Stochastic incremental mirror descent algorithms with Nesterov smoothing - Archive ouverte HAL
Article Dans Une Revue Numerical Algorithms Année : 2023

Stochastic incremental mirror descent algorithms with Nesterov smoothing

Résumé

For minimizing a sum of finitely many proper, convex and lower semicontinuous functions over a nonempty closed convex set in an Euclidean space we propose a stochastic incremental mirror descent algorithm constructed by means of the Nesterov smoothing. Further we modify the algorithm in order to minimize over a nonempty closed convex set in an Euclidean space a sum of finitely many proper, convex and lower semicontinuous functions composed with linear operators. Next a stochastic incremental mirror descent Bregman-proximal scheme with Nesterov smoothing is proposed in order to minimize over a nonempty closed convex set in an Euclidean space a sum of finitely many proper, convex and lower semicontinuous functions and a prox-friendly proper, convex and lower semicontinuous function. Different to the previous contributions from the literature on mirror descent methods for minimizing sums of functions, we do not require these to be (Lipschitz) continuous or differentiable. Applications in Logistics, Tomography and Machine Learning modelled as optimization problems illustrate the theoretical achievements.
Fichier principal
Vignette du fichier
Mirror-Descent-Smoothing_s_v2_3.pdf (683.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-03428808 , version 1 (15-11-2021)
hal-03428808 , version 2 (21-01-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Sandy Bitterlich, Sorin-Mihai Grad. Stochastic incremental mirror descent algorithms with Nesterov smoothing. Numerical Algorithms, 2023, ⟨10.1007/s11075-023-01574-1⟩. ⟨hal-03428808v2⟩
165 Consultations
271 Téléchargements

Altmetric

Partager

More