Automatic Text Evaluation through the Lens of Wasserstein Barycenters - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Automatic Text Evaluation through the Lens of Wasserstein Barycenters

Résumé

A new metric BaryScore to evaluate text generation based on deep contextualized embeddings (e.g., BERT, Roberta, ELMo) is introduced. This metric is motivated by a new framework relying on optimal transport tools, i.e., Wasserstein distance and barycenter. By modelling the layer output of deep contextualized embeddings as a probability distribution rather than by a vector embedding; this framework provides a natural way to aggregate the different outputs through the Wasserstein space topology. In addition, it provides theoretical grounds to our metric and offers an alternative to available solutions (e.g., MoverScore and BertScore). Numerical evaluation is performed on four different tasks: machine translation, summarization, data2text generation and image captioning. Our results show that BaryScore outperforms other BERT based metrics and exhibits more consistent behaviour in particular for text summarization.
Fichier principal
Vignette du fichier
2021.emnlp-main.817.pdf (619.86 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03423971 , version 1 (14-05-2024)

Licence

Identifiants

Citer

Pierre Colombo, Guillaume Staerman, Pablo Piantanida, Chloé Clavel. Automatic Text Evaluation through the Lens of Wasserstein Barycenters. EMNLP 2021, Nov 2021, Punta Cana, Dominican Republic. pp.10450-10466, ⟨10.18653/v1/2021.emnlp-main.817⟩. ⟨hal-03423971⟩
77 Consultations
27 Téléchargements

Altmetric

Partager

More