
HAL Id: hal-03418304
https://hal.science/hal-03418304v1

Submitted on 7 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Precise Runtime Analysis for Plateau Functions
Denis Antipov, Benjamin Doerr

To cite this version:
Denis Antipov, Benjamin Doerr. Precise Runtime Analysis for Plateau Functions. ACM Transactions
on Evolutionary Learning and Optimization, 2021, 1 (4), pp.1-28. �10.1145/3469800�. �hal-03418304�

https://hal.science/hal-03418304v1
https://hal.archives-ouvertes.fr

Precise Runtime Analysis for Plateau
Functions∗

Denis Antipov
ITMO University

St. Petersburg
Russia

and
Laboratoire d’Informatique (LIX)

CNRS
École Polytechnique

Institute Polytechnique de Paris
Palaiseau

France

Benjamin Doerr
Laboratoire d’Informatique (LIX)

CNRS
École Polytechnique

Institute Polytechnique de Paris
Palaiseau

France

November 2, 2021

∗This work is a significantly extended version of the PPSN 2018 paper [AD18]. It
completes the original work by including the mathematical proofs, which were omitted

1

ar
X

iv
:1

80
6.

01
33

1v
4

 [
cs

.N
E

]
 1

 N
ov

 2
02

1

Abstract

To gain a better theoretical understanding of how evolutionary
algorithms (EAs) cope with plateaus of constant fitness, we propose
the n-dimensional Plateauk function as natural benchmark and an-
alyze how different variants of the (1 + 1) EA optimize it. The
Plateauk function has a plateau of second-best fitness in a ball of
radius k around the optimum. As evolutionary algorithm, we regard
the (1 + 1) EA using an arbitrary unbiased mutation operator. De-
noting by α the random number of bits flipped in an application of
this operator and assuming that Pr[α = 1] has at least some small
sub-constant value, we show the surprising result that for all constant
k ≥ 2, the runtime T follows a distribution close to the geometric one
with success probability equal to the probability to flip between 1 and
k bits divided by the size of the plateau. Consequently, the expected
runtime is the inverse of this number, and thus only depends on the
probability to flip between 1 and k bits, but not on other characteris-
tics of the mutation operator. Our result also implies that the optimal
mutation rate for standard bit mutation here is approximately k/(en).
Our main analysis tool is a combined analysis of the Markov chains on
the search point space and on the Hamming level space, an approach
that promises to be useful also for other plateau problems.

1 Introduction

This work aims at making progress on several related subjects—we aim at
understanding how evolutionary algorithms optimize non-unimodal1 fitness
functions, what mutation operators to use in such settings, how to analyze
the behavior of evolutionary algorithms on large plateaus of constant fitness,
and in particular, how to obtain runtime bounds that are precise including
the leading constant.

The recent work [DLMN17] observed that a large proportion of the the-
oretical work in the past concentrates on analyzing how evolutionary algo-
rithms optimize unimodal fitness functions and that this can lead to mis-
leading recommendations on how to design evolutionary algorithms. Based
on a precise analysis of how the (1 + 1) EA optimizes jump functions, it was

in the conference version for reasons of space, and it extends the conference version by
proving the same result for mutation operators with a sub-constant probability to flip
exactly one bit, by a tail bound for the runtime, and by a wider selection of applications
in Section 5.

1As common in optimization, we reserve the notion unimodal for objective functions
such that each non-optimal search point has a strictly better neighbor.

2

observed that the classic recommendation to use standard bit mutation with
mutation rate 1

n
is far from optimal for this function class. For jump size k,

a speed-up of order kΘ(k) can be obtained by using a mutation rate of k
n
.

Jump functions are difficult to optimize because the optimum is sur-
rounded by a large set of search points of very low fitness (all search points
in Hamming distance 1 to k − 1 from the optimum). However, local op-
tima are not the only feature which makes functions difficult to optimize.
Another challenge for most evolutionary algorithms are large plateaus of
constant fitness. On such plateaus, the evolutionary algorithm learns little
from evaluating search points and consequently performs an unguided ran-
dom walk. To understand this phenomenon in more detail, we propose a
class of fitness functions very similar to jump functions. A plateau func-
tion with plateau parameter k is identical to a jump function with jump
size k except that the k − 1 Hamming levels around the optimum do not
have a small fitness, but have the same second-best fitness as the k-th Ham-
ming level. Consequently, these functions do not have true local optima (in
which an evolutionary algorithm could get stuck for longer time), but only
a plateau of constant fitness. Our hope is that this generic fitness function
with a plateau of scalable size may aid the understanding of plateaus in
evolutionary computation in a similar manner as the jump functions have
led to many useful results about the optimization of functions with true lo-
cal optima, e.g., [DJW02,JW02,DDK15,BDK16,DFK+16,FKK+16,COY17,
COY18,DLMN17,DFK+18,WVHM18,HS18,Doe19b,Doe19a].

When trying to analyze how evolutionary algorithms optimize plateau
functions, we observe that the active area of theoretical analyses of evo-
lutionary algorithms has produced many strong tools suitable to ana-
lyze how evolutionary algorithms make true progress (e.g., various form
of the fitness level method [Weg01, Sud13, DL16, CDEL18] or drift analy-
sis [HY01,DJW12,LW14,DK19]), but much less is known on how to analyze
plateaus. This is not to mean that plateaus have not been analyzed previ-
ously, see, e.g., [GKS99, JW01, DHN07, BFH+09, FHN09, NSW09, FHN10],
but these results appear to be more ad hoc and less suitable to derive
generic methods for the analysis of plateaus. In particular, with the ex-
ception of [GKS99], we are not aware of any results that determine the
runtime of an evolutionary algorithm on a fitness function with non-trivial
plateaus precisely including the leading constant (whereas a decent number
of very precise results have recently appeared for unimodal fitness functions,
e.g., [BDN10,DFW11,Wit13,LOW17,HPR+18,DDL19,HW19]).

Such precise results are necessary for our further goal of understanding
the influence of the mutation operator on the efficiency of the optimization
process. Mutation is one of the most basic building blocks in evolutionary

3

computation and has, consequently, received significant attention also in the
runtime analysis literature. We refer to the discussion in [DLMN17] for a
more extensive treatment of this topic and only note here that even small
changes of the mutation operator or its parameters can lead to a drastic
change of the efficiency of the algorithm [DJK08,DJS+13].

Our results: Our main result is a very general analysis of how the sim-
plest mutation-based evolutionary algorithm, the (1 + 1) EA, optimizes the
n-dimensional plateau function with plateau parameter k ∈ N, which is con-
sidered as a constant and does not depend on n when n tends to the positive
infinity. We allow the algorithm to use any unbiased mutation operator (in-
cluding, e.g., one-bit flips, standard bit mutation with an arbitrary mutation
rate, or the fast mutation operator of [DLMN17]) as long as the operator flips

exactly one bit with probability ω(n−
1

2k−2). This assumption is natural, but
also ensures that the algorithm can reach all points on the plateau. Denoting
the number of bits flipped in an application of this operator by the random
variable α, we prove that the expected optimization time (number of fitness
evaluations until the optimum is visited) is

nk

k! Pr[1 ≤ α ≤ k]
(1 + o(1)).

This result, tight apart from lower order terms only, is remarkable in several
respects. It shows that the performance depends very little on the particular
mutation operator, only the probability to flip between 1 and k bits has an
influence. The absolute runtime is also surprising — it is the size of the
plateau times the waiting time until we flip between 1 and k bits.

A similar-looking result was obtained in [GKS99], namely that the ex-
pected runtime of the (1 + 1) EA with 1-bit mutation and with standard bit
mutation with rate 1

n
on the needle function is (apart from lower order terms)

the size of the plateau times the probability to flip a positive number of bits
(which is 1 for 1-bit mutation and (1 − o(1))(1 − 1

e
) for standard bit muta-

tion with rate 1
n
). Our result is different from that one in that we consider

constrained plateaus of arbitrary (constant) radius k ≥ 2, and more general
in that we consider a wide class of unbiased mutation operators. Despite the
difference in the plateaus, the expected runtime is surprisingly similar, which
is the size of the plateau times the expected number of iterations until we
flip between 1 and k bits (where for the needle function we can take k = n).

We note that there is a substantial difference between the case k = n
and k constant. Since the needle function consists of a plateau containing
the whole search space apart from the optimum, the optimization time in
this case is just the hitting time of a particular search point when doing an

4

undirected random walk (via repeated mutation) on the hypercube {0, 1}n.
For Plateauk with constant k, the plateau has a large boundary. More pre-
cisely, almost all2 search points of the plateau lie on its outer boundary and
furthermore, all these search points have almost all their neighbors outside
the plateau. Hence a large number of iterations (namely almost all) are lost
in the sense that the mutation operator generates a search point outside the
plateau (and different from the optimum), which is not accepted. Interest-
ingly, as our result shows, the optimization of such restricted plateaus is not
necessarily significantly more difficult (relative to the plateau size) than the
optimization of the unrestricted needle plateau.

Our precise runtime analysis allows to deduce a number of particular
results. For example, when using standard bit mutation, the optimal3 mu-

tation rate is
k√
k!
n

, that is, approximately k
en

. This is by a constant factor
less than the optimal rate of k

n
for the jump function with jump size k, but

again a factor of Θ(k) larger than the classic recommendation of 1
n
, which is

optimal for many unimodal fitness functions. Hence our result confirms that
optimal mutation rates can be significantly higher for non-unimodal fitness
functions. While the optimal mutation rates for jump and plateau functions
are similar, the effect of using the optimal rate is very different. For jump
functions, an kΘ(k) factor speed-up (compared to the standard recommenda-
tion of 1

n
) was observed, here the influence of the mutation operator is much

smaller, namely the factor Pr[1 ≤ α ≤ k], which is trivially at most 1, but
which was assumed to be at least some positive constant. Interestingly, our
results imply that the fast mutation operator described in [DLMN17] is not
more effective than other unbiased mutation operators, even though it was
proven to be significantly more effective for jump functions [DLMN17] and
it has shown good results in some practical problems [MB17].

So one structural finding, which we believe to be true for larger classes of
problems and which fits to the result [GKS99] for needle functions, is that the
mutation rate, and more generally, the particular mutation operator which
is used, is less important while the evolutionary algorithm is traversing a
plateau of constant fitness.

The main technical novelty in this work is that we model the optimization
process via two different Markov chains describing the random walk on the
plateau, namely the chain defined on the Θ(nk) elements of the plateau (plus

2in the usual asymptotic sense, that is, meaning all but a lower order fraction
3We call a mutation rate optimal when it delivers an expected runtime that differs from

the truly optimal one at most by lower order terms, that is, e.g. a factor of (1 ± o(1)).
This suggests that there might be a range of optimal rates, however without proof we note
that changing the mentioned optimal mutation rate by a factor of (1 ± Ω(1)) would also
increase the runtime by a (1 + Ω(1)) factor.

5

the optimum) and the chain obtained from aggregating these into the total
mass on the Hamming levels. Due to the symmetry of the process, one could
believe that it suffices to regard only the level chain. The chain defined
on the elements, however, has some nice features which the level chain is
missing, among others, a symmetric transition matrix (because for any two
search points x and y on the plateau, the probability of going from x to y
is the same as the probability of going from y to x). This symmetry allows
us to analyse the speed of convergence to some distribution over the points
of the plateau by using some ideas similar to the ones used in [Vit00] for
the analysis of the rapidly mixing Markov chains. For this reason, we find it
fruitful to switch between the two chains. Exploiting the interplay between
the two chains and using classic methods from linear algebra, we find the
exact expression for the expected runtime.

The most valuable insight given by this approach is that the mixing of
the probability mass over the plateau is very fast. More precisely, we show
that independently of the first position on the plateau, in slightly more than
Θ(
√
n log(n)) iterations we are almost equally likely to be at any point of the

plateau. A similar mixing argument was used to prove the upper bound on
the runtime of the (1 + 1) EA on the LeadingOnes with strong prior noise
in [Sud20]. There, however, only an exponential mixing time was shown,
although the author conjectures that it should be polynomial. Our analysis
based on the interplay of two Markov chains is problem-specific (e.g., we
base our arguments on the symmetry of the plateau), but we are optimistic
that the observed behavior of a small mixing time can be also seen on other
plateaus which are not too easy to leave.

The rest of the paper has the following structure. In Section 2 we describe
the (1 + 1) EA, the operators it uses and the problem on which we analyse
the algorithm. In Section 3 we list the mathematical means that are used
in our analysis. We also introduce the central tool of our analysis — the
two Markov chains, show their properties and the connection between the
two chains. In Section 4 we prove the main result of this work, which is, the
precise runtime of the (1 + 1) EA on the Plateauk function for constant
k. The corollaries from the main result, which are, the precise runtime of
different variants of the (1 + 1) EA, are shown in Section 5. Finally, we
summarize the results in Section 6.

2 Problem Statement

We consider the maximization of a function defined on the space of bit-strings
of length n which resembles the OneMax function, but has a plateau of

6

OneMax(x)nn− k

n− k

n
Plateauk(x)

Figure 1: Plot of the Plateau function. As a function of unitation, the
function value of a search point x depends only on the number of one-bits
in x.

second-highest fitness of radius k around the optimum. We call this function
Plateauk and define it as follows.

Plateauk(x) :=

{
n− k, if n− k < OneMax(x) < n,

OneMax(x), otherwise,

where OneMax(x) := ‖x‖1 is the number of one-bits in x ∈ {0, 1}n.
Notice that the plateau of the function Plateauk(x) consists of all bit-

strings that have at least n− k one-bits, except the optimal bit-string x∗ =
(1, . . . , 1). See Fig. 1 for an illustration of Plateauk.

To compare the results of our analysis to the best runtime which could
be obtained by an algorithm using only unbiased operators, we note that
the unary unbiased black-box complexity (see [LW12] for the definition) of
Plateauk is Θ(n log n) for all constants k. While this implies that there
is a unary unbiased black-box algorithm finding the optimum of Plateauk
in O(n log n) time, such results generally do not indicate that a problem is
easy for reasonable evolutionary algorithms. For example, in [DDK14] it was
shown that the NP-complete partition problem also has a unary unbiased
black-box complexity of O(n log n).

Lemma 1. For all constants k, the unary unbiased black-box complexity of
the Plateauk function is Θ(n log n).

Proof. The lower bound follows from the Ω(n log n) lower bound for the unary
unbiased black-box complexity of OneMax shown in [LW12]. Since we can

7

write Plateauk = f ◦OneMax for a suitable function f (such that f(x) =
x, if x /∈ [n − k..n] and f(x) = n − k otherwise), any algorithm solving
Plateauk can be transferred into an algorithm which treats all points with
fitness in [n − k..n − 1] as points with fitness (n − k) and therefore solving
OneMax in the same time.

The upper bound follows along the same lines as the O(n log n) upper
bound for the unary unbiased black-box complexity of Jumpk, see [DDK15]
and note that the algorithm given there contains a sub-routine which, in
expected constant time, for a given constant radius r determines the Ham-
ming distance H(x, x∗) of a point x from the optimum x∗ without evaluating
search points y with H(y, x∗) ≤ r. Note that the Hamming distance from the
optimum determines the OneMax value of x. Hence with this routine one
can optimize both jump and plateau functions by simulating an O(n log n)
black-box algorithm for OneMax.

To understand how evolutionary algorithms optimize plateau functions,
we consider the most simple evolutionary algorithm, the (1 + 1) EA shown
in Algorithm 1. However, we allow the use of an arbitrary unbiased muta-
tion operator. A mutation operator Mutate for bit-string representations
is called unbiased if it is symmetric in the bit-positions [1..n] and in the bit-
values 0 and 1. This is equivalent to saying that for all x ∈ {0, 1}n and all
automorphisms σ of the hypercube {0, 1}n (respecting Hamming neighbors)
we have σ−1(Mutate(σ(x)) = Mutate(x), which is an equality of distri-
butions. The notation of unbiasedness was introduced (also for higher-arity
operators) in the seminal paper [LW12].

Algorithm 1: The fast (1+1) EA with a generic mutation operator
maximizing f : {0, 1}n → R
1 x← random bit string of length n;
2 while not terminated do
3 y ←Mutate(x);
4 if f(y) ≥ f(x) then
5 x← y;
6 end

7 end

For our purposes, it suffices to know that the set of unbiased mutation
operators consists of all operators which can be described as follows. First,
we choose a number α ∈ [0..n] according to some probability distribution
and then we flip exactly α bits chosen uniformly at random. Examples for

8

unbiased operators are the operator of Random Local Search, which flips a
single random bit, or standard bit mutation, which flips each bit indepen-
dently with probability 1

n
. Note that in the first case α is always equal to

one, whereas in the latter α follows a binomial distribution with parameters n
and 1

n
. This characterization can be derived from [DKLW13, Proposition 19].

It was explicitly stated in [DDY20].

Additional assumptions: The class of unbiased mutation operators con-
tains a few operators which are unable to solve even very simple problems.
For example, operators that always flips exactly two bits never finds the opti-
mum of any function with unique optimum if the initial individual has an odd
Hamming distance from the optimum. To avoid such artificial difficulties, we

only consider unbiased operators that have at least ω(n−
1

2k−2) probability to
flip exactly one bit.

As usual in runtime analysis, we are interested in the optimization be-
havior for large problem size n. Formally, this means that for each fixed k
we view the runtime Tk = Tk(n) as a function of n and aim at understanding
its asymptotic behavior for n tending to infinity. We aim at sharp results
(including finding the leading constant), that is, we try to find a simple func-
tion τk : N → R such that Tk(n) = (1 + o(1))τk(n), which is equivalent to
saying that limn→∞ Tk(n)/τk(n) = 1. In this limit sense, however, we treat k
as a constant, that is, k is a given positive integer and not also a function of
n.

Finally, since the case k = 1 is well-understood (Plateau1 is the well-
known OneMax function), we always assume k ≥ 2.

3 Preliminaries and Notation

3.1 Tools from Linear Algebra

In this section we briefly review the terms, tools and facts from the linear
algebra that we use in this work.

We use N to denote the set of all positive integer numbers and we use N0

to denote N ∪ {0}. We denote the vector of length n that consists only of
ones by 1n and the vector of length n that consists only of zeros by 0n.

Given the square matrix A, the vector x is called the left eigenvector of the
matrix A if xA = λx for some λ ∈ C. In this situation, λ is called eigenvalue
of the matrix A. The vector x is called right eigenvector if Ax = λx for some
λ ∈ C. Since in this work we regard only left eigenvectors, we call them just
eigenvectors.

9

The spectrum of a matrix is the set of all its eigenvalues. If a matrix has
size n×n, then the number of its eigenvalues is not greater than n. For each
eigenvalue there exists a corresponding eigenspace, that is, the linear span of
all the eigenvectors that correspond to the eigenvalue.

The only point shared by any two eigenspaces that correspond to two
different eigenvalues is 0n.

The characteristic polynomial χ(λ) of matrix A is the function of λ that
is defined as the determinant of the matrix A − λI, where I is the identity
matrix. The set of roots of the characteristic polynomial equals the spectrum
of the matrix A.

The inner product of the vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1)
is a scalar value defined by 〈x, y〉 =

∑n−1
i=0 xiyi. The two vectors are orthogonal

if their inner product is zero.
For every diagonalizable matrix A of size n× n there exists a set {ei}n−1

i=0

of eigenvectors that form a basis of Rn. A basis is called orthogonal when all
pairs of the basis vectors are orthogonal. A matrix A = (aji) is symmetric if
for every i and j we have aji = aij.

We use the following two properties of symmetric matrices.

Lemma 2. All eigenvalues of a symmetric matrix are real.

Lemma 3. Two eigenvectors of a symmetric matrix that correspond to dif-
ferent eigenvalues are orthogonal. Also every symmetric matrix of size n×n
is diagonalizable, which means that there exists an orthogonal basis of Rn

which consist of eigenvectors of this matrix.

In this work we also encounter irreducible matrices. Among the several
definitions, the following is the easiest to check for the non-negative matrices
considered in this work. For each non-negative matrix A of size n × n we
can build a directed graph GA by taking an empty graph on n vertices and
adding for each non-negative component aji of A an edge from vertex i to
vertex j. Then a matrix A is irreducible if and only if graph GA is strongly
connected.

For example, the transition matrix of an irreducible Markov chain (a
chain such that each state is reachable from each other state) is irreducible.

A crucial role in this work is played by the Perron-Frobenius theo-
rem [Mey00]. This theorem gives a series of properties of the irreducible
matrices, among them we use the following four.

Theorem 4 (Perron-Frobenius). Any irreducible non-negative matrix A has
the following properties.

10

• The largest eigenvalue λ0 of A lies between the minimal and the maxi-
mal row sum of A.

• For every eigenvalue λ of A different from the largest eigenvalue λ0 we
have |λ| < λ0.

• The largest eigenvalue of A has a one-dimensional eigenspace.

• There exists an eigenvector which corresponds to the largest eigenvalue
λ0 all components of which are strictly positive.

When talking about vector norms, we use the following notation. For any
p ∈ (0,+∞) and any vector x ∈ Rn, we let

‖x‖p =

(
n−1∑
j=0

|xj|p
)1/p

.

In this work we use only the Manhattan norm (p = 1) and the Euclidean
norm (p = 2). We use the following properties of these norms.

Lemma 5. For all x ∈ Rn we have

‖x‖2 ≤ ‖x‖1 ≤
√
n ‖x‖2 .

The following lemma is often called triangle inequality

Lemma 6. For any norm ‖·‖ and for every x, y and z = x+ y we have

‖x‖ − ‖y‖ ≤ ‖z‖ ≤ ‖x‖+ ‖y‖

We use the following properties of the Euclidean norm.

Lemma 7. If vectors x1, . . . , xn are orthogonal, then for any values
a1, . . . , an ∈ R we have∥∥∥∥∥

n∑
i=1

aix
i

∥∥∥∥∥
2

≤ max
i∈[1..n]

|ai|

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
2

Lemma 8. If vectors x1, . . . , xn are orthogonal, then for any subset S ⊂ [1..n]
we have ∥∥∥∥∥∑

i∈S

xi

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
2

11

We also make a use of the orthogonal projection of vectors, which is
defined as follows. Suppose we have vector x ∈ Rn and it is decomposed
into the sum of m orthogonal vectors {xi}m−1

i=0 where m ≤ n. Then xi is the
orthogonal projection of x to the linear span of xi. To calculate precisely the
norm of the projection, we use the following lemma.

Lemma 9. If xi is the orthogonal projection of x, then for any norm ‖·‖ we
have

∥∥xi∥∥ =
〈x, xi

‖xi‖〉
〈 xi

‖xi‖ ,
xi

‖xi‖〉
.

We also encounter the self-adjoint operators. An operator A : Rn → Rn

is called self-adjoint if for all x ∈ Rn and y ∈ Rn we have 〈Ax, y〉 = 〈x,Ay〉,
where 〈·, ·〉 stands for the standard inner product. The operator in this space
is self-adjoint if and only if its matrix is symmetric. The most important
properties of self-adjoint operators are stated in the Hilbert-Schmidt theo-
rem [RR04]. We use only one of them.

Lemma 10. For any self-adjoint operator A : Rn → Rn there exists an
orthonormal basis of Rn that consists of the eigenvectors of A.

3.2 Absorbing Markov Chains4

Markov chains are a widely used tool for the runtime analysis of evolutionary
algorithms (see, e.g., [Müh93, Suz95, Rud96]). In this work we only regard
absorbing Markov chains. A Markov chain is called absorbing if there is a
subset S ′ of the set of its states S such that

(1) for every state s1 ∈ S there exists a state s2 ∈ S ′ such that there exists
a path of transitions with positive probabilities from s1 to s2 (we call
s2 an absorbing state) and

(2) for every absorbing state s ∈ S ′ the probability to leave this state is
zero.

The non-absorbing states (the states in S \S ′) are called the transient states.

4In this subsection we use a standard notation for the absorbing Markov chains such
as N for the fundamental matrix, P for the transition matrix and Q for the transient-
to-transient transition matrix. In the rest of the paper for the reader’s convenience we
redefine these common and easy-to-remember symbols to denote the objects we work with
most frequently.

12

Absorbing chains appear naturally in runtime analysis. When taking as
states of the Markov chain the possible states of the algorithm, we can assume
the optima to be absorbing. The runtime of the algorithm is the number of
transitions in the chain until it reaches an absorbing state. We only regard
absorbing Markov chains with exactly one absorbing state.

The standard way to compute the expected number of steps until an
absorbing state is reached uses the fundamental matrix, which is built as
follows. Let P be the transition matrix of an absorbing Markov chain, that
is, the matrix where each element pji is equal to the transition probability
from state i to state j. Let Q be the square submatrix of P consisting only
of the rows and columns which correspond to transient states of the chain.
We call Q the transient matrix for brevity. Then the fundamental matrix N
of this chain is defined as

N =
+∞∑
t=0

Qt = (I −Q)−1,

where I is the identity matrix of the same order as Q. Let π be a stochastic
vector which represents the initial distribution over the transient states. Then
the expected time until we reach an absorbing state is

E[T] = πN1 = ‖πN‖1 ,

where 1 is a column vector of all ones.
However, working with the fundamental matrix is not convenient, since

it might be hard to compute its elements precisely. Instead, in this paper
we study the properties of the transient matrix Q and compute the expected
time until the absorption as

E[T] =

∥∥∥∥∥
+∞∑
t=0

πQt

∥∥∥∥∥
1

=
+∞∑
t=0

∥∥πQt
∥∥

1
, (1)

where the last equation is satisfied since all components of vectors πQt are
non-negative. Another way to derive this equation for the expected runtime
is to use the formula for the expectation of a non-negative integer-valued
random variable, which is,

E[T] =
+∞∑
t=0

Pr[T ≥ t].

Note that Pr[T ≥ t] is the probability that we are in a transient state in the
start of iteration t, which is ‖πQt‖1. We show this approach to be much more
fruitful, since after finding some properties of the spectrum of Q it allows us
to use the decomposition of π into the sum of eigenvectors of Q to obtain
precise estimates on the runtime.

13

3.3 Two Markov Chains

For the optimization process of our (1 + 1) EA we first observe that, since
the unbiased operator with constant probability flips exactly one bit, the
expected time to reach the plateau is O(n log n). Since the time for leaving
the plateau (as shown in this paper) is Ω(nk), we only consider the runtime
of the algorithm after it has reached the plateau.

For this runtime analysis on the plateau we consider the plateau in two
different ways. The first way is to regard a Markov chain that contains
N + 1 states, where N =

∑k−1
i=0

(
n
k−i

)
. Each state represents one element of

the plateau plus there is one absorbing state for the optimum. Note that
N = nk

k!
+ o(nk), since

(
n
j

)
= nj

j!
(1 + o(1)) for all j ∈ [1..k]. The transition

probability from transient state x to any state y is qyx = Pr[α = d]
(
n
d

)−1
,

where d is the Hamming distance between x and y. This implies that the
transition probability from x to y is equal to the transition probability from
y to x for any pair of the transient states. Therefore, the transient matrix is
symmetric, which gives us the opportunity to use Lemma 2 and Lemma 3. We
call this Markov chain the individual chain, denote its transient matrix by Q
and call the space of real vectors of dimension N the individual space5, since
the current state of the chain defines the current individual of the algorithm.

To define the second Markov chain, we first define the i-th level as the set
of all search points that have exactly n− k+ i one-bits. Then the plateau is
the union of levels 0 to k− 1 and the optimum is the only element of level k.
Notice that the i-th level contains exactly

(
n
k−i

)
elements (search points).

For every i, j ∈ [0..k] we have that for any element of the i-th level the
probability to mutate to the j-th level is the same due to the unbiasedness of
the operator. Therefore we can regard a Markov chain of k+ 1 states, where
the i-th state (i ∈ [0..k]) represents the elements of the i-th level. State k is
an absorbing state. The transition probability from level i to level j is

pji =

0, if i = k, j 6= k,
k−j∑
m=0

(
k−i

j−i+m

)(
n−k+i
m

)(
n

j−i+2m

)−1
Pr[α = j − i+ 2m], if j > i,

k−i∑
m=0

(
k−i
m

)(
n−k+i
i−j+m

)(
n

i−j+2m

)−1
Pr[α = i− j + 2m], if j < i and i 6= k,

1−
k∑

m=0,m 6=i
pmi , if j = i,

(2)

5Note that the dimension of the individual space is equal to the number of transient
states of the individual chain, not to the total number of states. Hence, matrix Q defines
a linear operator on the individual space.

14

where we assume that n > 2k not to complicate the upper limit of sums.
This assumption is justified by that we only consider constant k and we
estimate the runtime with n tending to infinity. We notice the following
useful property of these probabilities.

Lemma 11. For all i, j ∈ [0..k − 1] we have(
n

k − i

)
pji =

(
n

k − j

)
pij.

Proof. Let Ls denote level s for all s ∈ [0..k − 1]. Let also px→Ls denote the
probability to get from individual x to any individual in level s. Since for all
individuals x in level i the probability px→Lj is the same and equal to pji and
since there are

(
n
k−i

)
individuals in level i, we have(

n

k − i

)
pji =

∑
x∈Li

px→Lj =
∑
x∈Li

∑
y∈Lj

qyx =
∑
x∈Li

∑
y∈Lj

qxy =
∑
y∈Lj

py→Li =

(
n

k − j

)
pij.

We observe that the probability to gain ` levels is O(n−`).

Lemma 12. For all i ∈ [0..k−1] and j ∈ [i+1..k], we have pji = O(n−(j−i)).

Proof. By Lemma 11 and since pij ≤ 1 we have

pji =

(
n
k−j

)
pij(

n
k−i

) ≤ (n− k + i)!(k − i)!
(n− k + j)!(k − j)!

= O(n−(j−i)).

We call this Markov chain the level chain and we call the space of real
vectors of length k the level space6. The level chain is illustrated in Fig. 2.
The transient matrix P of the level chain has a size of k × k. The matrix P
(unlike Q) is not symmetric. In our analysis we use the following property
of the matrix P .

Lemma 13. The sum of each row of P is 1−O(1
n
).

6As well as for the individual space, the dimension of the level space is equal to the
number of the transient states of the level chain and matrix P defines a linear operator
on this space.

15

0 1 k − 1
p10

p01

pk−1
1

p1k−1

pkk−1

pk0

pk−1
0

p0k−1

pk1

p00 p11 pk−1
k−1

Figure 2: Illustration of the level chain. The black circle represents the
optimum that is an absorbing state. The states [0..k− 1] represent the levels
of the plateau surrounding the optimum.

Proof. The sum of the i-th row of P is

k−1∑
j=0

pji = 1− pki , (3)

since the sum of all the outgoing probabilities for each state in the original
Markov chain is one. By Lemma 12 we have pki = O(n−(k−i)) = O(1

n
).

There is a natural mapping from the level space to the individual
space. Every vector x = (x0, . . . , xk−1) can be mapped to the vector
φ(x) = (y0, . . . , yN−1), where yi = xj/

(
n
k−j

)
, if the i-th element belongs to

the j-th level. If x is a distribution over the levels, that is, x ∈ [0, 1]k and
‖x‖1 = 1, then φ(x) is the distribution over the elements of the plateau which
is uniform on the levels and which has the same total mass on each level as x.
This mapping has several useful properties.

Lemma 14. φ is linear, that is, we have φ(αx + βy) = αφ(x) + βφ(y) for
all x, y ∈ Rk and all α, β ∈ R.

This property follows directly from the definition of φ.

Lemma 15. For all x ∈ Rk we have φ(xP) = φ(x)Q.

Proof. In informal words, this property holds because both matrices P and
Q represent the same operator, but in different spaces. Thus, the result of
applying this operator to some vector and then switching the space is the
same as performing these two actions in a reversed order.

16

For the formal proof, recall that level i is the set of all individuals in
distance (k − i) from the optimum. We use the fact that for any individual
m in level j we have

pij =
∑

`∈level i

q`m,

where q`m is the element of matrix Q, that is, the probability to obtain in-
dividual ` from individual m. From this and from the definition of φ we
calculate the m-th element of φ(xP), assuming that individual m belongs to
level j.

(φ(xP))m =
(xP)j(

n
k−j

) =

∑k−1
i=0 xip

j
i(

n
k−j

) .

By Lemma 11 we have
(
n
k−i

)
pji =

(
n
k−j

)
pij. Therefore,

(φ(xP))m =
k−1∑
i=0

xi(
n
k−i

)pij =
k−1∑
i=0

xi(
n
k−i

) ∑
`∈level i

q`m.

Recall that q`m = qm` for all `,m ∈ [0..N − 1]. Hence, we have

(φ(xP))m =
k−1∑
i=0

xi(
n
k−i

) ∑
`∈level i

qm` =
N−1∑
`=0

(φ(x))` · qm` = (φ(x)Q)m.

Lemma 16. The spectrum σ(P) of the matrix P is a subset of the spectrum
σ(Q) of the matrix Q. For any eigenvector x of the matrix P the vector φ(x)
is an eigenvector of Q.

Proof. From Lemma 14 and Lemma 15 it follows that if x is an eigenvector
of P , then φ(x) is an eigenvector of Q with the same eigenvalue. Thus, every
eigenvalue of P is an eigenvalue of Q.

Lemma 17. For all x ∈ Rk, the Manhattan norm is invariant under φ, that
is, ‖x‖1 = ‖φ(x)‖1.

This follows from the fact that all components of φ(x) that are from the
same level have the same sign. Notice that an analogous property does not
hold for the Euclidean norm ‖·‖2.

Although the two Markov chains represent the same process and each of
them contains all information about it, in our analysis we need to use both

17

of them simultaneously. We do not really work with the whole individual
space, but only with its subspace φ(S), where S is the level space. Hence,
it is natural to use the terms of the level space to simplify the computations
and make them easier to understand. On the other hand, we cannot prove
some essential facts about the operator P represented by the matrix P , e.g.,
that there exists a basis of the level space which consists of the eigenvectors
of P (see Lemma 20). To prove them we have to switch to the individual
space (or more precisely, to its subspace φ(S)) and use the properties of the
self-adjoint operator Q represented by the symmetric matrix Q. Therefore,
both chains and their transient matrices are indispensable in our analysis.

3.4 The Spectrum of the Transient Matrix

The main result of this section is the following analysis of the eigenvalues
of P , which builds on the interplay between the two Markov chains.

Lemma 18. Let P be the transient matrix of the level chain. Then the
following three properties hold.

1. All eigenvalues of P are real.

2. The largest eigenvalue λ0 of P satisfies λ0 = 1−O(1/n).

3. Let Pr[α = 1] > 0 and Pr[α = 1] = ω(1/ k−1
√
n). Then with c := Pr[α =

1] and with ε := ck−1

(k−1)2k
any other eigenvalue λ′ 6= λ0 of P satisfies

|λ′| < 1− ε.

Proof. The fact that the eigenvalues are real follows from the facts that by
Lemma 16 the spectrum of P is a subset of the spectrum of Q and that by
Lemma 2 all eigenvalues of the symmetric matrix Q are real.

The largest eigenvalue λ0 of P is bounded by the minimal and the maxi-
mal row sum of P (see Theorem 4), which are both 1−O(1/n) by Lemma 13.

It remains to show that the absolute values of all other eigenvalues are
less than 1 − ε for ε = ck−1

(k−1)2k
, which requires more work. To prove this

statement we perform a precise analysis of the characteristic polynomial of
P .

Recall that the spectrum of P is the set of the roots of its characteristic
polynomial

χP (λ) = det(P − λI) =
∑
σ∈Sk

sgn(σ)
k−1∏
i=0

(P − λI)i,σ(i),

18

where Sk is the set of all permutations of the set [0..k−1] and sgn(σ) denotes
the signature of permutation σ (that is, +1 if it can be obtained from the
identity permutation in even number of element swaps, and −1 otherwise).
Note that for all permutations except the identity the product in the sum
contains at least one factor (P − λI)i,j with j > i and this element satisfies
(P − λI)i,j = pji = O(1/n) by Lemma 12. The other factors of the product

are either pj
′

i′ or (pi
′

i′−λ) for some i′, j′, therefore every product where σ is not
the identity is a polynomial in λ with coefficients which are O(1/n). Thus,
the characteristic polynomial can be written as

χP (λ) =
k−1∏
i=0

(pii − λ) + β(λ), (4)

where β(λ) is some polynomial in λ with coefficients that are all O(1/n). For
this reason the derivative β′(λ) will also be O(1/n) for all λ ∈ [−1, 1], where
we recall that all asymptotics are for n → ∞ (and, e.g., not for any limit
behavior of λ).

To prove that for all eigenvalues λ′ 6= λ0 we have λ′ < 1 − ε we need to
prove that there is no more than one root of the characteristic polynomial
in [1− ε, 1]. To do so it suffices to prove that χP (λ) is strictly monotonic in
this segment.

Consider λ ≥ 1− ε. This implies that λ ≥ 1− c
2
. For every i 6= 0 we have

pii ≤ 1− Pr[α = 1] = 1− c. Thus, for every i 6= 0 and any λ ≥ 1− ε we have

(pii − λ) ≤ −c/2. (5)

By (4), the derivative of χP (λ) can be written as

χ′P (λ) = (p0
0 − λ)

(
k−1∏
i=1

(pii − λ)

)′
−

k−1∏
i=1

(pii − λ) + β′(λ). (6)

Recall that ε = ck−1

(k−1)2k
. For all λ ≥ 1− ε we have

p0
0 − λ ≤ 1−

(
1− ck−1

(k − 1)2k

)
=

ck−1

(k − 1)2k
,

∣∣∣∣∣∣
(
k−1∏
i=1

(pii − λ)

)′∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣−
k−1∑
i=1

∏
j∈[1..k−1]

j 6=i

(pjj − λ)

∣∣∣∣∣∣∣∣ ≤ (k − 1),

∣∣∣∣∣
k−1∏
i=1

(pii − λ)

∣∣∣∣∣ ≥ ck−1

2k−1
,

19

where the last inequality follows from (5). Furthermore, from (5) it also
follows that for i 6= 0 we have (pii − λ) < 0. Thus,

sign

(k−1∏
i=1

(pii − λ)

)′ = sign

− k−1∑
i=1

∏
j∈[1..k−1]

j 6=i

(pjj − λ)

 = (−1)k−1. (7)

Consequently, we have two cases.
Case 1: When p0

0 − λ ≥ 0, we have∣∣∣∣(p0
0 − λ)

(
k−1∏
i=1

(pii − λ)

)′
−

k−1∏
i=1

(pii − λ)

∣∣∣∣
≥

∣∣∣∣∣
k−1∏
i=1

(pii − λ)

∣∣∣∣∣−
∣∣∣∣∣∣(p0

0 − λ)

(
k−1∏
i=1

(pii − λ)

)′∣∣∣∣∣∣
≥
∣∣∣ c
2

∣∣∣k−1

− ck−1

(k − 1)2k

k−1∑
i=1

∣∣∣∣∣∣∣∣
∏

j∈[1..k−1]
j 6=i

(pjj − λ)

∣∣∣∣∣∣∣∣
≥ ck−1

2k−1
− (k − 1)

ck−1

(k − 1)2k
=
ck−1

2k
.

Hence, we have

|χ′P (λ)| = ck−1

2k
+O(1/n) =

ω(1/n
1

k−1)k−1

2k
+O(1/n) = ω(1/n).

Case 2: When p0
0 − λ < 0, since by (5) (pii − λ) < 0 for all i 6= 0, we have∣∣∣∣∣∣(p0

0 − λ)

(
k−1∏
i=1

(pii − λ)

)′
−

k−1∏
i=1

(pii − λ)

∣∣∣∣∣∣ ≥
∣∣∣∣∣
k−1∏
i=1

(pii − λ)

∣∣∣∣∣ ≥ ck−1

2k−1
.

Therefore,

|χ′P (λ)| = ω(1/n).

For n large enough, this together with (6) and (7) implies that χ′P (λ) has
the same sign as (−1)k−1 for every λ ∈ [1 − ε, 1]. Thus, there can be only
one root of characteristic polynomial in this segment.

20

To rule out that there is a negative eigenvalue λ with |λ| > 1 − ε, we
notice that for λ < −1

2
and for every i we have (pii − λ) > 1

2
. Therefore,

|χP (λ)| >
(

1
2

)k − o(1), and thus there are no roots that are less than −1
2

when n is large enough.
This finally shows that for all eigenvalues λ′ 6= λ0 we have |λ′| < 1 −

min
(

1
2
, ck−1

(k−1)2k

)
= 1− ck−1

(k−1)2k
.

4 Runtime Analysis

In this section, we prove our main result, which determines the runtime of
the (1 + 1) EA on the Plateau function.

Theorem 19. Consider the (1 + 1) EA using any unbiased mutation oper-
ator such that the probability to flip exactly one bit is at least Pr[α = 1] =

ω
(
n−

1
2k−2

)
. Let T denote the runtime of this algorithm starting on an arbi-

trary search point of the plateau of the Plateauk function. Then

E[T] =
nk

Pr[1 ≤ α ≤ k]k!
(1 + o(1)),

Pr[T > t] = (1± o(1))

(
1− k! Pr[1 ≤ α ≤ k]

nk
(1± o(1))

)t
+ r(t),

where |r(t)| ≤
√
N(1 − ε)t, ε = (Pr[α=1])k−1

(k−1)2k
, and N = nk

k!
(1 ± o(1)). All

asymptotic notation refers to n→∞ and is independent of t.

We start with a few preparatory results. Recall that by Theorem 4 the
largest eigenvalue of a positive matrix has a one-dimensional eigenspace. Also
this theorem asserts that both left and right eigenvectors that correspond to
the largest eigenvalue have all components with the same sign and they do
not have any zero component. Let π∗ be such a left eigenvector with positive
components for P and let it be normalized in such way that ‖π∗‖1 = 1. We
view π∗ as distribution over the levels of the plateau and call it the conditional
stationary distribution of P since it does not change in one iteration under
the condition that the algorithm does not find the optimum. Also let u =
(u0, . . . , uk−1) be the probability distribution in the level space such that φ(u)
is the uniform distribution in the individual space. Hence

ui =

(
n

k − i

)/ k−1∑
j=0

(
n

k − j

)
=

(
n

k − i

)
N−1

21

for all i ∈ [0..k − 1]. Our next target is showing that π∗ and u are asymp-
totically equal. For this, we need the following basis of the level space.

Lemma 20. There exists a basis {ei}k−1
i=0 of the level space with the following

properties.

1. π∗ = e0.

2. ei is an eigenvector of P for all i ∈ [0..k − 1].

3. The φ(ei) are orthogonal in the individual space.

Proof. Let S be the level space and Sind be the individual space. Then φ(S)
is a subspace of Sind with dimφ(S) = k, since the kernel of φ is trivial.

Consider the operator Q that is represented by the matrix Q. It is a
self-adjoint operator on Sind, since its matrix is symmetric. Moreover, this
operator maps φ(S) into φ(S), since for all x ∈ S by Lemma 15 we have
Q(φ(x)) = φ(x)Q = φ(xP). Therefore, Q is a self-adjoint operator on φ(S).
Thus, by Lemma 10 there exists an orthonormal basis f 0, . . . , fk−1 of φ(S)
that consists of eigenvectors of Q. Let ei = φ−1(f i) for all i ∈ [0..k − 1]. By
Lemma 16 the ei are eigenvectors of P . By the linearity of φ (Lemma 14)
they are linearly independent, hence they form a basis of S.

By assuming that e0 corresponds to the largest eigenvalue and multiplying
e0 by a suitable scalar, we also satisfy the first property of the lemma.

We use the basis from Lemma 20 to prove that φ(π∗) is very close to the
uniform distribution.

Lemma 21. If Pr[α = 1] = ω
(
n−

1
2k−2

)
, then for all j ∈ [0..k − 1], we have

π∗j = uj(1 + γj), where |γj| ≤ γ for some γ = o(1).

Proof. Figure 3 illustrates the relation of the terms used in this proof to
make it easier to follow. Lemma 20, there exist unique c0, c1, . . . , ck−1 ∈ R
such that

u =
k−1∑
i=0

cie
i.

If we transfer this decomposition into the individuals space (using the linear-
ity of φ, see Lemma 14), we obtain

U =
k−1∑
i=0

U i,

22

Individual space: U = (U0, . . . , Um, . . . , UN−1)= Π∗+ U1 + . . .+ Uk−1

Level space: u = (u0, . . . , uj, . . . , uk−1)= π∗+ c1e
1 + . . .+ ck−1e

k−1

φ φ φ φ
individual
of
level

=

(
n
k−j

)
N−1

= (1 + γj)·

=

(π∗0, . . . , π
∗
j , . . . , u

∗
k−1)

=

N−1

= (1 + γj)·

=

(Π∗0, . . . ,Π
∗
m, . . . ,Π

∗
k−1)

Figure 3: Illustration of the terms and their relations used in Lemma 21

where we define U := φ(u) and U i := φ(cie
i) for all i ∈ [0..k − 1]. Note

that the vector U describes the uniform distribution in the individuals space
and hence all its components are equal to 1

N
. For brevity we also define

Π∗ := φ(π∗).
We now aim at finding a useful connection between the components of Π∗

and U . Namely, if for all levels j ∈ [0..k−1] we prove that for any individual
m in level j we have Π∗m = (1 + γj)Um with γj that satisfies the conditions of
the theorem, we simultaneously prove the same relation for the components
of π∗ and u.

Recall that π∗ is a normalized vector. Thus, by Lemma 17 we have
‖Π∗‖1 = 1. Recall also that π∗ = e0 (by the choice of the basis) and therefore,

we have Π∗ = U0

‖U0‖1
. For all m ∈ [0..N − 1], we have

Π∗m =
U0
m

‖U0‖1

. (8)

The m-th component of U0 is

U0
m = Um −

k−1∑
i=1

U i
m = Um

(
1−

k−1∑
i=1

U i
m

Um

)
= Um

(
1−N

k−1∑
i=1

U i
m

)
.

With βm := N
k−1∑
i=1

U i
m, this simplifies to

U0
m = Um (1− βm) =

1

N
(1− βm) .

23

We also compute the denominator of (8) as

∥∥U0
∥∥

1
=

N−1∑
m=0

|U0
m| =

N−1∑
m=0

1

N
(1− βm) = 1−

N−1∑
m=0

1

N
βm.

Putting this into (8), we obtain

Π∗m = Um
1− βm

1−
∑N−1

m=0
1
N
βm

. (9)

In the remainder of the proof we aim at bounding |βm| from above by
some β = o(1). Then (9) gives

1− βm
1−

∑N−1
m=0

1
N
βm
∈
[

1− β
1 + β

,
1 + β

1− β

]
⊂
[
1− 2β

1− β
, 1 +

2β

1− β

]
,

hence defining γ = 2β
1−β = o(1) proves the lemma.

To find the desired β with |βm| < β = o(1), we regard the vector U−UQ.
On the one hand, its elements are very small. For all m ∈ [0..N−1], we have

(U − UQ)m = Um −
N−1∑
`=0

qm` U` =
1

N

(
1−

N−1∑
`=0

q`m

)
=
qNm
N
,

where qm` is the probability to go from individual ` to individual m (recall
that qm` = q`m) and qNm is the probability to leave the plateau from the m-th
individual. The Euclidean norm of this vector is also very small.

‖U − UQ‖2 =

√√√√N−1∑
m=0

(
qNm
N

)2

=
1

N

√√√√k−1∑
i=0

(
n

k − i

)(
Pr[α = k − i]

/(
n

k − i

))2

.

To bound the sum under the root we notice that it is maximized when
we maximize Pr[α = 1] (since we consider only constant k, we assume that
n is large enough so that n > 2k). Let this probability be equal to 1, then
we have only one non-zero summand and hence,

‖U − UQ‖2 ≤
1

N

√(
n

1

)−1

=
1√
nN

.

24

On the other hand, if we recall that the U i are eigenvectors, then we have

U − UQ =
k−1∑
i=0

U i −
k−1∑
i=0

λiU
i =

k−1∑
i=0

(1− λi)U i.

As the U i are orthogonal, for every i ∈ [0..k − 1] we have∥∥(1− λi)U i
∥∥

2
≤ ‖U − UQ‖2 ≤

1√
nN

.

Since the absolute value of every component of a vector cannot be larger
than its Euclidean norm, for all m ∈ [0..N − 1] we conclude that

|(1− λi)U i
m| ≤

∥∥(1− λi)U i
∥∥

2
≤ 1√

nN
.

Recall that by Lemma 18 we have

(1− λi) > ε >
(Pr[α = 1])k−1

(k − 1)2k

for all i 6= 0. Consequently,

|βm| =

∣∣∣∣∣N
k−1∑
i=1

U i
m

∣∣∣∣∣ ≤ N
k−1∑
i=1

|U i
m| ≤ N

k−1∑
i=1

1√
nN(1− λi)

≤ (k − 1)√
nε

=: β.

Since we have Pr[α = 1] = ω(n−
1

2k−2), we conclude that

ε =

(
ω(n−

1
2k−2)

)k−1

(k − 1)2k
= ω(1/

√
n).

Thus,

β =
(k − 1)√

nε
= o(1)

as desired.

We are now in the position to prove our main result.

25

Proof of Theorem 19. To prove the theorem we first estimate the probability
that the runtime T is greater than t by Pr[T > t] = ‖πP t‖1, where π is the
initial distribution over the levels of the plateau (see Section 3.2). Then
by (1) we estimate the expected runtime as E[T] =

∑+∞
t=1 ‖πP t−1‖1.

To analyse ‖πP t‖1, we decompose π into a sum of eigenvectors of P using
the basis e0, . . . , ek−1 from Lemma 20. Let π0, . . . , πk−1 be scalar multiples
of e0, . . . , ek−1 such that

π =
k−1∑
i=0

πi. (10)

Using the triangle inequalities (Lemma 6) we obtain

∥∥π0P t
∥∥

1
−

∥∥∥∥∥
k−1∑
i=1

πiP t

∥∥∥∥∥
1

≤
∥∥πP t

∥∥
1
≤
∥∥π0P t

∥∥
1

+

∥∥∥∥∥
k−1∑
i=1

πiP t

∥∥∥∥∥
1

.

Since the πi are the eigenvectors of P , we have

λt0
∥∥π0
∥∥

1
−

∥∥∥∥∥
k−1∑
i=1

λtiπ
i

∥∥∥∥∥
1

≤
∥∥πP t

∥∥
1
≤ λt0

∥∥π0
∥∥

1
+

∥∥∥∥∥
k−1∑
i=1

λtiπ
i

∥∥∥∥∥
1

. (11)

Now we estimate the “error term”
∥∥∥∑k−1

i=1 λ
t
iπ
i
∥∥∥

1
of these bounds. First,

by Lemma 17 and by Lemma 14, we have∥∥∥∥∥
k−1∑
i=1

λtiπ
i

∥∥∥∥∥
1

=

∥∥∥∥∥φ
(
k−1∑
i=1

λtiπ
i

)∥∥∥∥∥
1

=

∥∥∥∥∥
k−1∑
i=1

λtiφ(πi)

∥∥∥∥∥
1

. (12)

Using Lemma 5 and Lemma 7 we estimate∥∥∥∥∥
k−1∑
i=1

λtiφ(πi)

∥∥∥∥∥
1

≤
√
N

∥∥∥∥∥
k−1∑
i=1

λtiφ(πi)

∥∥∥∥∥
2

≤
√
N max

i∈[1..k−1]
(|λti|)

∥∥∥∥∥
k−1∑
i=1

φ(πi)

∥∥∥∥∥
2

.

(13)

By Lemma 18 we have maxi∈[1..k−1](|λti|) ≤ (1 − ε)t, where ε = (Pr[α=1]))k−1

(k−1)2k
.

Hence, by Lemma 8 and Lemma 5, we conclude

√
N max

i∈[1..k−1]
(|λti|)

∥∥∥∥∥
k−1∑
i=1

φ(πi)

∥∥∥∥∥
2

≤
√
N(1− ε)t ‖φ(π)‖1 =

√
N(1− ε)t. (14)

Finally, by (11), (12), (13), and (14) we obtain that

26

∥∥πP t
∥∥

1
= λt0

∥∥π0
∥∥

1
+ r(t), (15)

where |r(t)| ≤
√
N(1− ε)t.

To estimate the expected runtime we put (15) into (1) and obtain

E[T] =
+∞∑
t=1

∥∥πP t−1
∥∥

1
=

+∞∑
t=1

(
λt−1

0

∥∥π0
∥∥

1
+ r(t− 1)

)
=

+∞∑
t=1

λt−1
0

∥∥π0
∥∥

1
+

+∞∑
t=1

r(t− 1) =
‖π0‖1

1− λ0

+
+∞∑
t=0

r(t).

(16)

By (14) we have∣∣∣∣∣
+∞∑
t=0

r(t)

∣∣∣∣∣ ≤
+∞∑
t=0

|r(t)| ≤
+∞∑
t=1

√
N(1− ε)t =

(1− ε)
√
N

ε
≤
√
N

ε
.

From the assumptions of the theorem we have

ε =
(Pr[α = 1])k−1

(k − 1)2k
=
ω(1/

√
n)

(k − 1)2k
= ω(1/

√
n),

and hence ∣∣∣∣∣
+∞∑
t=0

r(t)

∣∣∣∣∣ = o(
√
nN).

It remains to estimate ‖π0‖1 and λ0. Recall that by Lemma 17 we have
‖π0‖1 = ‖φ(π0)‖1. From the linearity of φ (see Lemma 14) and (10) we obtain

φ(π) =
∑k−1

i=0 φ(πi). Since π0, . . . πk−1 are scalar multiples of e0, . . . ek−1 and
all φ(ei) are orthogonal, we have a decomposition of φ(π) into a sum of
orthogonal vectors. Therefore, by Lemma 9, we have

∥∥φ(π0)
∥∥

1
=
〈φ(π), φ(e0)〉
〈φ(e0), φ(e0)〉

. (17)

By Lemma 21, the components of e0 are almost equal to the components
of the vector u of the uniform distribution in the level space7. Transferring

7Note that e0 is the same vector as π∗ in Lemma 21. However we now refer to this
vector as e0 to underline that we consider it as a basis vector of the level space, while in
Lemma 21 we referred to it as π∗ since we considered it as a vector of the probabilistic
distribution over the states of the level chain.

27

this result to the individual space, we have (φ(e0))m = 1
N

(1 + γj) for all
j ∈ [0..k − 1] and all individuals m that belong to level j. This and the fact
that by Lemma 17 we have ‖φ(π)‖1 = ‖π‖1 = 1 allow to calculate the inner
products in (17) and obtain

∥∥π0
∥∥

1
=

k−1∑
j=0

∑
m∈level j

(φ(π))m
1+γj
N

k−1∑
j=0

∑
m∈level j

(
1+γj
N

)2
= 1 + o(1). (18)

We compute (1− λ0) in the following way. First, since ‖π∗‖1 = 1 and π∗

is an eigenvector of P , we have

1− λ0 = 1− ‖λ0π
∗‖1 = 1− ‖π∗P‖1 = 1−

k−1∑
i=0

∣∣∣∣∣
k−1∑
j=0

π∗jp
i
j

∣∣∣∣∣ .
Since by Theorem 4 all components of π∗ are positive and the components

of P are non-negative, this simplifies to

1−
k−1∑
i=0

∣∣∣∣∣
k−1∑
j=0

π∗jp
i
j

∣∣∣∣∣ = 1−
k−1∑
i=0

k−1∑
j=0

π∗jp
i
j = 1−

k−1∑
j=0

π∗j

k−1∑
i=0

pij.

By the definition of P , the sum of the j-th row of P is equal to (1− pkj),
and we have

∑k−1
i=0 π

∗
i = ‖π∗‖1 = 1. Hence,

1−
k−1∑
j=0

π∗j

k−1∑
i=0

pij = 1−
k−1∑
j=0

π∗j (1− pkj) =
k−1∑
j=0

π∗jp
k
j .

By Lemma 21 and (2) we have

k−1∑
j=0

π∗jp
k
j =

k−1∑
j=0

(
n

k − j

)
N−1(1 + γj)

(
n

k − j

)−1

Pr[α = k − j]

=
1

N

k∑
j=1

Pr[α = j](1 + γk−j) =
1

N
Pr[1 ≤ α ≤ k](1 + o(1)).

Thus, we obtain

λ0 = 1− 1

N
Pr[1 ≤ α ≤ k](1 + o(1)). (19)

By substituting λ0 and ‖π0‖1 into (16) and (15) with their values

from (19) and (18) and recalling that N = nk

k!
(1 + o(1)), we prove the theo-

rem.

28

We also underline that r(t) in the tail bounds on the runtime distribution
is negligible, as soon as t = ω(

√
n log(n)), that is, far before the algorithm

finds the optimum.

5 Corollaries

We now exploit Theorem 19 to analyze how the choice of the mutation op-
erator influences the runtime.

By the runtime in this section we mean the runtime of the algorithm when
it starts from an arbitrary individual, which is not necessarily on the plateau.
However, without proof we notice that the (1 + 1) EA with any mutation
operator considered in this section reaches the plateau in an expected number
of O(n log(n)) iterations from any starting individual, which is significantly
less than the time which it spends on the plateau. Therefore, the time to
leave the plateau coincides with the total runtime precisely apart from lower
order terms. Since, by our main result, the time to leave the plateau depends
only on the probability to flip between 1 and k bits, determining the runtimes
in this section is an easy task.

We first observe that for all unbiased operators with constant probability
to flip exactly one bit, the expected optimization time is Θ(N), where we
recall that the size N of the plateau is

N =
k−1∑
i=0

(
n

n− k + i

)
= (1± o(1))

nk

k!
.

Hence all these mutation operators lead to asymptotically the same runtime
of Θ(nk). The interesting aspect thus is how the leading constant changes.

5.1 Randomized Local Search and Variants

When taking such a more precise look at the runtime, that is, including
the leading constant, then the best runtime, obviously, is obtained from
mutation operators which flip always between 1 and k bits. This includes
variants of randomized local search which also flip more than one bit, see,
e.g., [GW03, NW07, DDY20], as long as they do not flip more than k bits,
but most prominently the classic randomized local search heuristic, which
always flips a single random bit. Note that the latter uniformly for all k
(and including the case k = 1 not regarded in this work) is among the most
effective algorithms.

29

5.2 Standard (1 + 1) EA

The classic mutation operator in evolutionary computation is standard bit
mutation, where each bit is flipped independently with some probability
(“mutation rate”) γ/n, where γ usually is a constant. We call the (1+1) EA
which uses the standard bit mutation the standard (1 + 1) EA.

Theorem 22. Let γ be some arbitrary positive constant and k ≥ 2. Then
the standard (1 + 1) EA with mutation rate γ/n optimizes Plateauk in an
expected number of

E[T] = (1 + o(1))
nk

k!e−γ
∑k

i=1
γi

i!

iterations. This time is asymptotically minimal for γ = k
√
k! ≈ k/e.

Proof. For the standard bit mutation with mutation rate γ/n, the probability
to flip exactly one bit is

n
γ

n

(
1− γ

n

)n−1

≥ γe−γ(1− o(1)),

which is at least some positive constant as long as γ is a constant. Thus, we
can apply Theorem 19 and obtain

E[T] = (1± o(1))
N

Pr[1 ≤ α ≤ k]

= (1± o(1))N

(
k∑
i=1

(
n

i

)(γ
n

)i (
1− γ

n

)n−i)−1

= (1± o(1))
nk

k!

(
k∑
i=1

γi

i!
e−γ

)−1

.

Consider d(γ) = e−γ
∑k

i=1
γi

i!
. In order to minimize E[T], we have to max-

imize d(γ). Now γ 7→ d(γ) is a smooth continuous function, so its maximal
value for γ ∈ [0,+∞) can only be at γ = 0, for γ → +∞, or in the zeros of
its derivative. We have d(0) = limγ→∞ d(γ) = 0. The derivative is

d′(γ) =

(
e−γ

k∑
i=1

γi

i!

)′
= e−γ

k∑
i=1

iγi−1

i!
− e−γ

k∑
i=1

γi

i!

= e−γ

(
k−1∑
i=0

γi

i!
−

k∑
i=1

γi

i!

)
= e−γ

(
1− γk

k!

)
.

30

Hence the only value of γ with d′(γ) = 0 is γ = k
√
k!. For this value we have

d(k
√
k!) > 0, so this defines the unique optimal mutation rate. Finally, by

Stirling’s formula k! ≈
√

2πk
(
k
e

)k
we have k

√
k! ≈ (2πk)

1
2k
k
e
≈ k

e
.

5.3 Fast (1 + 1) EA

The fast (1 + 1) EA recently proposed in [DLMN17] is simply a (1 + 1) EA
that uses standard bit mutation with a random mutation rate γ/n with
γ ∈ [1..n/2] chosen according to a power-law distribution. More precisely,
for a parameter β > 1 which is assumed to be a constant (independent of n),
we have

Pr[γ = i] = 0

for every i > n/2 and i = 0, and

Pr[γ = i] = i−β/Hn/2,β

otherwise, where Hn/2,β :=
∑n/2

i=1 i
−β is a generalized harmonic number.

Theorem 23. For k ≥ 2 the expected runtime of the fast (1 + 1) EA on

Plateauk is Ckn
nk

k!
, where Ckn :=

Hn/2,β
Hk,β

(1 + o(1)) can be bounded by con-

stants, namely Ckn ∈
[

1
β−1
−o(1)

Hk,β
,

1
β−1

+1

Hk,β

]
.

Proof. From the definition of the fast (1 + 1) EA we have

k∑
i=1

Pr[γ = i] =

k∑
i=1

i−β

n/2∑
i=1

i−β
=

Hk,β

Hn/2,β

.

Since β > 1 and k are constants, Hk,β is a constant as well. We estimate
Hn/2,β through the corresponding integral.

1

β − 1
+ 1 =

+∞∫
1

x−βdx+ 1 ≥ Hn/2,β ≥
n/2∫
1

x−βdx =
1− (n/2)1−β

β − 1
=

1− o(1)

β − 1
.

Notice that Pr[α = 1] =
H1,β

Hn/2,β
=
(
Hn/2,β

)−1
is at least some constant. Thus,

Theorem 19 gives an expected runtime of E[T] =
Hn/2,β
Hk,β

N(1 + o(1)), which

we can estimate by
1−o(1)
β−1

Hk,β

nk

k!
≤ E[T] ≤

1
β−1

+ 1

Hk,β

nk

k!
(1 + o(1)).

31

5.4 Hyper-Heuristics

Hyper-heuristics are randomized search heuristics that combine, in a suitable
and again usually randomized fashion, simple low-level heuristics. Despite
many success stories in applications, their theoretical understanding is still
very low and only the last few years have seen some first results. These
exclusively regard simple (1+1) type hill-climbers which choose between dif-
ferent mutation operators as low-level heuristics. We now regard the hyper-
heuristics discussed in [AL14] argue that for some of these, our method is
applicable, whereas for others it is not clear how to do this.

Like almost all previous theoretical works, we regard as available low-level
mutation operators one-bit flips (flipping a bit chosen uniformly at random)
and two-bit flips (flipping two bits chosen uniformly at random from all 2-sets
of bit positions). Hence the (1 + 1) hill-climber with this a hyper-heuristic
selection between these two operators starts with a random search point and
then repeats generating a new search point by applying one of the mutation
operators (chosen according to the hyper-heuristic) and accepting the new
search point if it has an at least as good fitness as the parent.

The most elementary hyper-heuristic called simple random in each iter-
ation simply chooses one of the two available mutation operators with equal
probability 1/2. This compound mutation operator (choosing one randomly
and applying it) still is a unary unbiased mutation operator, so our main
result (Theorem 19) is readily applicable and gives the following result.

Theorem 24. Consider the (1 + 1) hill-climber using the simple random
hyper-heuristic to decide between the one-bit flip and the two-bit flip mutation
operator. When started on an arbitrary point of the plateau, its runtime T
on the Plateauk, k ≥ 2, function satisfies

E[T] =
nk

k!
(1± o(1)).

The more interesting hyper-heuristic random gradient in the first iteration
chooses a random low-level heuristic. In each further iteration, it chooses the
same low-level heuristic as in the previous iteration, if this has ended with a
fitness gain, and it chooses again a random low-level heuristic otherwise. This
way of performing mutation obviously cannot be described via a single unary
unbiased operator. However, once the algorithm has reached the plateau, it
can. The reason is that from that point on and until the optimum is found,
no further improvements are found. Consequently, the algorithm reverts to
the one using the simple random approach.

Corollary 25. Consider the (1 + 1) hill-climber using the random gradient
hyper-heuristic to decide between the one-bit flip and the two-bit flip mutation

32

operator. When started on an arbitrary point of the plateau, its runtime T
on the Plateauk, k ≥ 2, function satisfies

E[T] =
nk

k!
(1 + o(1)).

For two other common hyper-heuristics, we currently do not see how to
apply our methods. The permutation heuristic initially fixes a permutation
of the low-level heuristics and then repeatedly uses them in this order. The
greedy heuristic uses, in each iteration, all available hyper-heuristics in par-
allel and proceeds with the best offspring produced (if it is at least as good
as the parent). While we are optimistic that these heuristics lead to asymp-
totically the same runtimes as the two heuristics just analyzed, we cannot
prove this since our main result is not applicable.

It has been observed in [LOW17] that, due to the generally low probabil-
ity of finding an improvement, better results are obtained when the random
gradient heuristic is used with a longer learning period, that is, the randomly
chosen low-level heuristic is repeated for a phase of τ iterations. If an im-
provement is found, a new phase with the same low-level heuristic is started.
Otherwise, the next phase starts with a random operator. This idea was
extended in [DLOW18] so that now a phase was called successful if within
τ iterations a certain number σ of improvements were obtained. This mech-
anism was more stable and allowed a self-adjusting choice of the previously
delicate parameter τ . Again, for these hyper-heuristics our results are not
applicable.

5.5 Comparison for Concrete Values

Since the leading constants computed above, in their general form, are hard
to compare, we now provide in Table 1 a few explicit values for specific
algorithm parameters and plateau sizes.

6 Conclusion

In this paper we developed a new method to analyze the runtime of evolution-
ary algorithms on plateaus. This method does not depend on the particular
mutation operator used by the EA as long as there is a sufficiently large
probability to flip a single random bit. We performed a very precise analysis
on the particular class of plateau functions, but we are optimistic that simi-
lar methods can be applied for the analysis of other plateaus. For example,
Lemmas 18, 20 and 21 remain true for those plateaus of the function XdivK

33

Algorithm k = 2 k = 4 k = 6

Random Local Search 1 1 1
(1 + 1) EA with standard
bit mutation

Mutation rate
1/n

1.812 1.591 1.582

Mutation rate
k/(en)

2.074 1.328 1.027

Fast Genetic Algorithm
β = 1.5 1.930 1.563 1.428
β = 2 1.316 1.155 1.103

(1 + 1) EA with
hyperheuristics

simple random 1 1 1
random gradient 1 1 1

Table 1: Comparison of the leading constant in the expected runtime of the
evolutionary algorithms with different mutation operators on the Plateauk
function, that is, the constant c, such that the expected runtime is cn

k

k!
(1 −

o(1)).

(that is defined as bOneMax(x)/kc for some parameter k) that are in a
constant Hamming distance from the optimum (and these are the plateaus
which contribute most to the runtime). That said, the proof of Lemma 18
would need to be adapted to these plateaus different from the one of our
plateau function. We are optimistic that this can be done, but leave it as an
open problem for now.

The inspiration for our analysis method stems from the observation that
the algorithm spends a relatively long time on the plateau. So regardless
of the initial distribution on the plateau, the distribution of the individual
converges to the conditional stationary distribution long before the algorithm
leaves the plateau. This indicates that our method is less suitable to analyze
how evolutionary algorithms leave plateaus which are easy to leave, but such
plateaus usually present not bigger problems in optimization.

Overall, we are optimistic that our main analysis method, switching be-
tween the level chain and the individual chain, which might be the first
attempt to devise a general analysis method for EAs on plateaus, will find
further applications.

While our analysis method can deal with a large class of (1 + 1)-type
hill-climbers, it is currently less clear how to analyze population-based algo-
rithms. A series of works [HY01,HY04, JJW05,Wit06, JS07,CHS+09,RS14,
DK15,ADFH18,ADY19,DDE15,DD18] analyzing the runtime of various ver-
sions of the (µ + λ) EA, (µ, λ) EA, and (1 + (λ, λ)) GA on OneMax show
that these algorithms quickly reach the plateau of the Plateau function,

34

but it is currently not clear how to extend our method to get sharp runtime
estimates also for the part of the process on the plateau. Likewise, it is
not clear how our methods can be extended to algorithms that dynamically
change their parameters [DD20], because here in most cases the relevant
state of the algorithm not only consists of the current search point(s). For
hyper-heuristics, we could show two elementary results, but again, as dis-
cussed in Section 5.4, for most hyper-heuristics our general result cannot be
applied. By analogy with jump functions, crossover-based algorithms should
be efficient on plateaus, especially the ones using different diversity mecha-
nisms [DFK+18]. However, these algorithms are more complicated, and even
on jump functions there are no asymptotically tight bounds on their run-
time. This suggest that studying their behavior on plateaus might be even
more complicated. Given that plateaus of constant fitness appear frequently
in optimization problems, we feel that the open questions discussed in this
paragraph are worth pursuing in the near future.

Acknowledgements

This work was financially supported by the National Center for Cognitive
Research of ITMO University and by a public grant as part of the Investisse-
ments d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

A Appendix

Since both a reviewer of our submission to the GECCO 2018 theory track
and (after rejection of the former) a reviewer of PPSN 2018 claimed that
our result is already wrong for the small case k = 2 and a specific mutation
operator, to clarify the situation and to avoid similar problems in future
reviewing processes, we analyze now the case k = 2 in full generality by
elementary means. This proves the reviewers’ claims wrong and shows that
the case k = 2 can be solved by regarding a simple system of equations,
whose unique solution agrees with our main results.

We start by describing the reviewers’ incorrect concerns. The reviewer
of our submission to the GECCO 2018 theory track wrongfully considers
the following a counterexample. Suppose k = 2 and suppose the mutation
operator flips either 1 or 2 randomly chosen bits, each with probability 1

2
.

Then our theorem gives an expected runtime of E[T] = n2/2(1 + o(1)), but
the reviewer claims that the expected runtime is n2(1 + o(1)), referring to
own calculations not provided.

35

The reviewer of PPSN 2018 suggested a more general counterexample.
She or he considers again k = 2 and the mutation operator that flips one
randomly chosen bit with probability p1 (where p1 = Ω(1)) and it flips two
randomly chosen bits with probability p2. The reviewer claims, again with-
out giving details, that the expected runtime of the described algorithm on
the Plateau2 function is n2

2p1+p2
(1 + o(1)), while our Theorem 19 gives an

expected runtime of E[T] = n2

2(p1+p2)
(1 + o(1)).

To cover both examples and possible future ones, we consider the case k =
2 for a general unbiased mutation operator (with probability to flip exactly
one bit of Ω(1)). For brevity and to match the notation of the latter reviewer
we define pi as the probability that the mutation operator flips exactly i bits
(that was denoted as Pr[α = i] in the main part of the paper). We recall
from the body of the paper that there is a one-to-one correspondence between
unary unbiased mutation operators and vectors p = (p0, p1, . . . , pn) ∈ [0, 1]n+1

with ‖p‖1 = 1.

Lemma 26. If p1 = Ω(1), then the runtime of the (1 + 1) EA with an
arbitrary unbiased mutation operator as described above optimizing the n-
dimensional Plateau2 function is n2

2(p1+p2)
(1 + o(1)).

Proof. To find the expected runtime of the algorithm on the plateau we
consider the level chain. It contains two states (for level 0 and level 1), but
additionally to find the expected runtime we now include the optimum into
the chain as a new state called level 2.

By pji we denote the transition probabilities between levels for i ∈ [0..1]
and j ∈ [0..2]. We define Ti as the runtime of the algorithm if it starts on level
i for i ∈ [0..1]. The following system of equations follows from elementary
Markov chain theory.

E[T0] = 1 + p0
0E[T0] + p1

0E[T1].

E[T1] = 1 + p0
1E[T0] + p0

0E[T1].

By elementary transformations we obtain the following equivalent system.

E[T0] =
p0

1 + p1
0 + p2

1

p2
1p

1
0 + p0

1p
2
0 + p2

1p
2
0

.

E[T1] =
p0

1 + p1
0 + p2

0

p2
1p

1
0 + p0

1p
2
0 + p2

1p
2
0

.

(20)

36

To evaluate the right-hand sides, we first compute all the transition prob-
abilities.

• p1
0 is the probability to either flip one zero-bit or to flip both zero-bits

and one one-bit, that is,

p1
0 = p1

2

n
+ p3

6

n(n− 1)
= p1

2

n
+ o(1/n).

Recall that p1 is considered as some positive constant.

• p2
0 is the probability to flip both zero-bits, that is,

p2
0 = p2

2

n(n− 1)
.

• p0
1 is the probability to either flip one one-bit or to flip two one-bits

and the only zero-bit, that is,

p0
1 = p1

n− 1

n
+ p3

3

n
= p1 + o(1).

• p2
1 is the probability to flip the only zero-bit, that is,

p2
1 = p1

1

n
.

• In other cases the mutation operator generates either an individual with
the same number of one-bits or an individual from outside the plateau,
so the algorithm does not accept it. Therefore, p0

0 = 1 − p1
0 − p2

0 and
p1

1 = 1− p0
1 − p2

1.

We compute the numerators and denominator in the right-hand sides of (20).

• p0
1 + p1

0 + p2
1 = p1 + o(1) + p1

2
n

+ o(1/n) + p1
1
n

= p1 + o(1).

• p0
1 + p1

0 + p2
0 = p1 + o(1) + p1

2
n

+ o(1/n) + p2
2

n(n−1)
= p1 + o(1).

• p2
1p

1
0 + p0

1p
2
0 + p2

1p
2
0 = (p1)2 2

n2 + p1p2
2
n2 + o(1/n2).

This gives the desired values for the expected runtimes.

E[T0] =
p1 + o(1)

p1(p1 + p2) 2
n2 + o(1/n2)

=
n2

2(p1 + p2)
(1 + o(1)),

37

E[T1] =
p1 + o(1)

p1(p1 + p2) 2
n2 + o(1/n2)

=
n2

2(p1 + p2)
(1 + o(1)).

So independently on the starting state we have precisely the same ex-
pected runtime (apart from the lower order terms ignored in both cases) as
obtained through Theorem 19.

References

[AD18] Denis Antipov and Benjamin Doerr. Precise runtime analysis
for plateaus. In Parallel Problem Solving from Nature, PPSN
XV, Part II, pages 117–128. Springer, 2018.

[ADFH18] Denis Antipov, Benjamin Doerr, Jiefeng Fang, and Tangi Hetet.
Runtime analysis for the (µ+λ) EA optimizing OneMax. In Ge-
netic and Evolutionary Computation Conference, GECCO 2018,
pages 1459–1466. ACM, 2018.

[ADY19] Denis Antipov, Benjamin Doerr, and Quentin Yang. The ef-
ficiency threshold for the offspring population size of the (µ,
λ) EA. In Genetic and Evolutionary Computation Conference,
GECCO 2019, pages 1461–1469. ACM, 2019.

[AL14] Fawaz Alanazi and Per Kristian Lehre. Runtime analysis of
selection hyper-heuristics with classical learning mechanisms. In
Congress on Evolutionary Computation, CEC 2014, pages 2515–
2523. IEEE, 2014.

[BDK16] Maxim Buzdalov, Benjamin Doerr, and Mikhail Kever. The un-
restricted black-box complexity of jump functions. Evolutionary
Computation, 24:719–744, 2016.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Op-
timal fixed and adaptive mutation rates for the LeadingOnes
problem. In Parallel Problem Solving from Nature, PPSN XI,
pages 1–10. Springer, 2010.

[BFH+09] Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian
Klein, Frank Neumann, and Eckart Zitzler. On the effects of
adding objectives to plateau functions. IEEE Transactions on
Evolutionary Computation, 13:591–603, 2009.

38

[CDEL18] Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and
Per Kristian Lehre. Level-based analysis of genetic algorithms
and other search processes. IEEE Transactions on Evolutionary
Computation, 22:707–719, 2018.

[CHS+09] Tianshi Chen, Jun He, Guangzhong Sun, Guoliang Chen, and
Xin Yao. A new approach for analyzing average time complexity
of population-based evolutionary algorithms on unimodal prob-
lems. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 39:1092–1106, 2009.

[COY17] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. On the
runtime analysis of the opt-IA artificial immune system. In Ge-
netic and Evolutionary Computation Conference, GECCO 2017,
pages 83–90, 2017.

[COY18] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. Artificial
immune systems can find arbitrarily good approximations for
the NP-hard partition problem. In Parallel Problem Solving
from Nature, PPSN XV, Part II, pages 16–28. Springer, 2018.

[DD18] Benjamin Doerr and Carola Doerr. Optimal static and self-
adjusting parameter choices for the (1+(λ, λ)) genetic algo-
rithm. Algorithmica, 80:1658–1709, 2018.

[DD20] Benjamin Doerr and Carola Doerr. Theory of parameter con-
trol for discrete black-box optimization: Provable performance
gains through dynamic parameter choices. In Benjamin Doerr
and Frank Neumann, editors, Theory of Evolutionary Computa-
tion: Recent Developments in Discrete Optimization, pages 271–
321. Springer, 2020. Also available at https://arxiv.org/abs/
1804.05650.

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-
box complexity to designing new genetic algorithms. Theoretical
Computer Science, 567:87–104, 2015.

[DDK14] Benjamin Doerr, Carola Doerr, and Timo Kötzing. The unbi-
ased black-box complexity of partition is polynomial. Artificial
Intelligence, 216:275–286, 2014.

[DDK15] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Unbiased
black-box complexities of jump functions. Evolutionary Compu-
tation, 23:641–670, 2015.

39

https://arxiv.org/abs/1804.05650
https://arxiv.org/abs/1804.05650

[DDL19] Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-
adjusting mutation rates with provably optimal success rules.
In Genetic and Evolutionary Computation Conference, GECCO
2019, pages 1479–1487. ACM, 2019.

[DDY20] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal param-
eter choices via precise black-box analysis. Theoretical Computer
Science, 801:1–34, 2020.

[DFK+16] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S.
Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt, and
Andrew M. Sutton. Emergence of diversity and its benefits for
crossover in genetic algorithms. In Parallel Problem Solving from
Nature, PPSN XIV, pages 890–900. Springer, 2016.

[DFK+18] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S.
Krejca, Per Kristian Lehre, Pietro S. Oliveto, Dirk Sudholt, and
Andrew M. Sutton. Escaping local optima using crossover with
emergent diversity. IEEE Transactions on Evolutionary Com-
putation, 22:484–497, 2018.

[DFW11] Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. Sharp
bounds by probability-generating functions and variable drift.
In Genetic and Evolutionary Computation Conference, GECCO
2011, pages 2083–2090. ACM, 2011.

[DHN07] Benjamin Doerr, Nils Hebbinghaus, and Frank Neumann.
Speeding up evolutionary algorithms through asymmetric mu-
tation operators. Evolutionary Computation, 15:401–410, 2007.

[DJK08] Benjamin Doerr, Tomas Jansen, and Christian Klein. Compar-
ing global and local mutations on bit strings. In Genetic and
Evolutionary Computation Conference, GECCO 2008, pages
929–936. ACM, 2008.

[DJS+13] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen,
and Christine Zarges. Mutation rate matters even when optimiz-
ing monotonic functions. Evolutionary Computation, 21:1–27,
2013.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the anal-
ysis of the (1+1) evolutionary algorithm. Theoretical Computer
Science, 276:51–81, 2002.

40

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multi-
plicative drift analysis. Algorithmica, 64:673–697, 2012.

[DK15] Benjamin Doerr and Marvin Künnemann. Optimizing linear
functions with the (1 + λ) evolutionary algorithm—different
asymptotic runtimes for different instances. Theoretical Com-
puter Science, 561:3–23, 2015.

[DK19] Benjamin Doerr and Timo Kötzing. Multiplicative up-drift.
In Genetic and Evolutionary Computation Conference, GECCO
2019, pages 1470–1478. ACM, 2019.

[DKLW13] Benjamin Doerr, Timo Kötzing, Johannes Lengler, and Car-
ola Winzen. Black-box complexities of combinatorial problems.
Theoretical Computer Science, 471:84–106, 2013.

[DL16] Duc-Cuong Dang and Per Kristian Lehre. Runtime analysis of
non-elitist populations: from classical optimisation to partial
information. Algorithmica, 75:428–461, 2016.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy
Nguyen. Fast genetic algorithms. In Genetic and Evolutionary
Computation Conference, GECCO 2017, pages 777–784. ACM,
2017.

[DLOW18] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John A.
Warwicker. On the runtime analysis of selection hyper-heuristics
with adaptive learning periods. In Genetic and Evolution-
ary Computation Conference Companion, GECCO 2018, pages
1015–1022. ACM, 2018.

[Doe19a] Benjamin Doerr. An exponential lower bound for the runtime of
the compact genetic algorithm on jump functions. In Founda-
tions of Genetic Algorithms, FOGA 2019, pages 25–33. ACM,
2019.

[Doe19b] Benjamin Doerr. A tight runtime analysis for the cGA on jump
functions: EDAs can cross fitness valleys at no extra cost. In Ge-
netic and Evolutionary Computation Conference, GECCO 2019,
pages 1488–1496. ACM, 2019.

[FHN09] Tobias Friedrich, Nils Hebbinghaus, and Frank Neumann. Com-
parison of simple diversity mechanisms on plateau functions.
Theoretical Computer Science, 410:2455–2462, 2009.

41

[FHN10] Tobias Friedrich, Nils Hebbinghaus, and Frank Neumann.
Plateaus can be harder in multi-objective optimization. The-
oretical Computer Science, 411:854–864, 2010.

[FKK+16] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nal-
laperuma, Frank Neumann, and Martin Schirneck. Fast building
block assembly by majority vote crossover. In Genetic and Evo-
lutionary Computation Conference, GECCO 2016, pages 661–
668. ACM, 2016.

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous
hitting times for binary mutations. Evolutionary Computation,
7:173–203, 1999.

[GW03] Oliver Giel and Ingo Wegener. Evolutionary algorithms and
the maximum matching problem. In Symposium on Theoreti-
cal Aspects of Computer Science, STACS 2003, pages 415–426.
Springer, 2003.

[HPR+18] Hsien-Kuei Hwang, Alois Panholzer, Nicolas Rolin, Tsung-Hsi
Tsai, and Wei-Mei Chen. Probabilistic analysis of the (1+1)-
evolutionary algorithm. Evolutionary Computation, 26:299–345,
2018.

[HS18] Václav Hasenöhrl and Andrew M. Sutton. On the runtime dy-
namics of the compact genetic algorithm on jump functions.
In Genetic and Evolutionary Computation Conference, GECCO
2018, pages 967–974. ACM, 2018.

[HW19] Hsien-Kuei Hwang and Carsten Witt. Sharp bounds on the
runtime of the (1+1) EA via drift analysis and analytic com-
binatorial tools. In Foundations of Genetic Algorithms, FOGA
2019, pages 1–12. ACM, 2019.

[HY01] Jun He and Xin Yao. Drift analysis and average time complexity
of evolutionary algorithms. Artificial Intelligence, 127:51–81,
2001.

[HY04] Jun He and Xin Yao. A study of drift analysis for estimating
computation time of evolutionary algorithms. Natural Comput-
ing, 3:21–35, 2004.

42

[JJW05] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On
the choice of the offspring population size in evolutionary algo-
rithms. Evolutionary Computation, 13:413–440, 2005.

[JS07] Jens Jägersküpper and Tobias Storch. When the plus strategy
outperforms the comma strategy and when not. In Foundations
of Computational Intelligence, FOCI 2007, pages 25–32. IEEE,
2007.

[JW01] Thomas Jansen and Ingo Wegener. Evolutionary algorithms -
how to cope with plateaus of constant fitness and when to reject
strings of the same fitness. IEEE Transactions on Evolutionary
Computation, 5:589–599, 2001.

[JW02] Thomas Jansen and Ingo Wegener. The analysis of evolutionary
algorithms—a proof that crossover really can help. Algorithmica,
34:47–66, 2002.

[LOW17] Andrei Lissovoi, Pietro S. Oliveto, and John A. Warwicker. On
the runtime analysis of generalised selection hyper-heuristics
for pseudo-Boolean optimisation. In Genetic and Evolutionary
Computation Conference, GECCO 2017, pages 849–856. ACM,
2017.

[LW12] Per Kristian Lehre and Carsten Witt. Black-box search by un-
biased variation. Algorithmica, 64:623–642, 2012.

[LW14] Per Kristian Lehre and Carsten Witt. Concentrated hitting
times of randomized search heuristics with variable drift. In In-
ternational Symposium on Algorithms and Computation, ISAAC
2014, pages 686–697. Springer, 2014.

[MB17] Vladimir Mironovich and Maxim Buzdalov. Evaluation of
heavy-tailed mutation operator on maximum flow test genera-
tion problem. In Genetic and Evolutionary Computation Confer-
ence Companion, GECCO 2017, pages 1423–1426. ACM, 2017.

[Mey00] Carl D. Meyer, editor. Matrix Analysis and Applied Linear Al-
gebra. Society for Industrial and Applied Mathematics, 2000.

[Müh93] Heinz Mühlenbein. Evolutionary algorithms: Theory and appli-
cations. In Local Search in Combinatorial Optimization. Wiley,
1993.

43

[NSW09] Frank Neumann, Dirk Sudholt, and Carsten Witt. Analysis of
different MMAS ACO algorithms on unimodal functions and
plateaus. Swarm Intelligence, 3:35–68, 2009.

[NW07] Frank Neumann and Ingo Wegener. Randomized local search,
evolutionary algorithms, and the minimum spanning tree prob-
lem. Theoretical Computer Science, 378(1):32–40, 2007.

[RR04] Michael Renardy and Robert C. Rogers. An Introduction to
Partial Differential Equations. Texts in Applied Mathematics.
Springer, 2004.

[RS14] Jonathan E. Rowe and Dirk Sudholt. The choice of the offspring
population size in the (1, λ) evolutionary algorithm. Theoretical
Computer Science, 545:20–38, 2014.

[Rud96] Günter Rudolph. Convergence of evolutionary algorithms in gen-
eral search spaces. In International Conference on Evolutionary
Computation, pages 50–54. IEEE, 1996.

[Sud13] Dirk Sudholt. A new method for lower bounds on the running
time of evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation, 17:418–435, 2013.

[Sud20] Dirk Sudholt. Analysing the robustness of evolutionary algo-
rithms to noise: Refined runtime bounds and an example where
noise is beneficial. Algorithmica, 2020. To appear.

[Suz95] Joe Suzuki. A markov chain analysis on simple genetic algo-
rithms. IEEE Transactions on Systems, Man, and Cybernetics,
25:655–659, 1995.

[Vit00] Paul Vitányi. A discipline of evolutionary programming. Theo-
retical Computer Science, 241:3–23, 2000.

[Weg01] Ingo Wegener. Theoretical aspects of evolutionary algorithms.
In Automata, Languages and Programming, ICALP 2001, pages
64–78. Springer, 2001.

[Wit06] Carsten Witt. Runtime analysis of the (µ + 1) EA on simple
pseudo-Boolean functions. Evolutionary Computation, 14:65–86,
2006.

44

[Wit13] Carsten Witt. Tight bounds on the optimization time of a ran-
domized search heuristic on linear functions. Combinatorics,
Probability and Computing, 22:294–318, 2013.

[WVHM18] Darrell Whitley, Swetha Varadarajan, Rachel Hirsch, and Anir-
ban Mukhopadhyay. Exploration and exploitation without mu-
tation: solving the jump function in Θ(n) time. In Parallel
Problem Solving from Nature, PPSN XV, Part II, pages 55–66.
Springer, 2018.

45

	1 Introduction
	2 Problem Statement
	3 Preliminaries and Notation
	3.1 Tools from Linear Algebra
	3.2 Absorbing Markov ChainsIn this subsection we use a standard notation for the absorbing Markov chains such as N for the fundamental matrix, P for the transition matrix and Q for the transient-to-transient transition matrix. In the rest of the paper for the reader's convenience we redefine these common and easy-to-remember symbols to denote the objects we work with most frequently.
	3.3 Two Markov Chains
	3.4 The Spectrum of the Transient Matrix

	4 Runtime Analysis
	5 Corollaries
	5.1 Randomized Local Search and Variants
	5.2 Standard (1 + 1) EA
	5.3 Fast (1 + 1) EA
	5.4 Hyper-Heuristics
	5.5 Comparison for Concrete Values

	6 Conclusion
	A Appendix

