SRB MEASURES FOR C ∞ SURFACE DIFFEOMORPHISMS
Résumé
A $C^\infty$ surface diffeomorphism admits a SRB measure if and only if the set \left \{x, \limsup_n \frac{1}{ n} \log \|d_xf^n \|> 0\right\} has positive Lebesgue measure. Moreover the basins of the ergodic SRB measures are covering this set Lebesgue almost everywhere. We also obtain similar results for $C^r$ surface diffeomorphisms with $+\infty>r>1$.
Domaines
Systèmes dynamiques [math.DS]Origine | Fichiers produits par l'(les) auteur(s) |
---|