Inapproximability of Diameter in super-linear time: Beyond the 5/3 ratio - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Inapproximability of Diameter in super-linear time: Beyond the 5/3 ratio

Résumé

We show, assuming the Strong Exponential Time Hypothesis, that for every ε > 0, approximating directed Diameter on m-arc graphs within ratio 7/4 − ε requires m 4/3−o(1) time. Our construction uses non-negative edge weights but even holds for sparse digraphs, i.e., for which the number of vertices n and the number of arcs m satisfy m =Õ(n). This is the first result that conditionally rules out a near-linear time 5/3-approximation for a variant of Diameter.
Fichier principal
Vignette du fichier
finalSTACS.pdf (680.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03430313 , version 1 (16-11-2021)

Identifiants

Citer

Édouard Bonnet. Inapproximability of Diameter in super-linear time: Beyond the 5/3 ratio. STACS 2021, Mar 2021, Saarbrücken, Germany. ⟨10.4230/LIPIcs.STACS.2021.47⟩. ⟨hal-03430313⟩
34 Consultations
43 Téléchargements

Altmetric

Partager

More