Core size of a random partition for the Plancherel measure
Taille du cœur d'une partition tirée selon la mesure de Plancherel
Résumé
We prove that the size of the e-core of a partition taken under the Poissonised Plancherel measure converges in distribution to, as the Poisson parameter goes to +∞ and after a suitable renormalisation, a sum of e − 1 mutually independent Gamma distributions with explicit parameters. Such a result already exists for the uniform measure on the set of partitions of n as n → +∞, the parameters of the Gamma distributions being all equal. We rely on the fact that the descent set of a partition is a determinantal point process under the Poissonised Plancherel measure and on a central limit theorem for such processes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|