A non-overlapping domain decomposition method with perfectly matched layer transmission conditions for the Helmholtz equation - Archive ouverte HAL
Article Dans Une Revue Computer Methods in Applied Mechanics and Engineering Année : 2022

A non-overlapping domain decomposition method with perfectly matched layer transmission conditions for the Helmholtz equation

Résumé

It is well-known that the convergence rate of non-overlapping domain decomposition methods (DDMs) applied to the parallel finite-element solution of large-scale time-harmonic wave problems strongly depends on the transmission condition enforced at the interfaces between the subdomains. Transmission operators based on perfectly matched layers (PMLs) have proved to be well-suited for configurations with layered domain partitions. They are shown to be a good compromise between basic impedance conditions, which lead to suboptimal convergence, and computational expensive conditions based on the exact Dirichlet-to-Neumann (DtN) map related to the complementary of the subdomain. Unfortunately, the extension of the PML-based DDM for more general partitions with cross-points (where more than two subdomains meet) is rather tricky and requires some care. In this work, we present a non-overlapping substructured DDM with PML transmission conditions for checkerboard (Cartesian) decompositions that takes cross-points into account. In such decompositions, each subdomain is surrounded by PMLs associated to edges and corners. The continuity of Dirichlet traces at the interfaces between a subdomain and PMLs is enforced with Lagrange multipliers. This coupling strategy offers the benefit of naturally computing Neumann traces, which allows to use the PMLs as discrete operators approximating the exact Dirichlet-to-Neumann maps. Two possible Lagrange multiplier finite element spaces are presented, and the behavior of the corresponding DDM is analyzed on several numerical examples.
Fichier principal
Vignette du fichier
Royer2021_Preprint.pdf (6.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03416187 , version 1 (05-11-2021)

Identifiants

Citer

Anthony Royer, Christophe Geuzaine, Eric Béchet, Axel Modave. A non-overlapping domain decomposition method with perfectly matched layer transmission conditions for the Helmholtz equation. Computer Methods in Applied Mechanics and Engineering, 2022, 395, pp.115006. ⟨10.1016/j.cma.2022.115006⟩. ⟨hal-03416187⟩
219 Consultations
209 Téléchargements

Altmetric

Partager

More