Precise Runtime Analysis for Plateau Functions - Archive ouverte HAL
Article Dans Une Revue ACM Transactions on Evolutionary Learning and Optimization Année : 2021

Precise Runtime Analysis for Plateau Functions

Résumé

To gain a better theoretical understanding of how evolutionary algorithms (EAs) cope with plateaus of constant fitness, we propose the n -dimensional \textsc {Plateau} _k function as natural benchmark and analyze how different variants of the (1 + 1) EA optimize it. The \textsc {Plateau} _k function has a plateau of second-best fitness in a ball of radius k around the optimum. As evolutionary algorithm, we regard the (1 + 1) EA using an arbitrary unbiased mutation operator. Denoting by \alpha the random number of bits flipped in an application of this operator and assuming that \Pr [\alpha = 1] has at least some small sub-constant value, we show the surprising result that for all constant k \ge 2 , the runtime T follows a distribution close to the geometric one with success probability equal to the probability to flip between 1 and k bits divided by the size of the plateau. Consequently, the expected runtime is the inverse of this number, and thus only depends on the probability to flip between 1 and k bits, but not on other characteristics of the mutation operator. Our result also implies that the optimal mutation rate for standard bit mutation here is approximately k/(en) . Our main analysis tool is a combined analysis of the Markov chains on the search point space and on the Hamming level space, an approach that promises to be useful also for other plateau problems.
Fichier principal
Vignette du fichier
o.pdf (650.16 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03418304 , version 1 (07-11-2021)

Identifiants

Citer

Denis Antipov, Benjamin Doerr. Precise Runtime Analysis for Plateau Functions. ACM Transactions on Evolutionary Learning and Optimization, 2021, 1 (4), pp.1-28. ⟨10.1145/3469800⟩. ⟨hal-03418304⟩
31 Consultations
84 Téléchargements

Altmetric

Partager

More