On some combinatorial sequences associated to invariant theory - Archive ouverte HAL
Article Dans Une Revue European Journal of Combinatorics Année : 2022

On some combinatorial sequences associated to invariant theory

Résumé

We study the enumerative and analytic properties of some sequences constructed using tensor invariant theory. The octant sequences are constructed from the exceptional Lie group~$G_2$ and the quadrant sequences from the special linear group~$SL(3)$. In each case we show that the corresponding sequences are related by binomial transforms. The first three octant sequences and the first four quadrant sequences are listed in the On-Line Encyclopedia of Integer Sequences (OEIS). These sequences all have interpretations as enumerating two-dimensional lattice walks but for the octant sequences the boundary conditions are unconventional. These sequences are all P-recursive and we give the corresponding recurrence relations. In all cases the associated differential operators are of third order and have the remarkable property that they can be solved to give closed formulae for the ordinary generating functions in terms of classical Gaussian hypergeometric functions. Moreover, we show that the octant sequences and the quadrant sequences are related by the branching rules for the inclusion of~$SL(3)$ in $G_2$.
Fichier principal
Vignette du fichier
2110.13753.pdf (327.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03423136 , version 1 (09-11-2021)
hal-03423136 , version 2 (21-04-2022)

Identifiants

Citer

Alin Bostan, Jordan Tirrell, Bruce W Westbury, Yi Zhang. On some combinatorial sequences associated to invariant theory. European Journal of Combinatorics, 2022, 105, pp.1-22. ⟨10.1016/j.ejc.2022.103554⟩. ⟨hal-03423136v2⟩
84 Consultations
93 Téléchargements

Altmetric

Partager

More