is sufficient to bound W1 = W1

(

C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n),−C̄

−1/2
n,0

√
n∇Mn(θ0,n)

)

, which

we now do. We have

W1 = sup
f∈L1

∣

∣

∣
E

(

f
(

C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n)

))

− E

(

f
(

−C̄
−1/2
n,0

√
n∇Mn(θ0,n)

))∣

∣

∣

≤ sup
f∈L1

E

(
∣

∣

∣
f
(

C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n)

)

− f
(

−C̄
−1/2
n,0

√
n∇Mn(θ0,n)

)
∣

∣

∣

)

≤ E

(∣

∣

∣

∣

∣

∣
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n) + C̄

−1/2
n,0

√
n∇Mn(θ0,n)

∣

∣

∣

∣

∣

∣

)

. (21)

With cθ0 as in Condition 7, observe that if θ̂n ∈ B(θ0,n, cθ,0) then ∇Mn(θ̂n) = 0. Hence, applying
Hölder inequality, we obtain,

W1 ≤E

(

∣

∣

∣

∣

∣

∣
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n) + C̄

−1/2
n,0

√
n∇Mn(θ0,n)

∣

∣

∣

∣

∣

∣

2
)1/2

P

(

θ̂n 6∈ B(θ0,n, cθ,0)
)1/2

+ E

(

1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}

∣

∣

∣

∣

∣

∣
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n) + C̄

−1/2
n,0

√
n∇Mn(θ0,n)

∣

∣

∣

∣

∣

∣

)

=E(W1,1)
1/2

P(A1,1)
1/2 + E(W1,2), (22)

where we define

W1,1 =
∣

∣

∣

∣

∣

∣
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n) + C̄

−1/2
n,0

√
n∇Mn(θ0,n)

∣

∣

∣

∣

∣

∣

2

, A1,1 =
{

θ̂n 6∈ B(θ0,n, cθ,0)
}

and

W1,2 = 1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}

∣

∣

∣

∣

∣

∣
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n) + C̄

−1/2
n,0

√
n∇Mn(θ0,n)

∣

∣

∣

∣

∣

∣
.

Let us first bound E(W1,1)
1/2

P(A1,1)
1/2. In W1,1, C̄

−1/2
n,0 is bounded from Condition 9 and H̄n,0

is bounded from Condition 5. Furthermore,
√
n∇Mn(θ0,n) has mean zero from Condition 7 and

has bounded covariance matrix from Condition 6. Hence, since Θ is compact, with constants
0 < C1 < ∞ and N1 ∈ N, we have for n ≥ N1,

E(W1,1)
1/2 ≤ C1

√
n.

Then Lemma 4 directly provides, for some constant 0 < c2 < ∞, 0 < C2 < ∞ and N2 ∈ N, for
n ≥ N2,

P(A1,1)
1/2 ≤ C2

√
n exp(−c2n

1/4).

Hence, eventually, for some constants 0 < c3 < ∞, 0 < C3 < ∞ and N3 ∈ N, for n ≥ N3,

E(W1,1)
1/2

P(A1,1)
1/2 ≤ C3n exp(−c3n

1/4). (23)
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Let us now bound E(W1,2). When ∇Mn(θ̂n) = 0 and θ̂n ∈ B(θ0,n, cθ,0), we have, since

B(θ0,n, cθ,0) ⊂ Θ̊,

0 = ∇Mn(θ0,n) +∇2Mn(θ̃1, . . . , θ̃p)(θ̂n − θ0,n),

where θ̃1, . . . , θ̃p are on the segment between θ̂n and θ0,n and where ∇2Mn(θ̃1, . . . , θ̃p) is p× p with

line k equal to the line k of ∇2Mn(θ̃k) for k ∈ {1, . . . , p}. This yields, when ∇Mn(θ̂n) = 0 and

θ̂n ∈ B(θ0,n, cθ,0),

H̄n,0

√
n(θ̂n − θ0,n) +

√
n∇Mn(θ0,n) =

√
n
(

E(∇2Mn(θ0,n))−∇2Mn(θ̃1, . . . , θ̃p)
)

(θ̂n − θ0,n). (24)

Using Condition 9, we obtain, when ∇Mn(θ̂n) = 0 and θ̂n ∈ B(θ0,n, cθ,0), for n ≥ Nθ0,∇,

W1,2

≤ 1
√
cθ0,∇

√
n
∣

∣

∣

∣

∣

∣

(

E(∇2Mn(θ0,n))−∇2Mn(θ̃1, . . . , θ̃p)
)

(θ̂n − θ0,n)
∣

∣

∣

∣

∣

∣

≤ 1
√
cθ0,∇

√
nρ1

(

E(∇2Mn(θ0,n))−∇2Mn(θ̃1, . . . , θ̃p)
)

||θ̂n − θ0,n||

≤ C4

√
n

p
max
j,k=1

∣

∣E(∇2Mn(θ0,n))j,k −∇2Mn(θ0,n)j,k
∣

∣ ||θ̂n − θ0,n||

+ C4

√
n

p
max

j,k,ℓ=1
sup
θ∈Θ̊

∣

∣

∣

∣

∂3Mn(θ)

∂θj∂θk∂θℓ

∣

∣

∣

∣

||θ̂n − θ0,n||2,

where, in the last inequality, 0 < C4 < ∞ is a constant and we have used the mean value theorem.
Using Hölder inequality together with Conditions 5 and 6, we obtain, for some constants 0 < C5 <
∞, 0 < C6 < ∞ and N5 ∈ N, for n ≥ N5,

E(W1,2) ≤C5

√
n

p
max
j,k,=1

Var(∇2Mn(θ0,n)j,k)
1/2

E

(

1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}||θ̂n − θ0,n||2
)1/2

+ C5

√
n

p
max

j,k,ℓ=1
E

(

sup
θ∈Θ̊

∣

∣

∣

∣

∂3Mn(θ)

∂θj∂θk∂θℓ

∣

∣

∣

∣

2
)1/2

E

(

1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}||θ̂n − θ0,n||4
)1/2

≤C6E

(

1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}||θ̂n − θ0,n||2
)1/2

+ C6

√
nE
(

1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}||θ̂n − θ0,n||4
)1/2

.

We now apply Lemma 7 with a constant γ1 > 0 to be chosen later. We obtain, with some
constants 0 < c7 < ∞, 0 < c′7 < ∞, 0 < C7 < ∞ and N7 ∈ N, for n ≥ N7 and 0 < t ≤ c′7,

P

(

∇Mn(θ̂n) = 0, ||θ̂n − θ0,n|| ≥ t, θ̂n ∈ B(θ0,n, cθ,0)
)

≤ C7
log(n)pγ1

tp
exp(−nc7t

2) (25)

+ C7n exp(−c7(logn)
γ1) + C7n exp(−c7n

1/4).

Hence, using E(X) ≤ A + XmaxP(X ≥ A) for a non-negative random variable X bounded by
Xmax > 0 and for A > 0, we obtain, for a constant 0 < γ2 < ∞ to be chosen later, for a constant
0 < C8 < ∞, for n ≥ N7,

E(W1,2) ≤
√

C8
log(n)2γ2

n
+ C8P

(

∇Mn(θ̂n) = 0, ||θ̂n − θ0,n|| ≥
log(n)γ2

√
n

, θ̂n ∈ B(θ0,n, cθ,0)

)

+

√

C8n
log(n)4γ2

n2
+ C8nP

(

∇Mn(θ̂n) = 0, ||θ̂n − θ0,n|| ≥
log(n)γ2

√
n

, θ̂n ∈ B(θ0,n, cθ,0)

)

.

Hence from (25), for a constant N8 ∈ N that may depend on γ1 and γ2, for n ≥ N8,

E(W1,2) ≤
√

C8

√

(log n)2γ2

n
+ C7 log(n)pγ1

np/2 exp(−c7(log n)2γ2)

log(n)pγ2

+ C7n exp(−c7(log n)γ1) + C7n exp(−c7n1/4)

+
√

C8
√

(logn)4γ2

n
+ C7 log(n)pγ1

np/2+1 exp(−c7(logn)2γ2)

log(n)pγ2

+ C7n2 exp(−c7(logn)γ1) + C7n2 exp(−c7n1/4).

(26)

14



Hence from (19), (20), (22), (23) and (26), choosing γ1 and γ2 as large enough constants, we
obtain, for constants 0 < γ3 < ∞, 0 < C9 < ∞, N9 ∈ N, for n ≥ N9,

W1

(

C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n), Z

)

≤ W1

(

C̄
−1/2
n,0

√
n∇Mn(θ0,n), Z

)

+ C9
(log n)γ3

√
n

.

This concludes the proof.

B Proofs for Section 3.2

Proof of Theorem 3. As stated previously, the function Mn is given by

Mn(θ) =
1

n

n
∑

i=1

(

−yix
T
i θ + log(1 + exp(xT

i θ))
)

where the yi are independent random variables with values in {0, 1}. Defining Xi = (xi, yi), we are
in the framework of Theorem 2, so let us check that the required conditions indeed hold.

It can be checked that there is a constant 0 < C1 < ∞ such that for any Y as in (7), Y is
almost surely bounded by C1 (observe that Y only takes two values). Hence the assumption (7) of
sub-Gaussianity and bounded expectation holds.

Condition 1 is already assumed to hold. Condition 2 can be shown simply. Let us show that
Condition 7 holds. Indeed, ∇E(Mn(θ0)) = 0 can be seen directly from (10). Furthermore, from
(11), we have, for θ ∈ Θ̊,

∇2
E(Mn(θ)) = ∇2Mn(θ) =

1

n

n
∑

i=1

ex
⊤
i θ

(1 + ex
⊤
i θ)2

xix
⊤
i .

Hence, from Conditions 10 and 11, there are constants N2 ∈ N and 0 < c2 < ∞ such that for
n ≥ N2 and θ ∈ Θ̊,

λp

(

∇2Mn(θ)
)

≥ c2. (27)

Hence, since ∇E(Mn(θ0)) = 0, by strong convexity, Condition 7 holds.
Condition 8 is a consequence of (27). Condition 9 holds because Cov(

√
n∇Mn(θ0)) = ∇2Mn(θ0)

(this holds because we have a well-specified likelihood model and can also be checked directly).
Finally, since all the quantities involved are uniformly bounded, option 1 for checking Condition

4 holds. The second option could also be used instead, since the functions involved are all uniformly
globally Lipschitz.

Hence Theorem 2 can be applied, which concludes the proof.

C Proofs for Section 3.3

Lemma 8. Assume that Conditions 12 and 14 hold. There is a constant CR such that for n ∈ N,

sup
θ∈Θ

ρ1 (Rn,θ) ≤ CR.

Proof of Lemma 8. The lemma follows from (13) and from Lemma 4 in [30].

Lemma 9. Assume that Conditions 12 to 14 hold. Then, we have, for j ∈ {1, . . . , p}, θ ∈ Θ̊ and
n ∈ N,

(∇Mn(θ))j =
1

n
y(n)⊤Bn,θ,jy

(n) (28)

with

Bn,θ,j = 2R−1
n,θdiag(R

−1
n,θ)

−2

(

diag

(

R−1
n,θ

∂Rn,θ

∂θj
R−1

n,θ

)

diag(R−1
n,θ)

−1 −R−1
n,θ

∂Rn,θ

∂θj

)

R−1
n,θ. (29)

For a constant and 0 < CB < ∞, we have, for n ∈ N,

max
j=1,...,p

sup
θ∈Θ̊

ρ1 (Bn,θ,j) ≤ CB . (30)
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Proof of Lemma 9. The equation (28) is proved in [10, 12]. The equation (30) follows from Condi-
tion 13, Lemma 8 and (14) and from the arguments in the proof of Proposition D.7 in [10].

Lemma 10. Assume that Conditions 12 to 14 hold. Then, we have, for j, k ∈ {1, . . . , p}, for
θ ∈ Θ̊, for n ∈ N,

(∇2Mn(θ))j,k =
1

n
y(n)⊤Cn,θ,j,ky

(n), (31)

where the matrices Cn,θ,j,k satisfy, for a constant 0 < CC < ∞, for n ∈ N,

max
j,k=1,...,p

sup
θ∈Θ̊

ρ1 (Cn,θ,j,k) ≤ CC . (32)

Proof of Lemma 10. Equation (31) is shown in [10], where the matrices Cn,θ,j,k are obtained from
the matrices Rn,θ, R

−1
n,θ, ∂Rn,θ/∂θj, ∂Rn,θ/∂θk and ∂2Rn,θ/∂θk∂θj = ∂2Rn,θ/∂θj∂θk, from sums

and products and from the diag operator. The precise expressions of the matrices Cn,θ,j,k can be
found in [10]. Equation (32) is then shown similarly to (30).

Lemma 11. Assume that Conditions 12 to 14 hold. Then, for j, k, ℓ ∈ {1, . . . , p}, for θ ∈ Θ̊, for
n ∈ N, we have

∂3Mn(θ)

∂θj∂θk∂θℓ
=

1

n
y(n)⊤Dn,θ,j,k,ℓy

(n), (33)

where the matrices Dn,θ,j,k,ℓ satisfy, for some constant 0 < CD < ∞, for n ∈ N,

max
j,k,ℓ=1,...,p

sup
θ∈Θ̊

ρ1 (Dn,θ,j,k,ℓ) ≤ CD. (34)

Proof of Lemma 11. The proof is the same as for Lemma 10.

Lemma 12. Assume that Conditions 12 to 14 hold. Then, there is a constant 0 < C∂,y < ∞ such
that for n ∈ N,

sup
θ∈Θ̊

||∇Mn(θ)|| ≤ C∂,y
1

n
||y(n)||2, (35)

sup
θ∈Θ̊

ρ1(∇2Mn(θ)) ≤ C∂,y
1

n
||y(n)||2 (36)

and

sup
θ∈Θ̊

max
j,k,ℓ=1,...,p

∣

∣

∣

∣

∂3Mn(θ)

∂θj∂θk∂θℓ

∣

∣

∣

∣

≤ C∂,y
1

n
||y(n)||2. (37)

Proof of Lemma 12. Equations (35), (36) and (37) follow from Lemmas 9, 10 and 11.

Lemma 13. Assume that Conditions 12, 13, 14 and 16 hold. Then, Condition 8 holds with Mn

as in (12) and θ0,n = θ0 as after (12).

Proof of Lemma 13. Let α, β ∈ R
p with α2

1 + · · ·+α2
p = 1 and β2

1 + · · ·+ β2
p = 1. For a matrix M ,

let ||M ||F be its Frobenius norm. We have

1√
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p
∑

ℓ=1

αℓ
∂Rn,θ0

∂θℓ
−

p
∑

ℓ=1

βℓ
∂Rn,θ0

∂θℓ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

F

≤ ||α− β|| 1√
n

p
∑

ℓ=1

∣

∣

∣

∣

∣

∣

∣

∣

∂Rn,θ0

∂θℓ

∣

∣

∣

∣

∣

∣

∣

∣

F

≤ C1||α− β||, (38)

with a constant 0 < C1 < ∞, from (14) and Lemma 4 in [30]. Hence, Condition 16 implies that

lim inf
n→∞

inf
α1,...,αp∈R

α2

1
+···+α2

p=1

1

n

n
∑

i,j=1

(

p
∑

ℓ=1

αℓ
∂(Rn,θ0)i,j

∂θℓ

)2

> 0. (39)

The inequality (39) follows from (38) and Condition 16. Indeed, if (39) does not hold we can
consider a convergent subsequence of unit norm vectors of Rp, (αn)n∈N, for which the quantity in
(39) goes to zero. Considering the limit of αn and (38) yields a contradiction to Condition 16.
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We have from the proof of Proposition 3.7 in [10] that there exists a constant 0 < c2 < ∞ such
that, for all α ∈ R

p with α2
1 + · · ·+ α2

p = 1,

p
∑

k,ℓ=1

αkαℓ(E(∇2Mn(θ0)))k,ℓ ≥ c2
1

n

n
∑

i,j=1

(

p
∑

ℓ=1

αℓ
∂(Rn,θ0)i,j

∂θℓ

)2

.

Hence from (39) we obtain
lim inf
n→∞

λp

(

E(∇2Mn(θ0))
)

> 0.

Lemma 14. Assume that Conditions 12, 13, 14 and 16 hold. Then, condition 9 holds with Mn as
in (12) and θ0,n = θ0 as after (12).

Proof of Lemma 14. Assume that for all constants 0 < c1 < ∞ and N1 ∈ N, there is n ≥ N1 such
that,

λp(Cov(
√
n∇Mn(θ0))) ≤ c1. (40)

Then, up to extracting a subsequence, there exists a sequence of unit vectors (vn)n∈N of Rp

such that
v⊤n Cov(

√
n∇Mn(θ0))vn →n→∞ 0. (41)

Let, for t ≥ 0 such that θ0 + tvn ∈ Θ̊,

Mn(t) = Mn(θ0 + tvn)

and let M ′
n(t) be the derivative at t of t 7→ Mn(t). We have

M ′
n(0) = ∇Mn(θ0)

⊤vn.

Hence (41) implies
Var(

√
nM ′

n(0)) →n→∞ 0. (42)

Consider the logarithm of the likelihood

Ln(t) = −1

2
log(det(Rn,t))−

1

2
y(n)⊤R−1

n,ty
(n),

where Rn,t = Rn,θ0+tvn . Let K > 0 be fixed, to be selected later. Then, with L′
n(t) and L′′

n(t) the

first and second derivative of t 7→ Ln(t) at t, for n such that B(θ0,K/
√
n) ⊂ Θ̊,

∣

∣Ln(0)− Ln(K/
√
n)
∣

∣ ≤ K√
n

sup
|t|≤K/

√
n

|L′
n(t)|

≤ K√
n
|L′

n(0)|+
(

K√
n

)2

sup
|t|≤K/

√
n

|L′′
n(t)|. (43)

Let Pn,t, En,t and Varn,t be the Gaussian distribution of y(n), and the corresponding expectation
and variance, assuming that y(n) has mean vector zero and covariance matrix Rn,t. From the
arguments in [10], |L′′

n(t)| is bounded by nC1 + C1||y(n)||2 and L′
n(0) has expectation under Pn,0

equal to zero and variance under Pn,0 bounded by C1n, where C1 can be chosen independently of
t ∈ [0,K]. Hence the quantity in (43) is bounded in Pn,0 probability. We also have, for n such that

B(θ0,K/
√
n) ⊂ Θ̊,

∣

∣Ln(0)− Ln(K/
√
n)
∣

∣ ≤ K√
n

sup
|t|≤K/

√
n

|L′
n(t)|

≤ K√
n
|L′

n(K/
√
n)|+ 2

(

K√
n

)2

sup
|t|≤K/

√
n

|L′′
n(t)| (44)

and, similarly as before, the quantity in (44) is bounded in Pn,K/
√
n probability. Hence, from Le

Cam’s first lemma (see for instance[51, Lemma 6.4]), the measures Pn,0 and Pn,K/
√
n are mutually

contiguous.
Now (42) and En,0(M

′
n(0)) = 0 imply that

√
nM ′

n(0) →Pn,0
n→∞ 0. (45)
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Hence, we have, again from Le Cam’s first lemma and from (45), that

√
nM ′

n(0) →
Pn,K/

√
n

n→∞ 0. (46)

We have, for t ∈ [0,K/
√
n] and n such that B(θ0,K/

√
n) ∈ Θ̊,

|En,0(M
′′
n (0))− En,t(M

′′
n (t))| ≤ |En,0(M

′′
n (0))− En,0(M

′′
n (t))| + |En,0(M

′′
n (t)) − En,t(M

′′
n (t))|

= |En,0(M
′′
n (0))− En,0(M

′′
n (t))| +

1

n
Tr ((Rn,0 −Rn,t)Qn,t) ,

with

Qn,t =

p
∑

j,k=1

(vn)j(vn)kCn,θ0+tvn,j,k

from (31). Hence from (37), (32), Cauchy-Schwarz inequality and Lemma 8, we have

sup
t∈[0,K/

√
n]

|En,0(M
′′
n (0))− En,t(M

′′
n (t))| →n→∞ 0.

Hence, from Lemma 13, there exist N2 ∈ N and 0 < c2 < ∞ such that, for n ≥ N2,

inf
t∈[0,K/

√
n]
En,t(M

′′
n (t)) ≥ c2. (47)

Note that c2 can be chosen independently on K while N2 depends on K (for instance, with c2 =
cθ0,H/2 as in Condition 8). Similarly as for showing (47), we can change the values of c2 and N2

such that, for n ≥ N2,
inf

t1,t2∈[0,K/
√
n]
En,t1(M

′′
n (t2)) ≥ c2. (48)

Again, c2 can be chosen independently on K while N2 depends on K. Then, from the arguments
of the proof of Lemma 6, together with (48), we obtain, for n larger than a constant NK,1 ∈ N,

|En,K/
√
n

√
nM ′

n(0)| ≥
√
nc2

K√
n
.

Furthermore, from (28), (30) and (13) we have, for n larger than a constantNK,2 ∈ N, Varn,K/
√
n(
√
n

M ′
n(0)) ≤ C3 with a constant 0 < C3 < ∞ that does not depend on K. Hence, by taking K large

enough, the lim inf of the Pn,K/
√
n-probability that |√nM ′

n(0)| is larger than one can be made
arbitrarily large. This is a contradiction to (46). Hence we have a contradiction to (40), which
concludes the proof.

Proposition 2. Let X = (Y ⊤A1Y, ..., Y
⊤ApY ) be a random vector, with A1, ..., Ap symmetric

n×n matrices, and Y a Gaussian vector with covariance matrix K. Let C be the p×p matrix with
coefficients

Ci,j = Tr(KAiKAj)

and ZC be a p-dimensional centered Gaussian vector with covariance matrix C. Assume moreover
that X is centered, which is the same as assuming that

Tr(AiK) = 0 , i = 1, . . . , p.

Then

W1(X,ZC) ≤
√

λ1(C)

λp(C)

√

2
∑

i,j=1,...,p

Tr((KAiKAj)2).

Proof of Proposition 2. The proposition is a direct consequence of [43, Proposition 4.3].

Proof of Theorem 4. Let us check that Conditions 1 to 9 hold in order to apply Theorem 1. Con-
dition 1 is already assumed to hold. Condition 2 holds because of Lemmas 9 to 12. Let us check
the first part of Condition 3. From (12), Condition 13, (13) and Lemma 8 and as in [10], we have

Mn(θ) =
1

n
y(n)⊤An,θy

(n)
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with An,θ symmetric and supθ∈Θ ρ1(An,θ) ≤ C1 for a constant 0 < C1 < ∞. By diagonalization, for
each fixed θ ∈ Θ, there exist independent standard Gaussian variables zn,θ,1, . . . , zn,θ,n and scalars
λn,θ,1, . . . , λn,θ,n, such that, with a constant 0 < C2 < ∞,

sup
n∈N

sup
θ∈Θ

n
max
i=1

|λn,θ,i| ≤ C2 and Mn(θ) =
1

n

n
∑

i=1

λn,θ,iz
2
n,θ,i.

Hence, we can apply Bernstein’s inequality (for instance Theorem 2.8.1 in [52]) and we obtain, for
0 < ǫ ≤ 1,

sup
θ∈Θ

P(|Mn(θ) − E(Mn(θ))| ≥ ǫ) ≤ C3 exp(−nc3ǫ
2),

with constants 0 < c3 < ∞ and 0 < C3 < ∞ that do not depend on ǫ. Hence the first part of
Condition 3 indeed holds. The second part is shown in the same way, using Lemma 9.

Let us check the first part of Condition 4. From (35), we obtain

P

(

sup
θ∈Θ̊

||∇Mn(θ)|| ≥ K

)

≤ P

(

Cδ,y
n

max
i=1

(

y
(n)
i

)2

≥ K

)

≤ n
n

max
i=1

P

(

Cδ,y(y
(n)
i )2 ≥ K

)

≤ C4n exp(−c4K),

with constants 0 < c4 < ∞ and 0 < C4 < ∞, from, for instance, (A.2) in [23]. Hence the first part
of Condition 4 holds. The second part is shown similarly.

Condition 5, (3) follows from (35) and (36). Condition 5, (4) holds using first (37), then
observing that from for instance (A.6) and (A.7) in [44], we have

E

(

(

1

n
||y(n)||2

)2
)

=
1

n2
Tr (Rn,θ0)

2 +
2

n2
Tr
(

R2
n,θ0

)

,

and finally using Lemma 8.
The first part of Condition 6 is shown from Lemma 9 and, e.g., (A.7) in [44]. The second part

is shown similarly from Lemma 10. In Condition 7, the offline equation follows from Condition 15
and the proof of Proposition 3.4 in [10]. Furthermore, E(∇Mn(θ0)) = 0 is shown for instance in
[10] and can also be checked directly. Thus Condition 7 holds. Condition 8 holds from Lemma 13.
Condition 9 holds from Lemma 14.

Hence Theorem 1 can be applied. From this theorem, in order to conclude the proof, it is
sufficient to show that, with a constant 0 < C5 < ∞,

W1

(

C̄
−1/2
n,0

√
n∇Mn(θ0), Z

)

≤ C5√
n
. (49)

The quantity
√
n∇Mn(θ0) satisfies the condition of Proposition 2, with Y = y(n) and, for

j = 1, . . . , p,

Aj =
1√
n
Bn,θ0,j,

from Lemma 9. From Condition 7, then indeed E(y(n)⊤Ajy
(n)) = 0. Then Proposition 2 yields

W1(
√
n∇Mn(θ0), Zn) ≤ C6, (50)

where Zn is a Gaussian vector with mean zero and covariance matrix C̄n,0, for a constant 0 < C6 <
∞, from (30), Conditions 6 and 9 and Lemma 8. Then from Lemma 1 and Condition 9,

W1

(

C̄
−1/2
n,0

√
n∇Mn(θ0), Z

)

≤ C6√
cθ0,∇

.

Hence, (49) is shown, which concludes the proof.
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