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Inapproximability of Diameter in super-linear time:
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Abstract
We show, assuming the Strong Exponential Time Hypothesis, that for every ε > 0, approximating
directed Diameter on m-arc graphs within ratio 7/4 − ε requires m4/3−o(1) time. Our construction
uses non-negative edge weights but even holds for sparse digraphs, i.e., for which the number of
vertices n and the number of arcs m satisfy m = Õ(n). This is the first result that conditionally
rules out a near-linear time 5/3-approximation for a variant of Diameter.
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1 Introduction

The diameter of a graph is the largest length of a shortest path between two of its vertices.
We denote by Diameter the algorithmic task of computing the diameter of an input graph.
We will sometimes prefix Diameter by the adjectives undirected/directed specifying if edges
can be oriented (i.e., if they can be arcs), and unweighted/weighted specifying if non-negative
edge weights can be used. By default, we will assume that both edge orientations and
edge weights are allowed. To be clear, the diameter in a digraph (or directed graph) is the
maximum taken over all ordered pairs of vertices (u, v) of the distance from u to v. Note
that it is very possible that the pair (u, v) realizes the distance of the diameter, while there
is a much shorter path from v to u (perhaps just an arc).

There is an active line of work aiming to determine the best running time for an algorithm
approximating (variants of) Diameter within a given ratio (see for instance the survey of
Rubinstein and Vassilevska Williams [12]). We focus here on sparse graphs, for which the
number of edges m and the number of vertices n verify m = Õ(n), where Õ suppresses the
polylogarithmic factors.1 There is an exact algorithm running in time Õ(n2) by computing n

shortest-path trees from every vertex of the graph. There is also a folklore 2-approximation
running in time Õ(n) by computing a shortest-path tree from an arbitrary vertex and
outputting the largest distance found. There are an Õ(n3/2) time 3/2-approximation for
weighted directed Diameter [1, 11, 6], and for every non-negative integer k, an Õ(n1+ 1

k+1 )
time (2− 2−k)-approximation for weighted undirected Diameter [4]. In dense graphs these
four algorithms take time Õ(mn), Õ(m), Õ(m3/2) and Õ(mn

1
k+1 ), respectively.

There are two competing criteria: minimizing the approximation factor, which is in that
case between 1 and 2, and minimizing the exponent of the running time, also a real number

1 Throughout the paper we adopt the convention that n denotes the number of vertices and m, the
number of edges of a given graph.
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between 1 and 2. We now know that the points (1, 2), ( 3
2 , 3

2 ), and (2, 1) are feasible for
the more general variant of Diameter. The question is whether these algorithms can be
improved or if conditional lower bounds can be provided instead. The paper is about the
latter, so we will now briefly present the relevant framework of fine-grained complexity, as
well as its known consequences for Diameter.

Fine-grained complexity

The program of fine-grained complexity aims to match fine-grained algorithms (where the
precise running time matters more than the membership to some robust complexity class)
with tight conditional lower bounds under well-established assumptions. These assumptions
are said problem-centric. They rely on the fact that we have been collectively unable to
“meaningfully” improve over the brute-force or textbook algorithms for some important
problems. Then perhaps such improvements are impossible, or at least they are currently
out of reach. A fine-grained reduction from one of these central problems to our problem of
interest Π tells us that improving on Π would result in a major breakthrough.

The three main hypotheses are based on SAT, 3-SUM, and All-Pairs Shortest-Paths.
One might think that All-Pairs Shortest-Paths is a better starting point for a reduction
to Diameter. Surprisingly it happens that SAT is. We will now focus on conditional
lower bounds for Diameter, so we will only define the hypothesis based on SAT. For
more on fine-grained complexity, we refer the interested reader to the survey of Vassilevska
Williams [14].

The Strong Exponential Time Hypothesis (SETH, for short) asserts that for every
ε > 0, there is an integer k such that k-SAT cannot be solved in time (2− ε)n on n-variable
instances [8]. The first SETH-based lower bound for a polynomial-time solvable graph problem
was precisely on unweighted undirected Diameter [11]. The authors show that, unless
the SETH fails, any (3/2− δ)-approximation for sparse unweighted undirected Diameter,
with δ > 0, requires time n2−o(1). Backurs et al. [2] show under the same assumption that,
for every k ⩾ 3, any ((5k − 7)/(3k − 4)− δ)-approximation for sparse unweighted directed
Diameter, with δ > 0, requires time n1+ 1

k−1 −o(1), and that any (5/3− δ)-approximation
for sparse weighted undirected Diameter requires time n3/2−o(1). Li [9] improves on these
results showing that, unless the SETH fails, any (5/3 − δ)-approximation for unweighted
undirected Diameter requires time n3/2−o(1).

Since a 5/3-approximation of Diameter running in near-linear time was consistent
with the current knowledge, even in weighted directed graphs, Rubinstein and Vassilevska
Williams [12] and Li [9] ask for such an algorithm or some lower bounds with a ratio closer
to 2. We give an evidence that, at least for weighted directed graphs, no such algorithm is
possible. More precisely, our contribution is the following.

▶ Theorem 1. Unless the SETH fails, for any ε > 0, (7/4− ε)-approximating Diameter
on directed n-vertex Õ(n)-edge graphs where all the edge weights are non-negative integers
requires n4/3−o(1) time.

Figure 1 summarizes what was known for directed Diameter and where Theorem 1 fits.

Techniques

Like all the Diameter lower bounds (see also [14, 12]), we reduce from k-Orthogonal
Vectors. In this problem, given a set of N 0, 1-vectors of dimension ℓ, one looks for k vectors
such that at every index, at least one of these k vectors has a 0 entry. Unless the SETH fails,
k-Orthogonal Vectors requires time Nk−o(1) [13], even when ℓ is polylogarithmic in N .
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Figure 1 Approximability of sparse directed Diameter. The blue region is feasible, as witnessed
by algorithms at the bottom-left corners (blue dots). The three algorithms support non-negative
edge weights. The red regions would refute the SETH, as witnessed by reductions at top-right corners
(red dots). The lower bounds in [11, 9] even hold for the sparse unweighted undirected Diameter,
and the one in [2], for sparse weighted undirected Diameter, while Theorem 1 uses edge weights
and orientations.

Here we will more precisely reduce from 4-Orthogonal Vectors (4-OV, for short).
We want to build a digraph on Õ(N3) vertices and arcs, with diameter 7 if there is an
orthogonal quadruple (that is, a solution to the 4-OV instance), and diameter 4 otherwise.
Following a reduction to ST -Diameter2 by Backurs et al. [2] (arguably also following [11])
all the reductions feature layers L0, L1, . . . , Lk−1, Lk, with only (forward) edges between
two consecutive Li. The vertices within the same layer share the same number of “vector
attributes” and “index attributes”. The interplay between vector and index attributes in
defining the vertices and edges is adjusted so that if there are no k orthogonal vectors, then
there are paths of “optimal” length k between every pair in L0 × Lk, while if there is set X

of k orthogonal vectors, a pair (x, y) in L0 × Lk jointly encoding X is far apart (usually and
ideally at distance 2k − 1).

We do not deviate too much from this strategy. Our construction is inspired from and
pushes one step forward the elegant reduction of Li [9]. Here we rename L0, L1, L2, L3, L4 by
ABC, AB, ADY , DC, DCB, respectively. Some pairs of vertices are too far apart on 4-OV
NO-instances. We thus add two “gates” u and v and link them with weighted arcs to the rest
of the graph. This puts many pairs of vertices at distance at most 4 regardless on whether
the 4-OV instance is positive or negative.

2 where one seeks the length of a longest shortest path from a vertex of S to a vertex of T

STACS 2021
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Of course, we cannot do so for all the pairs outside L0 × Lk. For instance, we do not
want the distance from every vertex in ABC to every vertex in ADY to be always at most 4.
Indeed, that would make the longest path from ABC to DCB of length at most 6. Our main
novel contribution is to add a vertex set ADX (L′

2) only linked to ADY (L2) in a way that
gives enough flexibility to make the remaining pairs sufficiently close for 4-OV NO-instances,
while not decreasing the distance from x to y.

Recent developments

While the paper was under review, some exciting developments happened. Independently,
Wein and Dalirrooyfard [7] and Li [10] showed that, under the SETH, for every integer k ⩾ 2
and real δ > 0, any ( 2k−1

k − δ)-approximation for sparse unweigthed directed Diameter
requires time n1+ 1

k−1 −o(1).
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Figure 2 The new results for sparse unweigthed directed Diameter. The blue region is feasible,
as witnessed by an algorithm at the bottom-left corner (blue dot). The red regions would refute the
SETH, as witnessed by reductions at top-right corners (red dots). A red dot in the interior of the
dotted cyan region would refute the NSETH. The lower bounds in [11, 9] even hold for the sparse
unweighted undirected Diameter.

In the same paper, Li gives a piece of evidence that this could be as far as the hardness
of unweigthed directed Diameter goes. This evidence is based on the NSETH (for Non-
deterministic SETH), a strengthening of SETH introduced by Carmosino et al. [5]. NSETH
asserts that for every ε > 0, there is an integer k such that the k-Taut problem cannot
be solved in non-deterministic time (2− ε)n, where k-Taut asks, given a k-DNF formula
whether every truth assignment satisfies it. Li shows, for all four variants of Diameter
but the weighted directed one that improving on any of these (deterministic) SETH lower
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bounds would refute the NSETH (see dotted cyan region in Figure 2).
The construction of Dalirrooyfard and Wein [7] works for k ⩾ 5. It makes a more intricate

use of “parallel layers” (such as ADX). For k = 2 and 3, the authors cite the existing lower
bounds for unweighted undirected Diameter, and for k = 4 they tune the construction
presented in this paper, in order to remove the edge weights. Namely, there is a simpler and
weight-free way of connecting the “gates” u, v to the rest of the graph. The construction of
Li [10] effectively combines index-changing “back” edges (which re-implements and extends
the skew edges of this paper) with the usual vector-changing “forward” edges.

These generalizations crucially rely on edge orientations, while in the particular case of
k = 4, our construction seems to only accidentally require arcs. In a subsequent work [3], we
show how to obtain the lower bound for k = 4 in the most constrained case of unweigthed
undirected Diameter. This makes a non-trivial use of additional sets of vertices without
“vector fields”.

Preliminaries

We use the standard graph-theoretic notations. If G is a graph, V (G) denotes its vertex set.
If S ⊆ V (G), G[S] denotes the subgraph of G induced by S, and G− S is a short-hand for
G[V (G) \ S]. For u, v ∈ V (G), dG(u, v) denotes the distance from u to v in G, that is the
length of a shortest path from u to v, or equivalently, the minimum sum of weights on the
edges on a path from u to v. Note that, in a directed graph, dG(u, v) and dG(v, u) may well
be different values. We drop the subscript, if the graph G is clear from the context. We
denote by diam(G) the diameter of G, that is, maxu,v∈V (G) dG(u, v). Note that both the
pairs (u, v) and (v, u) are considered in this maximum. If ℓ is positive integer, [ℓ] denotes
the set {1, 2, . . . , ℓ}.

2 Reduction from 4-Orthogonal Vectors to 4 vs 7 Diameter

For every fixed positive integer k, the k-Orthogonal Vectors (k-OV for short) problem is
as follows. It asks, given a set S of 0,1-vectors in {0, 1}ℓ, if there are k vectors v1, . . . , vk ∈ S

such that for every i ∈ [ℓ], Πh∈[k]vh[i] = 0 or equivalently that v1[i] = v2[i] = · · · = vk[i] = 1
does not hold. Williams [13] showed that, assuming the SETH, k-OV requires Nk−o(1) time
with N := |S|. Here we will leverage this lower bound for k = 4. This is a usual opening
step: for example, Roditty and Vassilevska Williams [11] uses this lower bound for k = 2,
and Li [9] uses it for k = 3.

From any set S of N vectors in {0, 1}ℓ, we build a directed weighted graph G := ρ(S)
(without negatively-weighted arcs) with O(N3 + N2ℓ3) vertices and O(N3ℓ3 + N2ℓ6) arcs
such that if S admits an orthogonal quadruple then the diameter of G is (at least) 7, whereas
if S has no orthogonal quadruple then the diameter of G is (at most) 4. There is a large
enough constant c such that 4-OV requires N4−o(1) time, unless the SETH fails, even when
ℓ = c⌈log N⌉ [13]. In that case, the graph G has O(N3) vertices and Õ(N3) edges. Hence
any algorithm approximating sparse, weighted, directed Diameter within ratio better than
7/4 in time n4/3−δ, with δ > 0, would refute the SETH.

2.1 Constant part
We start by describing the part of the construction which does not depend on the 4-OV
instance. Its purpose is to make many pairs of vertices at distance at most 4 regardless on
whether the 4-OV instance is positive or negative. The vertex set of the eventually-built

STACS 2021
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Figure 3 The part of the reduction not depending on the 4-OV instance. The edges represented
without arrow are double-arcs with the indicated weight. The black arc between, say, ABC and u,
symbolizes that every vertex of ABC is linked by an arc of weight 4 to vertex u. Thick red edges
represent some double-arcs of weight 1. Not every double-arc (or edge) is present between two sets
linked by a red edge. This will be specified in the rest of the construction.

graph G consists of two special vertices u and v, and six (disjoint) sets ABC, AB, ADX ,
ADY , DC, and DCB. Vertices u and v are unconditionally linked to these sets (and to each
other) by weighted arcs as specified in Figure 3. As we wrote in the introduction, there is a
simpler way, that does not require edge weights, of realizing the constant part (see [7, Section
6]). We keep our construction for the sake of consistency but invite the reader to have a look
at [7, Figure 9].

In this figure, a black arc between a vertex x ∈ {u, v} and a set Z ∈ {ABC, AB, ADX , ADY ,

DC, DCB} (or vice versa) indicates that x is linked to every vertex of Z by such an arc. Note
that edges represented without arrow are double-arcs. Double-arcs will sometimes simply be
called edges. The only arcs not incident to {u, v} are edges (double-arcs) of weight 1. These
edges are only present between ABC and AB, AB and ADY , ADX and ADY , ADY and DC,
and finally DC and DCB. We will describe them later. At this point, one just needs to know
that every vertex in ABC (resp. DCB) has at least one neighbor in AB (resp. DC), and that
these edges have weight 1.

We check that many pairs of vertices are at distance at most 4 (even without the knowledge
of the edges symbolized in red). For the sake of conciseness, when we write, say, “u↔ DCB”,
we intend to provide paths from u to every vertex in DCB, and from every vertex in DCB
to u. Similarly, the paragraph “DCB → ABC” gives a path (of length 2) from every vertex
of DCB to every vertex of ABC.

u↔ v. There is an edge of weight 2 between u and v.

u↔ Z ∈ {ABC, AB, ADX , ADY , DC}. There are double-arcs with weight at most 4
between these pairs.

u↔ DCB. There is a path of double-arcs of total weight 3: From a vertex of DCB, take
any (weight-1) edge to DC, followed by the weight-2 edge to u. Recall that every vertex in
DCB will have at least one neighbor in DC (via a weight-1 edge).

The next two cases are symmetric.
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v↔ Z ∈ {AB, ADX , ADY , DC, DCB}. There are double-arcs with weight at most 4
between these pairs.

v↔ ABC. There is a path of double-arcs of total weight 3: From a vertex of ABC, take
any (weight-1) edge to AB, followed by the weight-2 edge to v. Recall that every vertex in
ABC will have at least one neighbor in AB (via a weight-1 edge).

So far, we have seen that for each x ∈ {u, v} and y ∈ V (G), d(x, y) ⩽ 4 and d(y, x) ⩽ 4.

For each Z ∈ {ABC, AB, ADX, ADY, DC, DCB}, Z↔ Z. Each of these six sets Z has
a double-arc to u or to v (or both) whose sum of weights is at most 4.

ADX → Z ∈ {ABC, AB, ADY , DC}. These pairs are at distance at most 3. There is an
edge of weight 1 from every vertex of ADX to u, and an arc of weight at most 2 from u to
every vertex of Z ∈ {ABC, AB, ADY , DC}.

ADX → DCB. There is a path of length 4, via u and DC. Again recall that every vertex
of DCB has at least one neighbor in DC (via a double-arc of weight 1).

The next two cases are symmetric.

ADX ← Z ∈ {AB, ADY , DC, DCB}. These pairs are at distance at most 3. There is an
arc of weight at most 2 from every vertex of Z ∈ {AB, ADY , DC, DCB} to v, and an edge of
weight 1 from v to every vertex of ADX .

ADX ← ABC. There is path of length 4, via AB and v.

We have now established that for every x ∈ ADX and y ∈ V (G), d(x, y) ⩽ 4 and
d(y, x) ⩽ 4.

ADY ↔ AB. There is a path of two double-arcs of weight 2, via v.

ADY ↔ DC. There is a path of two double-arcs of weight 2, via u.

ADY → ABC. There is a path of length 2 via u.

ADY ← DCB. There is a path of length 2 via v.

ABC↔ AB. Via u, there is a path of length 4 from every vertex of ABC to every vertex
of AB, and a path of length 3 from every vertex of AB to every vertex of ABC.

DCB↔ DC. Via v, there is a path of length 3 from every vertex of DCB to every vertex
of DC, and a path of length 4 from every vertex of DC to every vertex of DCB.

DCB → ABC. There is a path of length 2 via v and u.

DCB → AB. There is a path of length 2 via v.

DC → Z ∈ {ABC, AB}. There is a path of length 2 via u.

To summarize, we have obtained that for every pair x, y ∈ V (G), d(x, y) > 4 implies that
(x, y) ∈ P for some P ∈ {ABC×ADY , ABC×DC, ABC×DCB, AB×DC, AB×DCB, ADY ×
DCB}.

2.2 Variable part
We think of the vector set S as having four copies A, B, C, D with S = A = B = C = D.
Equivalently, one looks for a ∈ A, b ∈ B, c ∈ C, and d ∈ D such that a, b, c, d are orthogonal.

STACS 2021
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Vertex set

We first describe the vertex set V (G) \ {u, v}.
For every (a, b, c) ∈ A×B × C, we add vertex (a, b, c)ABC to ABC.
Similarly for every (d, c, b) ∈ D × C ×B, we add vertex (d, c, b)DCB to DCB.
For every (a, b) ∈ A×B and every triple i, j, k ∈ [ℓ] such that a[i] = a[j] = a[k] = 1 and
b takes value 1 on at least two indices of {i, j, k}, we add vertex (a, b, i, j, k)AB to AB.
The set of vertices DC is defined analogously with D and C playing the roles of A and B

(recall that actually A = B = C = D).
For every (a, d) ∈ A ×D and every triple of indices i, j, k ∈ [ℓ] such that a[i] = a[j] =
a[k] = 1 and d[i] = d[j] = d[k] = 1, we add vertex (a, d, i, j, k)ADY

to ADY .
For every (a, d) ∈ A×D and every i, j, k ∈ [ℓ] such that at most one of a[i], a[j], a[k], d[i],
d[j], d[k] is equal to 0, we add vertex (a, d, i, j, k)ADX

to ADX .

As observed in [7], the definition of ADX could be simpler. We keep it as is, again for
the sake of consistency.

Edge Set

We now describe the edge set on V (G) \ {u, v}. All these edges are double-arcs (we do not
need to orient them) of weight 1 (we do not need to put weights).

We add an edge (double-arc) of weight 1 between every pair (a, b, c)ABC and (a, b, i, j, k)AB
if c takes value 1 on at least one index of {i, j, k} where b also takes value 1. In our
construction, the existence of an edge is implicitly conditional to the existence of both of
its endpoints. The edge exists only if (a, b, i, j, k)AB is indeed a vertex of AB. The edges
between DCB and DC are defined similarly.
We add every edge between (a, b, i, j, k)AB and (a, b, i′, j′, k′)AB, with a ∈ A, b ∈ B,
and i, j, k, i′, j′, k′ ∈ [ℓ]. Similarly we add every edge between (d, c, i, j, k)DC and
(d, c, i′, j′, k′)DC, with d ∈ D, c ∈ C, and i, j, k, i′, j′, k′ ∈ [ℓ]. We call these edges index-
switching. AB and DC are the only two sets among {ABC, AB, ADX , ADY , DC, DCB}
which are not independent sets.
We link every pair (a, b, i, j, k)AB and (a, d, i, j, k)ADY

by an edge, as well as every pair
(a, d, i, j, k)ADY

and (d, c, i, j, k)DC.
We add an edge between every pair (a, d, i, j, k)ADX

and (a, d′, i, j, k)ADY
(such that

a ∈ A, d ̸= d′ ∈ D, and i, j, k ∈ [ℓ]), and (a, d, i, j, k)ADX
and (a′, d, i, j, k)ADY

(such that
a ̸= a′ ∈ A, d ∈ D, and i, j, k ∈ [ℓ]).
Finally we add an edge between every pair (a, d, i, j, k)ADX

and (a, d, i′, j′, k′)ADY
with

a ∈ A, d ∈ D, and i, j, k, i′, j′, k′ ∈ [ℓ]. We call this type of edge skew. Skew edges are
the only way to change the indices while also moving from one set to another (it is not
internal to AB or to DC).

All the edges defined in this section that are not index-switching or skew are called regular.
This ends the construction of G = ρ(S). See Figure 4 for an illustration.

Simplified vertex notations, vector fields, and index fields

Henceforth we will drop the indices in the vertex labels. The set a vertex belongs to will be
implicit by the choice of the variable labels. For instance (a, b′, i, j, k) is in AB, and (d′, c, b′)
is in DCB. This does not allow us to distinguish vertices of ADX and ADY . We will denote
by (a, d, i, j, k)Y = (a, d, i, j, k)ADY

a vertex in ADY and by (a, d, i, j, k)X the “same” vertex
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(a, b, c)

(a, b, i, j, k)
(a, b, i′, j′, k′) (a′, d, i, j, k)X

(a, d, i, j, k)Y (a′, d, i′′, j′′, k′′)Y

(d, c, i, j, k)
(d, c, i′′′, j′′′, k′′′)

(d, c, b)

a[i] = a[j] = a[k] = 1

maj(b[i], b[j], b[k]) = 1

d[i] = d[j] = d[k] = 1

maj(c[i], c[j], c[k]) = 1

∃h ∈ {i, j, k}, c[h] = b[h] = 1 ∃h ∈ {i, j, k}, b[h] = c[h] = 1

d[i] = d[j] = d[k] = 1
a[i] = a[j] = a[k] = 1

⩾ 5 of a′[i], a′[j], a′[k],
d[i], d[j], d[k] are 1

ABC DCB

AB DCADX

ADY

Figure 4 The rules for the existence of vertices and edges in G − {u, v}. We removed the
subscripts in the vertex labels as discussed in the second-to-last paragraph of Section 2.2. Conditions
to the existence of a vertex appear in bold next to the vertex. Conditions to the existence of an
edge appear in bold along the edge. All edges (double-arcs) have weight 1, so we omit their weight.
Regular edges are represented in black. Index-switching edges are represented in blue (they are
only present in AB and DC). Skew edges are represented in green (they are only present between
ADX and ADY . Note that the regular edge (a, d, i, j, k)Y (a′, d, i, j, k)X could also be of the form
(a, d, i, j, k)Y (a, d′, i, j, k)X .

in ADX . Note that it is possible that (a, d, i, j, k)X exists but not (a, d, i, j, k)Y , if exactly
five of a[i], a[j], a[k], d[i], d[j], d[k] are equal to 1.

We call vector fields the first three coordinates of every vertex in ABC ∪ DCB, and
the first two coordinates of every vertex in AB ∪ ADX ∪ ADY ∪ DC. We call index fields
the last three coordinates of every vertex in AB ∪ ADX ∪ ADY ∪ DC. We can assume
that the 4-OV instance does not have an orthogonal triple (this can be checked in time
Õ(N3)). Thus every vertex (a, b, c) ∈ ABC (resp. (d, c, b) ∈ DCB) indeed has at least one
neighbor in AB (resp. DC), namely (a, b, i, i, i) (resp. (d, c, i, i, i)) where i ∈ [ℓ] is such that
a[i] = b[i] = c[i] = 1 (resp. d[i] = c[i] = b[i] = 1).

Vertex and edge count

Before tackling the correctness of the reduction, we check that G has O(N3) vertices and
Õ(N3) arcs. The number of vertices of G is bounded by 2 + 2 ·N3 + 4 ·N2ℓ3 = O(N3) since
ℓ = O(log N). The number of arcs of G is bounded by 4·O(N3)+4·N2ℓ6+10·N3ℓ3+2·N2ℓ6 =
Õ(N3), where the first term accounts for the arcs incident with {u, v}, the second for the
index-switching arcs, the third for the regular arcs, and the fourth for the skew arcs.

2.3 No orthogonal quadruple implies diameter at most 4
We exhibit in this section short paths (of length at most 4) between every pair of vertices
of G. For that we extensively use that, as there is no orthogonal quadruple in S, for every
u, v, w, x ∈ S, ind(u, v, w, x) := min{i ∈ [ℓ] | u[i] = v[i] = w[i] = x[i] = 1} is a well-defined
index in [ℓ]. We only take the minimum index to have a deterministic notation. There will
not be anything particular with the minimum, and any index of the non-empty {i ∈ [ℓ] |
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47:10 Inapproximability of Diameter in super-linear time: Beyond the 5/3 ratio

u[i] = v[i] = w[i] = x[i] = 1} would work as well. We will also use ind(u, v, w) as a short-hand
for ind(u, v, w, w).

In Section 2.1, we have reduced the task of showing that diam(G) ⩽ 4 to considering only
six pairs of sets.

ABC → ADY. Let (a, b, c) and (a′, d, i′, j′, k′)Y be two vertices in ABC and ADY

respectively. We define the indices i := ind(a, b, c, d), j := ind(a, a′, b, d), and k := ind(a, a′, d).
Then, (a, b, c)→ (a, b, i, j, k)→ (a, d, i, j, k)Y → (a′, d, i, j, k)X → (a′, d, i′, j′, k′)Y is a path
of length 4 in G.

We first justify the existence of the inner vertices of this path (i.e., all but the endpoints).
Indeed the endpoints exist by assumption. Vertex (a, b, i, j, k) ∈ AB is present in G since
a[i] = a[j] = a[k] = 1, and b[i] = b[j] = 1. Vertex (a, d, i, j, k)Y ∈ ADY exists since
a[i] = a[j] = a[k] = 1 = d[i] = d[j] = d[k]. Finally (a′, d, i, j, k)X ∈ ADX is indeed a vertex
of G since a′[j] = a′[k] = 1 and d[i] = d[j] = d[k] = 1. Recall that in ADX (contrary to
ADY ) it is fine if at most one of the six values obtained by evaluating one of the two vectors
at one of the three indices is 0.

We now justify the existence of the edges. The arc (a, b, c) → (a, b, i, j, k) exists since
c[i] = b[i] = 1 (and both its endpoints exist). The arcs (a, b, i, j, k) → (a, d, i, j, k)Y and
(a, d, i, j, k)Y → (a′, d, i, j, k)X are regular edges of G: one vector field and the three index
fields remain unchanged. Finally the arc (a′, d, i, j, k)X → (a′, d, i′, j′, k′)Y is a skew edge
of G: it is between ADX and ADY , and both vector fields remain the same (while the indices
are allowed to change).

ABC→ DC. Let (a, b, c) and (d, c′, i′, j′, k′) be two vertices in ABC and DC respectively.
We define the indices i := ind(a, b, c, d), j := ind(a, b, c′, d), and k := ind(a, c′, d). Then,
(a, b, c)→ (a, b, i, j, k)→ (a, d, i, j, k)Y → (d, c′, i, j, k)→ (d, c′, i′, j′, k′) is a path of length 4
in G.

As in the previous case, the existence of vertices (a, b, i, j, k) ∈ AB, (a, d, i, j, k)Y ∈ ADY ,
(d, c′, i, j, k) ∈ DC is ensured by the fact that a[i] = a[j] = a[k] = 1 = d[i] = d[j] = d[k] and
b[i] = b[j] = 1 = c′[j] = c′[k]. The arc (a, b, c)→ (a, b, i, j, k) exists since c[i] = b[i] = 1, and
the arcs (a, b, i, j, k)→ (a, d, i, j, k)Y → (d, c′, i, j, k) are two (existing) regular arcs. Finally
(d, c′, i, j, k) → (d, c′, i′, j′, k′) is an index-switching arc internal to DC (note that the two
vector fields remain the same, as they should).

ABC → DCB. Let (a, b, c) and (d, c′, b′) be two vertices in ABC and DCB respectively.
We define the indices i := ind(a, b, c, d), j := ind(a, b, c′, d), and k := ind(a, b′, c′, d). Then,
(a, b, c)→ (a, b, i, j, k)→ (a, d, i, j, k)Y → (d, c′, i, j, k)→ (d, c′, b′) is a path of length 4 in G.

The vertices (a, b, i, j, k) ∈ AB, (a, d, i, j, k)Y ∈ ADY , (d, c′, i, j, k) ∈ DC exist since a[i] =
a[j] = a[k] = 1 = d[i] = d[j] = d[k] and b[i] = b[j] = 1 = c′[j] = c′[k]. The arc (a, b, c) →
(a, b, i, j, k) is in G since c[i] = b[i] = 1. The arcs (a, b, i, j, k)→ (a, d, i, j, k)Y → (d, c′, i, j, k)
are two regular arcs in G. The arc (d, c′, i, j, k)→ (d, c′, b′) exists since b′[k] = c′[k] = 1.

AB → DC. Let (a, b, i′, j′, k′) and (d, c, i′′, j′′, k′′) be two vertices in AB and DC re-
spectively. We define the index i := ind(a, b, c, d). Then, (a, b, i′, j′, k′) → (a, b, i, i, i) →
(a, d, i, i, i)Y → (d, c, i, i, i)→ (d, c, i′′, j′′, k′′) is a path of length 4 in G.

Vertices (a, b, i, i, i) ∈ AB, (a, d, i, i, i)Y ∈ ADY , (d, c, i, i, i) ∈ DC exist since a[i] = b[i] =
c[i] = d[i] = 1. The arc (a, b, i′, j′, k′)→ (a, b, i, i, i) is a legal index-switching arc, internal
to AB. The arcs (a, b, i, i, i)→ (a, d, i, i, i)Y → (d, c, i, i, i) are two regular arcs in G. Finally
the arc (d, c, i, i, i)→ (d, c, i′′, j′′, k′′) is an index-switching arc, internal to DC.

The next two cases are symmetric to ABC → DC and ABC → ADY, respectively. We
spell them out since it is not much longer that making the symmetry explicit.
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AB→ DCB. Let (a, b, i′, j′, k′) and (d, c, b′) be two vertices in AB and DCB respectively.
We define the indices i := ind(a, b, c, d), j := ind(a, b, d), and k := ind(a, b′, c, d). Then,
(a, b, i′, j′, k′)→ (a, b, i, j, k)→ (a, d, i, j, k)Y → (d, c, i, j, k)→ (d, c, b′) is a path of length 4
in G.

Vertices (a, b, i, j, k) ∈ AB, (a, d, i, j, k)Y ∈ ADY , (d, c, i, j, k) ∈ DC exist since a[i] =
a[j] = a[k] = 1 = d[i] = d[j] = d[k] and b[i] = b[j] = 1 = c[i] = c[k]. The arc (a, b, i′, j′, k′)→
(a, b, i, j, k) is index-switching in AB. The arcs (a, b, i, j, k) → (a, d, i, j, k)Y → (d, c, i, j, k)
are two regular arcs present in G. Finally the arc (d, c, i, j, k) → (d, c, b′) exists since
b′[k] = c[k] = 1.

ADY → DCB. Let (a, d, i′, j′, k′)Y and (d′, c, b) be two vertices in ADY and DCB re-
spectively. We define the indices i := ind(a, b, c, d′), j := ind(a, c, d, d′), and k := ind(a, d, d′).
Then, (a, d, i′, j′, k′)Y → (a, d, i, j, k)X → (a, d′, i, j, k)Y → (d′, c, i, j, k)→ (d′, c, b) is a path
of length 4 in G.

The vertices (a, d, i, j, k)X ∈ ADX , (a, d′, i, j, k)Y ∈ ADY , (d′, c, i, j, k) ∈ DC are present
in G since a[i] = a[j] = a[k] = 1 = d′[i] = d′[j] = d′[k] and d[j] = d[k] = 1 = c[i] = c[j].
Recall that a[i] = a[j] = a[k] = 1 = d[j] = d[k] suffices for the existence of (a, d, i, j, k)X

(but not for the one of (a, d, i, j, k)Y ). The arc (a, d, i′, j′, k′)Y → (a, d, i, j, k)X is a skew
arc: it is between ADY and ADX , and the two vector fields remain unchanged. The arcs
(a, d, i, j, k)X → (a, d′, i, j, k)Y → (d′, c, i, j, k) are two regular arcs of G. Finally the arc
(d′, c, i, j, k)→ (d′, c, b) exists since b[i] = c[i] = 1.

We have proved that there is a path of length at most 4 between every (ordered) pair of
vertices in G, when there is no orthogonal quadruple. Thus the diameter of G is then (at
most) 4.

2.4 An orthogonal quadruple implies two vertices at distance at least 7
We now suppose that S admits at least one orthogonal quadruple, say, a, b, c, d. We show
that G has diameter at least 7, by arguing that there is no path of length at most 6 from
(a, b, c) ∈ ABC to (d, c, b) ∈ DCB.

The first observation is that there is no path of length at most 6 from (a, b, c) to (d, c, b)
intersecting {u, v}. Indeed one can check that d((a, b, c), u) = 4 and d(u, (d, c, b)) = 3, and
that d((a, b, c), v) = 3 and d(v, (d, c, b)) = 4. We can now rule out the existence of a path P

of length 6 from (a, b, c) and (d, c, b) in G− {u, v}.
We distinguish two cases:
(a) P does not intersect ADX , or
(b) P intersects ADX .

Case (a). We further distinguish two cases: either (a1) P contains no index-switching arc,
or (a2) P contains at least one index-switching arc. In case (a1), the three index fields cannot
change at all in P (recall that the skew edges are between ADX and ADY ). Thus the first and
penultimate vertices of P are (a, b, i, j, k) ∈ AB and (d, c, i, j, k) ∈ DC for some i, j, k ∈ [ℓ].
The existence of these vertices imply that a[i] = a[j] = a[k] = 1 = d[i] = d[j] = d[k], and
vectors b and c both take value 1 on at least two indices among {i, j, k}. Therefore there
exists an index h ∈ {i, j, k} such that a[h] = b[h] = c[h] = d[h] = 1. This contradicts the fact
that a, b, c, d are orthogonal.

We now tackle case (a2). Since the removal of ADY separates ABC∪AB from DCB∪DC
in G − {u, v}, G[ADY ] is an independent set, and there are no edges between ADY and
ABC ∪ DCB, such a path P has to contain a subpath x → y → z with x ∈ AB, y ∈ ADY ,
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and z ∈ DC. As P contains at least one index-switching arc, it cannot also contains a
back-and-forth along AB → ABC → AB, ADY → AB → ADY , DC → ADY → DC, or
DCB → DC → DCB. Indeed that would amount to at least three additional arcs (at
least one index-switching plus two for the back-and-forth) to the mandatory four arcs
ABC→ AB→ ADY → DC→ DCB, hence a path of length at least 7. Therefore, there are
three indices i, j, k ∈ [ℓ] such that x = (a, b, i, j, k), y = (a, d, i, j, k)Y , and z = (d, c, i, j, k).
Indeed every path in G[ABC ∪AB] and every path in G[DCB ∪DC] preserve the first two
vector fields. Again the existence of (a, b, i, j, k) (in AB) and (d, c, i, j, k) (in DC) contradicts
that a, b, c, d are orthogonal.

Case (b). We can now assume that P intersects ADX . Thus P has length exactly 6 and
is of the form (a, b, c) ∈ ABC→ AB→ ADY → ADX → ADY → DC→ DCB ∋ (d, c, b). In
particular, P cannot contain an index-switching edge. If P contains no skew edge too, the
index fields cannot change. So the second and sixth vertices of P are some (a, b, i, j, k) ∈ AB
and (d, c, i, j, k) ∈ DC, and we can conclude as in case (a).

Thus P has to contain at least one skew edge. Let us show that P has to contain exactly
one skew edge. We recall that the skew edges are only present between ADX and ADY .

We first argue that the third vertex of P is (a, d′, i, j, k)Y for some d′ ̸= d ∈ D and
i, j, k ∈ [ℓ]. The first vector field cannot change in a path of the form ABC→ AB→ ADY ,
so we only have to show that d′ cannot be equal to d. Indeed, otherwise a[i] = a[j] = a[k] =
1 = d[i] = d[j] = d[k] by the existence of (a, d, i, j, k)Y . Furthermore, the existence of the
arc (a, b, c)→ (a, b, i, j, k) (which has to be the first arc of P ) implies that there is an index
h ∈ {i, j, k} such that b[h] = c[h] = 1. This index thus contradicts the orthogonality of
a, b, c, d.

As the third vertex of P is (a, d′, i, j, k)Y with d′ ≠ d, two skew edges ADY → ADX →
ADY would lead to a vertex (a, d′, i′, j′, k′)Y . This latter vertex is linked in DC to vertices
of the form (d′, c′, i′, j′, k′) (where c′ can be c). This cannot lead to (d, c, b) since the first
vector field does not change in an arc from DC to DCB.

We have established that from vertex (a, d′, i, j, k)Y , P takes exactly one skew edge, either
from ADY to ADX , or from ADX to ADY . In both cases, by the previous remark, the
second vector field of the fifth vertex of P should be d. This implies that the fifth vertex
of P is of the form (a, d, i′, j′, k′)Y for some indices i′, j′, k′ ∈ [ℓ]. Indeed the skew edge of
P in ADY → ADX → ADY preserves both vector fields, whereas the regular edge of P in
ADY → ADX → ADY can only change one vector field, and has to change d′ ( ̸= d) to d.

The end of P is thus (a, d, i′, j′, k′)Y → (d, c, i′, j′, k′)→ (d, c, b), since the first two vector
fields cannot be changed by an arc from DC to DCB. The existence of vertex (a, d, i′, j′, k′)Y

implies that a[i′] = a[j′] = a[k′] = 1 = d[i′] = d[j′] = d[k′]. The existence of the arc
(d, c, i′, j′, k′)→ (d, c, b) implies that there is an index h ∈ {i′, j′, k′} such that c[h] = b[h] = 1.
This yields a[h] = b[h] = c[h] = d[h] = 1, contradicting the orthogonality of a, b, c, d.

We have ruled out the existence of a path in G of length at most 6 between (a, b, c) and
(d, c, b), when a, b, c, d are orthogonal. Hence the diameter of G is at least 7 when there is an
orthogonal quadruple.
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