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aUniversité de Liège, Institut Montefiore, All. de la Découverte 10, 4000, Liège, Belgium
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Abstract

It is well-known that the convergence rate of non-overlapping domain decomposition methods (DDMs)
applied to the parallel finite-element solution of large-scale time-harmonic wave problems strongly depends
on the transmission condition enforced at the interfaces between the subdomains. Transmission operators
based on perfectly matched layers (PMLs) have proved to be well-suited for configurations with layered
domain partitions. They are shown to be a good compromise between basic impedance conditions, which
lead to suboptimal convergence, and computational expensive conditions based on the exact Dirichlet-to-
Neumann (DtN) map related to the complementary of the subdomain. Unfortunately, the extension of the
PML-based DDM for more general partitions with cross-points (where more than two subdomains meet) is
rather tricky and requires some care.

In this work, we present a non-overlapping substructured DDM with PML transmission conditions for
checkerboard (Cartesian) decompositions that takes cross-points into account. In such decompositions, each
subdomain is surrounded by PMLs associated to edges and corners. The continuity of Dirichlet traces at
the interfaces between a subdomain and PMLs is enforced with Lagrange multipliers. This coupling strategy
offers the benefit of naturally computing Neumann traces, which allows to use the PMLs as discrete operators
approximating the exact Dirichlet-to-Neumann maps. Two possible Lagrange multiplier finite element spaces
are presented, and the behavior of the corresponding DDM is analyzed on several numerical examples.

Keywords: Finite elements, Domain decomposition, Helmholtz equation, Cross-points, Perfecly matched
layer, Transmission condition

1. Introduction

Large-scale time-harmonic wave problems need to be solved in many application areas, such as acoustic,
seismic and medical imaging, ground characterization or electromagnetic compatibility. Such wave prop-
agation problems remain a very challenging issue in engineering, especially in the high-frequency regime,
when the wavelength is much smaller than the geometrical dimensions of the domain of study. Among the
various approaches that can be used to solve large-scale time-harmonic wave problems, the Finite Element
Method (FEM) is widely used for its ability to handle complex geometrical configurations and materials with
non-homogeneous properties.

Because of the highly oscillatory nature of the wave fields, the brute-force application of the FEM leads
to a large number of unknowns and a poorly-conditioned complex-valued linear system [45]. Direct solvers
do not scale well for such problems and Krylov subspace iterative solvers exhibit slow convergence or can
even diverge, while efficiently preconditioning proves difficult [24]. Domain decomposition methods (DDMs)
provide an interesting alternative. These methods rely on a partition of the computational domain into
subdomains, and an iterative procedure using subproblems of smaller sizes, amenable to sparse direct solvers
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(see e.g. [63]). For acoustic time-harmonic wave problems, governed by the scalar Helmholtz equation, a
recent overview of DDMs can be found in [31]. Among all DDMs, we can highlight Schwarz methods with
overlap [12, 30, 38] or without overlap [4, 16, 32], FETI algorithms [19, 25–27] and the method of polarized
traces [65, 66], which are eventually combined with preconditioning techniques (see e.g. [18, 33, 35, 58, 59, 64]).

In this work, we focus on Schwarz-type domain decomposition algorithms without overlap of the subdo-
mains. The convergence rate of these methods strongly depends on the transmission condition enforced on
the interfaces between the subdomains. The optimal convergence is obtained by imposing the Dirichlet-to-
Neumann (DtN) map related to the complementary of each subdomain [46, 47]. For acoustic waves, this DtN
map links the Dirichlet trace of the pressure field on the interface to its normal derivative, which corresponds
to the normal displacement. Since the cost of computing the exact DtN is prohibitive, operators based on
low-order absorbing boundary conditions (ABCs) to approximate the DtN have been developed since the
late 80’s and early 90’s [20, 36, 48], followed in the late 90’s and early 00’s by (optimized) second-order
transmission conditions [32, 54]. More recently, domain decomposition strategies were developed with high-
order transmission conditions [10, 11, 37, 42], transmission conditions based on perfectly matched layers
(PMLs) [58, 64] and non-local transmission operators [17, 39, 40, 60]. In a general way, high-order and
PML-based conditions accelerate the convergence of DDMs in comparison with low-order conditions, with
an extra cost per iteration that can be controlled thanks to the order of the conditions or the thickness of
the PMLs. Non-local approaches are more expensive per iteration in term of computational cost, but they
have the best convergence rate and a strong theoretical background is available [16, 17, 39].

Most of the DDMs with high-order, PML-based and non-local transmission operators have initially been
tested and studied for configurations with one-dimensional domain partitions (e.g. layered partitions, parti-
tions of spherical shells into onion peels, ...). Such partitions do not exhibit (interior) cross-points (i.e. points
where more than two subdomains meet), which simplifies the implementation and avoids technical difficulties
with the transmission conditions. However, for large-scale two- and three-dimensional applications, one-
dimensional partitions are not optimal, as the amount of data to transfer between the subdomains can be
far smaller with multi-dimensional partitions (e.g. Cartesian and checkerboard partitions, general partitions
generated with automatic mesh partitioners, ...). With such partitions, the cross-points require some care,
especially when transmissions conditions with differential or integral operators are used. Specific strategies
to deal with cross-points have been proposed for DDMs with low-order transmission conditions and nodal
finite element discretizations (e.g. [5, 27, 29]). Recently, cross-point treatments have been proposed for DDMs
with second-order conditions [21, 28, 51] and non-local approaches [13–15, 22, 52] in order to address general
domain partitions. In the case of high-order (Padé-type) transmission conditions, a cross-point treatment has
been proposed in [44], by using corner compatibility relations developed for high-order absorbing boundary
conditions (HABC) prescribed on the edges of rectangular domains [43]. This approach, which is limited to
checkerboard partitions, proves to be very efficient and naturally deals with boundary cross-points (i.e. points
where an interface meet an exterior border with an absorbing boundary treatment). To the best of our knowl-
edge, non-overlapping (substructured) domain decomposition algorithms with PML-based transmission have
been tested only for layered partitions [58, 64], and no cross-point treatment has been proposed yet to address
checkerboard partitions. Let us mention that parallel domain decomposition preconditioners using PMLs at
the border of the subdomains have been proposed with layered partitions [56, 62] and multi-dimensional
partitions [1, 41], but these preconditioners do not require cross-point treatments.

In this article, we present a non-overlapping DDM with PML-based transmission conditions for two-
dimensional Helmholtz problems. This method, designed for checkerboard domain partitions, takes naturally
into account interior and boundary cross-points. PMLs are considered as operators imposed on interfaces
through Lagrange multipliers. Two different discretization strategies for the Lagrange multipliers are studied.

The article is organized as follows. In Section 2 the Helmholtz problem is introduced on a rectangular
domain, and the coupling with surrounding PMLs (i.e. four PMLs associated to the edges of the rectangle,
and four PMLs associated to the corners) using Lagrange multipliers is presented. Two discretizations for
the Lagrange multipliers are introduced, and the solvability and the stability of the resulting finite element
problems are analyzed. Then, in Section 3, the DDM with PML-based transmission operators is introduced.
The cross-point treatments are naturally taken into account through the PMLs used at the corners of the
rectangular subdomains. In Section 4, some numerical examples are presented to analyze the behavior of
the proposed methods. After an analysis of the influence of the PML parameters, the convergence of the
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Figure 1: A square domain Ω in blue with PML regions in orange.

domain decomposition algorithm is studied on representative finite element problems with homogeneous or
heterogeneous media. Finally, conclusions and perspectives are proposed in Section 5.

2. Helmholtz problem with weakly-coupled PMLs

2.1. Definition of the problem

We consider a two-dimensional Helmholtz problem defined on a square domain Ω, which is surrounded
with PML regions associated to the edges and the corners of Ω. These families of PML, respectively called
edge PMLs and corner PMLs, are illustrated in Figure 1. The edges and the corners of Ω are denoted Γi
(with i = 1, . . . , 4) and Ci,j (with i, j = 1, . . . , 4, such that Γi and Γj are adjacent), respectively. The edge
PML and corner PML associated to Γi and Ci,j are denoted Ωi and Ωi,j , respectively. The interface between
a corner PML Ωi,j and an edge PML Ωi is denoted Γi,j . Let us note that Ωi,j = Ωj,i but Γi,j 6= Γj,i. The
exterior boundaries of the edge PMLs and the corner PMLs are denoted with Γext

i and Γext
i,j , respectively.

Denoting the union of the domain Ω, the edge PMLs and the corner PMLs as Ωall, the global problem
reads {

div (Dgradw) + Ek2w = −f, in Ωall,

nall · (Dgradw) = 0, on ∂Ωall,
(1)

where k is the (positive) wavenumber, the tensor field D(x) and the scalar field E(x) are material properties,
f(x) is a source term, and ∂nall

is the outgoing normal derivative. Inside the domain Ω, the material properties
are D = diag (1, 1) and E = 1, and they depend on absorption functions in the PML regions. The definition
of D(x) and E(x) in the PML regions is discussed in Section 4. The natural functional space for the global
solution w is H1(Ωall).

The global problem (1) can be rewritten as the coupling of nine subproblems associated to the square
domain Ω and the edge/corner PML regions. The corresponding local solutions are denoted u, ui and ui,j ,
for Ω, Ωi and Ωi,j , respectively. Let us note that ui,j = uj,i. The global solution w is simply obtained by
combining these local solutions. The nine coupled subproblems read as follows:

• Subproblem associated to the square domain Ω:{
∆u+ k2u = −f in Ω,

∂nu = n · (Di gradui) on each Γi,
(2)

where n is the outgoing normal with respect to Ω;
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• Subproblems associated to each edge PML Ωi (with i = 1, . . . , 4):
div (Di gradui) + Eik

2ui = 0 in Ωi,

ni · (Di gradui) = 0 on Γext
i ,

ui = u on Γi,

ni · (Di gradui) = ni · (Di,j gradui,j) on each Γi,j ,

(3)

where ni is the outgoing normal with respect to Ωi;

• Subproblems associated to each corner PML Ωi,j (with i, j = 1, . . . , 4 such that Γi and Γj are adjacent):
div (Di,j gradui,j) + Ei,jk

2ui,j = 0 in Ωi,j ,

ni,j · (Di,j gradui,j) = 0 on Γext
i,j ,

ui,j = ui on Γi,j ,

ui,j = uj on Γj,i,

(4)

where ni,j is the outgoing normal with respect to Ωi,j .

In a nutshell, each local solution verifies the Helmholtz equation and a homogeneous Neumann condition on
the exterior boundary (if any), and the coupling is performed by enforcing the continuity of the Dirichlet and
Neumann traces at the interfaces.

2.2. Variational formulation with Lagrange multipliers

In the domain decomposition procedure, every rectangular subdomain of the checkerboard partition will
be surrounded with edge and corner PMLs. The standard variational formulation based on System (1) could
be used for each subproblem. However, the drawback of this approach lies in the lack of direct availability
of the Neumann traces at the interfaces between each subdomain and the corresponding surrounding PMLs,
while the domain decomposition procedure requires the knowledge of both Dirichlet and Neumann traces
at these interfaces. In this work, we consider an alternative variational formulation based on the coupled
systems (2), (3) and (4), where the continuity conditions at the interfaces are enforced by using Lagrange
multipliers. This approach offers the benefit to naturally give access to the Neumann traces thanks to the
Lagrange multipliers.

Let us introduce four edge Lagrange multipliers λi on the interfaces Γi (with i = 1, . . . , 4), and eight corner
Lagrange multipliers λi,j on Γi,j (with i, j = 1, . . . , 4 such that Γi and Γj are adjacent). These multipliers
will be used to enforce the following continuity conditions:

u− ui = 0 on each Γi,

ui − ui,j = 0 on each Γi,j .
(5)

The dualization of these continuity conditions leads that Lagrange multipliers that weakly verify

λi = ni · (Di gradui) on each Γi,

λi,j = ni,j · (Di,j gradui,j) on each Γi,j ,
(6)

which corresponds to the required Neumann traces that appear in the definition of the subproblems. Let us
note that λi,j 6= λj,i.

In order to write the variational formulation in a concise form, we introduce the set of u-fields, denoted
uall, defined such that the restriction of uall on Ω, Ωi and Ωi,j is respectively u, ui and ui,j . Similarly, the
set of λ-fields, denoted λall, is defined such that the restriction of λall on Γi and Γi,j is respectively λi and
λi,j . The sets of fields uall and λall belong to the following functional spaces:

U := H1(Ω)⊕
[⊕

i

H1(Ωi)

]
⊕
[⊕
i,j

H1(Ωi,j)

]
, (7)

L :=

[⊕
i

H−1/2(Γi)

]
⊕
[⊕
i,j

H−1/2(Γi,j)

]
, (8)

4



where H−1/2(·) is the dual space of the Dirichlet trace space H1/2(·). The variational formulation of the
problem then reads: Find (uall, λall) ∈ U × L such that{

h(uall, vall) + c(λall, vall) = l(vall),

c(uall, µall) = 0,
(9)

holds for all test functions (vall, µall) ∈ U×L, where the sesquilinear forms and the antilinear form are defined
as

h(uall, vall) :=

∫
Ω

−gradu · grad v̄ + k2uv̄ dΩ

+
∑
i

∫
Ωi

−Di gradui · grad v̄i + Eik
2uiv̄i dΩi

+
∑
i,j

∫
Ωi,j

−Di,j gradui,j · grad v̄i,j + Ei,jk
2ui,j v̄i,j dΩi,j , (10)

c(uall, µall) :=
∑
i

∫
Γi

(u− ui)µ̄i dΓi +
∑
i,j

∫
Γi,j

(ui − ui,j)µ̄i,j dΓi,j , (11)

l(vall) := −
∫

Ω

fv̄ dΩ. (12)

The form h(·, ·) is the standard sesquilinear form for the Helmholtz equation with the PML material param-
eters, and the form c(·, ·) corresponds to the coupling with the Lagrange multipliers. The overline ·̄ denotes
the complex conjugate of a field.

2.3. Finite element discretizations

For the finite element discretization of Problem (9), we consider two conformal approximation spaces,
Uh ⊂ U and Lh ⊂ L, and the discrete fields uhall ∈ Uh and λhall ∈ Lh. The approximate variational formulation
then reads: Find

(
uhall, λ

h
all

)
∈ Uh × Lh such that{

h(uhall, v
h
all) + c(λhall, v

h
all) = l(vhall),

c(uhall, µ
h
all) = 0,

(13)

holds for every test function
(
vhall, µ

h
all

)
∈ Uh × Lh. This formulation leads to the following linear system:(

U LT

L 0

)(
uhall

lhall

)
=

(
f
0

)
, (14)

where U is a block matrix derived form the sesquilinear form h(·, ·), L is a block matrix coming form the
sesquilinear form c(·, ·) and f is the source vector. The vectors uhall and lhall contain the degrees of freedom
associated to the discrete solution and the Lagrange multipliers, respectively. Let us note that U does not
depend on the approximation space Lh, while L does.

In this work, the space Uh is built by using standard hierarchical H1-conforming basis functions. The
approximation space for the Lagrange multipliers, Lh, is based either on hierarchical H1-conforming basis
functions (choice called “continuous discretization”) or on the projection of hierarchical H(div)-conforming
basis functions on the normal of the each interface (choice called “discontinuous discretization”). As we
will see, this choice influences the well-posedness of Problem (13): the algebraic system may not be solvable
and stability issues may arise. Both discretizations are described and strategies to address these issues are
discussed in Sections 2.3.1 and 2.3.2.

We recall herafter the conditions for the well-posedness of Problem (13) (see e.g. [9, 23]).
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Figure 2: Hierarchical H1-conforming basis functions

Theorem 1. (Well-posedness) Problem (13) is well-posed if and only if there exist positive constants β
and γ, independent of the mesh-size h, such that

inf
uh
all∈K

sup
vhall∈K

|h(uhall, v
h
all)|

‖uhall‖Uh‖uhall‖Uh

≥ β (15)

inf
µh
all∈Lh

sup
uh
all∈Uh

|c(uhall, µhall, )|
‖uhall‖Uh‖µhall‖Lh

≥ γ (16)

where ‖ · ‖Uh and ‖ · ‖Lh are norms associated to the approximation spaces Uh and Lh, and K is the kernel
of the operator associated to the sesquilinear form c(·, ·) in Uh.

This theorem implies the existence and the uniqueness of the solution for any given mesh, and the stability
of the problem with stability constants independent of the mesh. The following theorem gives the solvability
conditions for System (14).

Theorem 2. (Solvability) For a given mesh, the matrix of problem (14) is non singular if and only if the
following two conditions are both satisfied:

1. UKK : K → K is surjective (or, equivalently, is injective),

2. L : Cn → Cm is surjective (or, equivalently, LT is injective),

where UKK is the projection of U into the kernel K of L.

If the solution belongs to the kernel of L, the second line of System (14) is verified. This line corresponds
to relations that are enforced with the Lagrange multipliers. Assuming that the approximate solution is
continuous at the interfaces thanks to the Lagrange multipliers, the resulting problem corresponds to the
discretization of the standard Helmholtz problem with PML over Ωall, which is well-posed [6–8].

2.3.1. Strategies with continuous Lagrange multipliers

In the first approach, the approximation space Lh is built by using hierarchical H1-conforming basis
functions on each interface. Then, the Lagrange multipliers are continuous over each interface. We assume
that the same polynomial degree is used for both Lh and Uh. The basis functions used for Lh then correspond
to the restriction on the interfaces of the basis functions used for Uh. The very first basis functions correspond
to standard P1 finite elements, and the high-order basis functions are built by using the approach described
e.g. in [57]. The basis functions for the one-dimensional case are represented on Figure 2.

Unfortunately, the direct implementation of Problem (13) with continuous Lagrange multipliers leads to
algebraic systems that are not solvable. Indeed, L is not surjective (or, equivalently, LT is not injective),
and the second solvability condition of Theorem 2 is not met. It can be shown by considering the relations
verified on the interfaces around the cross-point C1,2, represented on Figure 1c. The continuity of the discrete
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solution is enforced weakly by using the following relations:∫
Γ1

(uh − uh1 )µ̄h1 dΓ1 = 0, (17)∫
Γ2

(uh − uh2 )µ̄h2 dΓ2 = 0, (18)∫
Γ1,2

(uh1 − uh1,2)µ̄h1,2 dΓ1,2 = 0, (19)∫
Γ2,1

(uh2 − uh1,2)µ̄h2,1 dΓ2,1 = 0, (20)

where the test functions belong to the approximation spaces associated to the Lagrange multipliers. In these
relations, the discrete solutions, uh, uh1 , uh2 and uh1,2, can be replaced by their representations with the basis
functions. Only the degrees of freedom associated to the interfaces are involved in these relations. The
discrete solutions appearing in Equation (17) can be written as

uh|Γ1
=
∑
j

uh,jφj |Γ1
and uh1 |Γ1

=
∑
j

uh,j1 φ1,j |Γ1
, (21)

where φj and φ1,j denote basis functions of uh and uh1 associated to the interface Γ1. The sums are preformed
over the J degrees of freedom of uh associated to Γ1 and the J1 degrees of freedom of uh1 associated to Γ1.
Finally, substituting these expressions into Equation (17), and using the basis functions of the Lagrange
multipliers, {ψ1,i}i=1,...,I , as test functions leads to∫

Γ1

∑
j

uh,jφj −
∑
j

uh,j1 φ1,j

ψ1,i dΓ1 = 0 for i = 1, . . . , I. (22)

Denoting uh and uh1 the vectors of degrees of freedom associated to the interface Γ1, we obtain

MΓ1
uh −M1,Γ1

uh1 = 0, (23)

where

(MΓ1)ij =

∫
Γ1

φj ψ1,i dΓ and (M1,Γ1)ij =

∫
Γ1

φ1,j ψ1,i dΓ (24)

are mass matrices of size I × J and I × J1, respectively. If the same polynomial degree is used for the finite
element approximation of the fields uh, uh1 and µh1 , the corresponding basis functions are identical on the
interface Γ1. Then, Equation (23) can be rewritten as

Mcont
Γ1

(
uh − uh1

)
= 0, (25)

and Mcont
Γ1

is a standard square mass matrix. Since this matrix is non-singular, we have uh = uh1 , and then

uh|Γ1 = uh1 |Γ1 . In particular, the degrees of freedom of uh and uh1 associated to the cross-point C1,2 are equal,
i.e. uC = uC1 . The basis functions associated to the cross-point C1,2 are represented on Figure 3. The same
reasoning can be carried out for the other interfaces around the cross-point C1,2, leading to the following
relations,

uC = uC1 , (26)

uC = uC2 , (27)

uC1 = uC1,2, (28)

uC2 = uC1,2, (29)

where uC2 and uC1,2 are the degrees of freedom at the cross-point associated to uh2 and uh1,2. Because these
relations are linear dependent, there is also a linear dependency between the relations resulting from the
discretization of (17)-(20). Therefore, L is not surjective, and Problem (14) is not solvable.

Several approaches can be used to recover the surjectivity of matrix L, and then to make Problem (14)
solvable:
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Figure 3: Degrees of freedom and P1 basis functions involved around the cross-point C1,2

1. An additional constraint on the unknowns can be added in order to avoid the linear dependency between
Equations (26)-(29). This can be done by introducing an additional Lagrange multiplier, denoted λC ,
associated to the cross-point. In this work, the following constraint is used:

λC1 − λC2 + λC1,2 − λC2,1 = 0, at C1,2, (30)

where λC1 , λC2 , λC1,2 and λC2,1 are the Lagrange multipliers associated to the interfaces around the cross-

point C1,2. Then, terms involving λC are introduced in the relations associated to these multipliers, in
such a way that Equations (26)-(29) become

uC = uC1 + λC , (31)

uC = uC2 − λC , (32)

uC1 = uC1,2 + λC , (33)

uC2 = uC1,2 − λC . (34)

These relations are not longer linearly dependent, and Problem (14) with the supplementary equation
becomes solvable. A similar strategy was used by Peng and Lee [53] to improve a domain decomposition
method for time-harmonic electromagnetic problems.

2. A penalization strategy (see e.g. [9]), where a mass matrix is added in Problem (14), can be used to
obtain the following modified system: (

U LT

L τM

)(
uhall

lhall

)
=

(
f
0

)
, (35)

where τ is a penalization parameter to be tuned and M is the standard mass matrix associated to the
Lagrange multiplier space Lh. Because of the new block, the continuity conditions (5) are not exactly
verified. They become

u− ui = τλi, on each Γi,

ui − ui,j = τλi,j , on each Γi,j .
(36)

Thanks to the penality, a right-hand-side term is added to Equation (25), and the linear dependency
between the relations at the corner is avoided.

3. A last strategy consists in taking approximate fields with different polynomial degrees in the domain
and the PML regions. In preliminary tests (not shown), we have observed that, if the polynomial degree
in the edge PMLs and the corner PMLs is larger by one and two, respectively, than in the domain, then
the system is solvable. This strategy, which involves much more degrees of freedom than the others,
will not be investigated further in this work.

Let us highlight that continuity of the Dirichlet traces at the interfaces is preserved exactly with the first
strategy, but it is relaxed with the two last ones.
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• •
(a) First degree basis function.

• •

(b) Second degree basis func-
tion.

• •

(c) Third degree basis function.

• •

(d) Fourth degree basis func-
tion.

Figure 4: Hierarchical H(div)-conforming basis functions

2.3.2. Strategies with discontinuous Lagrange multipliers

For the second approach, the basis functions of the approximation space Lh correspond to the projection
of hierarchical H(div)-conforming basis functions (defined on the domain and the PML regions) on the normal
to the interfaces. In two dimensions, the hierarchical H(div)-conforming basis functions correspond to the 90-
degree rotation of H(curl)-conforming basis functions. The first-order H(curl)-conforming basis functions
are the Nédélec basis functions [49, 50], and the higher-order functions are associated to the edges and the
face of the elements (see e.g. [57]). The first basis functions for the Lagrange multipliers are represented
on Figure 4. By contrast with the previous discretization, the basis functions are discontinuous between
the elements, and the continuity of the Lagrange multipliers is not ensured. This approach is called the
discontinuous discretization.

Depending on the polynomial degree used for the discontinuous Lagrange multipliers, the solvability issue
discussed in the previous section can be naturally avoided. Indeed, with the discontinuous discretization,
System (22) can be rewritten as

Mdisc
Γ1

(
uh − uh1

)
= 0, (37)

where Mdisc
Γ1

is a rectangular mass matrix associated to the discontinuous basis functions {ψ1,i}i used for the
Lagrange multipliers and the continuous basis functions {φj}j used for the discrete solutions (see Equation
(24)). This matrix cannot be square. If the polynomial degree of the Lagrange multipliers is lower than
or equal to the degree of the discrete solution, then the system is underdetermined and uh = uh1 does not
hold. In this case, the continuity of the discrete solution at the interfaces is not exactly verified, but the
system is solvable since L is full-rank. In the opposite case, Equation (37) is a homogeneous overdetermined
system, and uh = uh1 is the trivial solution. The problem in not solvable because L is not surjective, but the
penalization strategy developed in the previous section can be used to make it solvable.

Unfortunately, we have observed that the problem is not stable if the same polynomial degree is used
for both the discontinuous Lagrange multipliers and the discrete solutions. In that case, the first inf-sup
condition of Theorem 1 is a priori not met, and the problem is not well-posed. For many practical situations,
it is difficult to prove the first inf-sup condition. This is why, a numerical Chapelle-Bath test [2, 3] is applied
to evaluate the inf-sup constant β for the different discretizations. In a nutshell, a modified version of the
system is considered, (

U LT

L − 1
sM

)(
uhall

lhall

)
=

(
f
0

)
, (38)

where s is a positive constant and M is the mass matrix associated to the Lagrange multipliers. Taking
s→∞ brings back the original system (14). The inf–sup test consists in checking that, using a sequence of
meshes with decreasing mesh size h, the first non-vanishing eigenvalue αh of the problem

1

h
(LTM−1L)vh = αhU

T vh, (39)

does not depend too much on the mesh size h. Further, the inf-sup constant is given by β = minh βh, with
βh := α2

h.

In Figure 5a, the value βh is plotted for the continuous and the discontinuous discretizations of the
Lagrange multipliers with several stabilization strategies. These results are obtained for a benchmark with
the square domain [−1, 1]× [−1, 1], meshes with cell sizes from h = 0.03 to 0.32, the polynomial degree p = 2
for the discrete solution, and the penalization parameter τ = 0.002 h2. When the discontinuous discretization
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(a) Numerical evaluation of the inf-sup constant of Theorem 1
obtained for u-field discretized at polynomial degree p = 2.
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(b) The relative interface error shows that discontinuous dis-
cretizations (stabilized or not) introduce a lack of continuity at
interfaces compared to the continuous discretization.
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(c) Neumann traces along interface Γ3,2 ∪ Γ2 ∪ Γ1,2 (u-field discretized at polynomial degree p = 2).

Figure 5: Interface issues and Neumann traces.

is used with the same polynomial degree for both the Lagrange multipliers and the discrete solution, the value
βh decreases significantly with 1/h, which indicates that the formulation is not stable, as mentionned earlier.
By contrast, we observe that the other combinations are stable.

To study the effect of the discretization of the Lagrange multipliers on the discrete solution, we consider
the relative continuity error at the interfaces, defined as

ε =

∑
i

∫
Γi
‖u− ui‖2 dΓi +

∑
i,j

∫
Γi,j
‖ui − ui,j‖2 dΓi,j∑

i

∫
Γi
‖u‖2 dΓi +

∑
i,j

∫
Γi,j
‖ui‖2 dΓi,j

. (40)

This error is plotted according to the mesh size on Figure 5b for the different approaches. As expected, only
the continuous discretization with the cross-point treatment leads to the perfect continuity of the Dirichlet
trace (i.e. the relative error ε is close to the machine epsilon). Only that approach enforces exactly the
continuity of the discrete field, while the continuity is relaxed with the other ones. The Neumann trace
computed on the upper interface of Figure 1, namely on Γ3,2 ∪ Γ2 ∪ Γ1,2, is shown on Figure 5c for the
different approaches. The trace obtained with the unstable discontinuous discretization clearly oscillates,
while the others are smooth.
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3. DDM with PML transmission conditions for checkerboard domain partitions

In this section, we present a non-overlapping domain decomposition method (DDM) with PML transmis-
sion conditions for checkerboard (Cartesian) domain partitions. Transmission operators based on PMLs have
been used to accelerate domain decomposition solvers [58, 64] and preconditioning techniques [1, 41, 56, 62].
However, for domain decomposition solvers with checkerboard domain partitions, an unappropriate treatment
of the interior cross-points (i.e. points where more than two subdomains meet) and the boundary cross-points
(i.e. points where an interface meet an exterior border) may lead to suboptimal convergence or even incor-
rect results. In this work, the PML is used as a DtN operator thanks to the strategies developed in the
previous section, leading to a domain decomposition method that naturally takes into account cross-points.
The standard non-overlapping DDM is presented in Section 3.1. Modifications to use PMLs as transmission
operators and to address cross-points are explained in Sections 3.2 and 3.3.

3.1. Non-overlapping domain decomposition algorithm

To describe the standard DDM, we consider a simple Helmholtz problem defined on a rectangular domain,
denoted Ωglo, {

∆u+ k2u = −f, in Ωglo,

∂nu+ Bu = 0, on ∂Ωglo,
(41)

where k is the (positive) wavenumber, f is a source term, ∂n is the outgoing normal derivative on the
boundary ∂Ωglo, and B is a boundary operator. The domain will be surrounded with PMLs to simulate
outgoing waves, and the operator B will be defined accordingly by using techniques described in the previous
section.

The global domain Ωglo is decomposed into N non-overlapping rectangular subdomains Ωn, with n =
1, . . . , N , on a two-dimensional grid (see illustration on Figure 6a for N = 4). The edges of each subdomain
Ωn are denoted Σn,i, with i = 1, . . . , 4. An edge can be either a boundary edge if it belongs to the boundary
of Ωglo (i.e. Σn,i ⊂ ∂Ωglo), or an interface edge if it is shared by two subdomains (i.e. Σn,i 6⊂ ∂Ωglo). For
each subdomain Ωn, we consider the local solution un of the subproblem{

∆un + k2un = −f, in Ωn,

∂nn,i
un + Tn,iun = gn,i, on each Σn,i,

(42)

where Tn,i is a transmission operator and gn,i is a transmission variable defined as

gn,i :=

{
0 if Σn,i ⊂ ∂Ωglo,

∂nn,ium + Tn,ium if Σn,i 6⊂ ∂Ωglo,
(43)

where um is the local solution on Ωm, that is the neighboring subdomain of Ωn sharing the interface edge.
If Σn,i is a boundary edge, the transmission operator Tn,i is simply a boundary operator. The variational
formulation of the subproblem reads: Find un ∈ H1(Ωn) such that∫

Ωn

−gradun · grad v̄n + k2unv̄n dΩn −
∑
i

∫
Σn,i

(Tn,iun)v̄n dΣn,i

= −
∫

Ωn

fv̄n dΩn −
∑
i

∫
Σn,i

gn,iv̄n dΣn,i, (44)

holds for all test function vn ∈ H1(Ωn).

At every step of an iterative procedure, a subproblem similar to Problem (44) is solved for every subdomain
Ωn. Then, the transmission variables are updated and exchanged between the subdomains. Since System (42)
is defined for every subdomain, the transmission condition

∂nm,i′um + Tm,i′um = gm,i′ , (45)
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Σ1,j

•X

(a) Decomposition of a square domain Ωglo into four subdomains
Ωn leading to a cross-point X at the intersection between the four
subdomains.

•
X

Ω1

Σ1,j,i

Σ1,i

•X

Ω4

•
X

Ω2

Σ2,j′,i′

Σ2,i′

•X
Ω3

g1,j,i

g1,i

(b) Zoom on the cross-point of Figure 6a (the red box) to see how
data are exchanged in the case of a PML-based DDM. (For clarity
the unique cross-point X is drawn four times and the domains are
represented with a shift.)

Figure 6: Four subdomains and a cross-point X between them.

is prescribed on the interface edge Σm,i′ of Ωm, where i′ is such that Σn,i = Σm,i′ . Assuming that the
transmission operator is symmetric (i.e. Tn,i = Tm,i′), Equations (43) and (45) give

gn,i = −gm,i′ + 2Tm,i′um. (46)

This relation is used to define the update formula for the transmission variables,

g
(`+1)
n,i = −g(`)

m,i′ + 2Tm,i′u(`)
m . (47)

where ` is the index of the iterative procedure. The update of all the transmission variables can be rewritten
as a fixed-point algorithm applied to a global transmission problem (see e.g. [61]). In practice, this global
problem can be solved by using Krylov subspace methods. In this work, GMRES is used.

3.2. The PML-based transmission operator

The PML can be used rather naturally as a DtN operator thanks to the weak coupling introduced in the
previous section. With that approach, the continuity of the solution at the interface between the PML and
a given domain is enforced weakly thanks to a Lagrange multiplier, and the value of this multiplier can be
interpreted as the Neumann trace of the solution. Therefore, the PML can be seen as an operator taking a
Dirichlet trace and returning the corresponding Neumann trace. For the interface edge Σn,i of subdomain
Ωn, the transmission operator Tn,i is formally defined as

Tn,i : H1/2(Σn,i) 7→ H−1/2(Σn,i) : un|Σn,i
7→ Tn,iun := λn,i, (= ∂nn,i

un|Σn,i
) (48)

where λn,i is the Lagrange multiplier used to prescribed the continuity of the solution at the interface between
the subdomain and the PML.

In order to clarify the use of the PML-based DtN operator in the DDM, let us consider a rectangular
waveguide partitionned into successive layers, with a homogeneous Neumann boundary condition on the
lateral borders. In this configuration, every subdomain Ωn has two neighbors, expect both subdomains that
are at the extremities of the partition. At both interface edges, denoted Σn,1 and Σn,2, the subdomain is
extended with two PMLs, denoted Ωn,1 and Ωn,2, respectively. The variational formulation (44) associated to
Ωn can be written as: Find (un, un,1, un,2) ∈ H1(Ωn)×H1(Ωn,1)×H1(Ωn,2) and (λn,1, λn,2) ∈ H−1/2(Σn,1)×
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H−1/2(Σn,2) such that∫
Ωn

(
− gradun · grad v̄n + k2unv̄n

)
dΩn

+
∑
i

∫
Ωn,i

(
− Dn,i gradun,i · grad v̄n,i + En,i k

2un,iv̄n,i
)
dΩn,i

+
∑
i

∫
Σn,i

λn,i(v̄n − v̄n,i) dΣn,i = −
∫

Ωn

fv̄n dΩn −
∑
i

∫
Σn,i

gn,iv̄n dΣn,i, (49)

holds for all test functions (vn, vn,1, vn,2) ∈ H1(Ωn)×H1(Ωn,1)×H1(Ωn,2), and∑
i

∫
Σn,i

(un − un,i)µ̄n,i dΣn,i = 0 (50)

holds for all test functions (µn,1, µn,2) ∈ H−1/2(Σn,1)×H−1/2(Σn,2). The transmission variables are updated
using the Lagrange multipliers. The update formula (47) becomes

g
(`+1)
n,i = −g(`)

m,i′ + 2λ
(`)
m,i′ . (51)

To summarize, every subdomain is extended with PMLs (second term in Equation (49)) and Lagrange
multipliers are used as Neumann traces in the subdomain (third term in Equation (49)) and the update
formula (Equation (51)).

3.3. DDM with PML transmission conditions and cross-point treatment

The approach can be applied to the Helmholtz problem (41) with a checkerboard domain partition. If
there is only one subdomain (i.e. N = 1), the variational formulation (44) should correspond to the original
problem with PMLs at the boundaries, leading to the variational formulation (9). If there are more than one
subdomain, the same variational formulation can be used for every subdomain, but terms with transmission
variables must be added in the right-hand side of the first equation in order to enforce the coupling between
the subproblems.

To write the subproblem associated to subdomain Ωn, we introduce the sets of un-fields and λn-fields,
denoted un,all and λn,all, which contain the solutions and the Lagrange multipliers associated to the domain
Ωn, the surrounding PML regions and the interfaces. The corresponding functional spaces are denoted Un
and Ln. More precise definitions of these objects are provived in Section 2.2 for the problem associated to
Ω. The discretization strategies discussed in Section 2.3 will be used.

In the general case, the subproblem associated to Ωn reads: Find (un,all, λn,all) ∈ Un × Ln such that{
hn(un,all, vn,all) + cn(λn,all, vn,all) = ln(vn,all),

cn(un,all, µn,all) = 0,
(52)

where the sesquilinear forms hn(·, ·) and cn(·, ·) are defined similarly to h(·, ·) and c(·, ·) (see Equations (10)
and (11)), and the antilinear form ln(·) is defined as

ln(vn,all) := −
∫

Ωn

fv̄n dΩn −
∑
i

∫
Σn,i

gn,iv̄n dΣn,i −
∑
i,j

∫
Σn,i,j

gn,i,j v̄n,i dΣn,i,j . (53)

The second term in the right-hand side member of the previous equation introduces a coupling at the interface
subdomain-PML for subproblems corresponding to neighboring subdomains. The last term corresponds to a
coupling at interfaces PML-PML. These couplings are illustrated on Figure 6b. Let us not that these terms
appear only if Σn,i is an interface edge of the subdomain. In that case, the transmission variables are updated
using the update relations

g
(`+1)
n,i = −g(`)

m,i′ + 2λ
(`)
m,i′ on Σn,i (54)

g
(`+1)
n,i,j = −g(`)

m,i′,j′ + 2λ
(`)
m,i′,j′ on Σn,i,j , (55)
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where the variables gn,i and gn,i,j can be considered as edge and corner transmission variables, respectively,
and the Lagrange multipliers λm,i′ and λm,i′,j′ are computed in the subproblem associated to the neighboring
subdomain Ωm. The overscript ` corresponds to quantities computed at step ` of the iterative procedure. This
version of the DDM naturally takes into account cross-points through the definition of the corner transmission
variables.

In what follows, the subproblems are solved by using the finite element schemes described in the Section
2. The same discretizations are used for both the Lagrange multipliers and the transmission variables.

4. Numerical results

The performance of the proposed DDM and the discretization strategies for the Lagrange multipliers
and the transmission variables are studied by using a reference two-dimensional benchmark described in
Section 4.1. First, the continuous and discontinuous discretizations and the different stabilization techniques
are compared in Section 4.2, and two approaches are selected. For the selected approaches, the parameters
of the PML transmission conditions, namely the absorbing function and the layer thickness, are discussed in
Sections 4.3 and 4.4, respectively. The influence of the wavenumber and the mesh density on the convergence
of the DDM is analyzed in Section 4.5. Finally, the method is tested with a smoothly varying heterogeneous
medium in Section 4.6.

4.1. Description of the reference benchmark and PML parameters

The acoustic scattering of an incident plane wave uinc(x) = eikx by a sound-soft disk of radius R is used
as reference benchmark. The analytic expression of the scattered field in the polar coordinates (r, θ) for a
disk centered at the origin is

uref(r, θ) = −
∞∑
m=0

εmi
m Jm(kR)

H
(1)
m (kR)

H(1)
m (kr) cos(mθ), r > R, (56)

where Jm is the mth-order Bessel function, H
(1)
m is the mth-order first-kind Hankel function, εm is a function

equal to 1 if m = 0 and 2 otherwise, and i2 = −1.

The simulations are performed with a square computational domain, Ωglo = [L−x, Lx] × [L−y, Ly], sur-
rounded with PMLs of thickness δPML. The material parameters D and E are defined as

D(x, y) = diag

(
γy(y)

γx(x)
,
γx(x)

γy(y)
, γx(x)γy(y)

)
and E(x, y) = γx(x)γy(y), (57)

where γx(x) and γy(y) are stretching functions, defined as

γx(x) = 1 +
σx(x)

ik
and γy(y) = 1 +

σy(y)

ik
, (58)

which depend on absorption functions σx(x) and σy(y) associated to the Cartesian directions (see e.g. [7, 8]).
The functions σx(x) and σy(y) are set to zero inside the domain, and they increase along the associated
Cartesian directions inside the PMLs. Shifted hyperbolic absorbing functions are used inside the PMLs.
Then, the function σx(x) is defined as

σx(x) =


1
/

(δPML − (L−x − x))− 1
/
δPML if x ∈ [L−x − δPML, L−x],

1 if x ∈ [L−x, Lx],

1
/

(δPML − (x− Lx))− 1
/
δPML if x ∈ [Lx, Lx + δPML].

(59)

The definition is similar for σy(y). These functions form a couple such that a PML extruded in the x-direction
(i.e. Ω1 and Ω3 on Figure 1a) is associated to (σx(x), 0), a PML extruded in the y-direction (i.e. Ω2 and Ω4)
is associated to (0, σy(y)), and corner PMLs are associated to (σx(x), σy(y)).
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(a) Numerical solution and domain partition (b) Mesh of one subdomain with the surrounding PMLs

Figure 7: Reference benchmark: scattering of a plane wave by a disk in a square domain with a 3 × 3 domain partition

For the PML transmission conditions, the material parameters are defined similarly. Let us note that the
absorbing functions and the layer thicknesses can be different for the interface edges (i.e. in the transmission
conditions) and the boundary edges (i.e. for the exterior boundary condition) of the domain partition.
Different combinations are tested in Sections 4.3 and 4.4.

In the following sections, the DDM is tested with a checkerboard partition of Ωglo into a 3× 3 grid with
nine square subdomains (see Figure 7a). The disk of radius R = 0.5 is placed in the middle of the lower
left subdomain, and the borders of the square subdomains are of length 2. Every subdomain is meshed with
triangular elements having straight edges, and the surrounding PMLs are generated with extruded square
elements, as shown in Figure 7b. The wavenumber is k = 4π and the characteristic mesh size is h ≈ 4π/15.
The numerical results are obtained with GmshDDM1, a dedicated C++ code based on the open-source finite
element solver GmshFEM [55], the efficient finite element library based on Gmsh [34].

4.2. Comparison of the discretization strategies for the Lagrange multipliers and the transmission variables

The convergence histories for both continuous and discontinuous discretizations and the different sta-
bilization strategies are presented in Figure 8. For each case, the relative GMRES residual is plotted as
a function of the number of GMRES iterations (on the left). The relative L2-error between the numerical
solution and a reference numerical solution is also shown (on the right). This error is computed by comparing
the DDM solution un in each subdomain with the reference numerical solution umono computed on Ωglo with
the same mesh without domain decomposition procedure,

error =

√√√√∑N
n=1

∫
Ωn
|un − umono|2 dΩn∫

Ωglo
|umono|2 dΩglo

. (60)

The u-fields are discretized with hierarchical H1-conforming basis functions of polynomial degree p equal to
2 and 4. For both boundary and transmission conditions, the PML thickness corresponds to NPML = 6 mesh
cells (i.e. δPML = 6h) and shifted hyperbolic absorbing functions are used.

Let us note that the reference numerical solution umono is not exactly the same in all the cases. Then,
the comparison is not carried out with the same reference problem. Indeed, because the discretization of the
Lagrange multipliers is the same for both the exterior boundary condition and the transmission conditions,
the reference problem depends on the considered discretization. This approach is chosen because in practice,
when a discretization is chosen, it will be used everywhere.

1DDM code based on GmshFEM: https://gitlab.onelab.info/gmsh/ddm
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(d) 4th degree: Relative L2-error vs. #iterations

Figure 8: Convergence of the relative residual and the relative error for each discretization and stabilization strategy. The
computations are performed for NPML = 6, and polynomial degrees p = 2 and 4.

p = 2 p = 4
Continuous + corner eq. 60 160

Continuous + penality 60 160
Discontinuous(p) 56 154

Discontinuous(p− 1) 26 100
Discontinuous(p) + penality 56 154

Discontinuous(p+ 1) + penality 98 220

Table 1: The number of degrees of freedom by element thickness for each strategy. The computations are performed for
NPML = 6, and polynomial degrees p = 2 and 4.

For p = 2, the best convergence rate is provided by the continuous discretization (both versions)
and the discontinuous discretization with both the polynomial degree p+1 and the penalty term (Figure 8a).
The decay of residual is slower with the other approaches based on the discontinuous discretization. However,
in nearly all the cases, the relative error decreases until a plateau, which the level depends on the case
(Figure 8b). This behavior can be explained because, if the discontinuous discretization and/or the penalty
strategy is used, the equivalence between the reference problem and the coupled subproblems is not exactly
ensured, which introduces an error. The discontinuous discretization with both the higher polynomial degree
and the penalty is the notable exception. Similar results are obtained with p = 4, except that both the
relative residual and the relative error reach 10−6 more rapidly with the continuous discretization and the
additional corner equation than with all the other approaches.

In order to quantify the relative cost of each strategy, we report in Table 1 the number of degrees of freedom
required for the PML-based DtN, per element on the interfaces Σn,i or Σn,i,j . Among the methods exhibiting
the best convergence rate, the continuous approach are cheaper than the discontinuous discretization with
polynomial degree p + 1. While in this 2D setting, the resulting difference in computational cost is not
significant, it should be investigated further for 3D problems.
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In the next sections, only the continuous discretization with the additional corner equation (called selected
continuous discretization) and the discontinuous discretization with the higher polynomial degree and the
penalty (called selected discontinuous discretization) are considered for the analyses.

For both selected discretizations, there is a sharp decay of the residual and the L2-error between the third
and the fourth GMRES iterations. This can be interpreted by considering that, at each iteration, information
can be transferred only between neighboring subdomains. Given the considered domain partition and the
position of the source in the lower left subdomain, four iterations are required to propagate the source accross
all the subdomains. Because PML transmission conditions are particularly well-suited for this benchmark,
the DDM solution is very close to the physical solution after only four iterations. Let us mention, that the
relative error between the reference numerical solution (with any discretization) and the analytic solution
(56) is equal to 6.8× 10−3 for p = 2 and 6.3× 10−3 for p = 4. These errors are higher that the relative errors
observed between the DDM solutions and the reference solution after the four iterations.

4.3. Influence of the absorbing function in the transmission condition

Different absorbing functions can be used in the PMLs. Smoothly increasing functions such as polynomial
and hyperbolic functions are frequently chosen. In this work, we consider quadratic, hyperbolic and shifted
hyperbolic functions defined as

σq(x) = σ?(x− Lx)2
/
δ2
PML, (61)

σh(x) = 1
/

(δPML − (x− Lx)), (62)

σhs(x) = 1
/

(δPML − (x− Lx))− 1
/
δPML, (63)

respectively. These functions are written for a PML in the x-direction with x ∈ [Lx, Lx + δPML], like the
last line in Equation (59). The definitions are similar for the other PMLs. In the quadratic function, the
parameter σ? must be tuned. Here, the values σ? = 86.435 and 186 have been used for NPML = 1 and 6,
respectively.

Figure 9 shows the convergence history of the DDM process when the PML transmission conditions are
tested with the different absorbing functions, and PML thicknesses corresponding to NPML = 1 (dashed
lines) and 6 (plain lines). The computations are performed for both selected discretizations, and second-
degree polynomial basis functions. In all the cases, the hyperbolic absorbing function and NPML = 6 have
been used for the PMLs on the exterior border of the global domain. Therefore, for a given discretization,
the reference numerical solution remains the same.

We observe that, with six-cells PMLs in the transmission conditions, the convergence is similar with the
different absorbing functions for each discretization. With one-cell PMLs, the convergence is slower in all the
cases. The differences between the absorbing functions remain rather small in the discontinuous case, but
they are significant in the continuous case. These observations can be related to the quality of the PML as a
good absorbing boundary treatment. The accuracy of the technique is not very sensitive to the choice of the
absorbing function with thick layers, but the choice is much more critical with very thin layers. Therefore, we
can expect that the choice is not critical in the DDM procedure with thick layers. In the remainder, shifted
hyperbolic functions are used for both exterior conditions and transmission conditions.

4.4. Influence of the PML thickness in the transmission condition

In order to study the influence of the PML thickness in the transmission conditions on the efficiency of
the procedure, the convergence history with PML thicknesses corresponding to NPML = 1, 2, 4 or 6 mesh
cells is presented in Figure 10. The results obtained with the standard impedance transmission condition
proposed by Després [20] are also presented (dashed lines). In all the cases, PMLs with NPML = 6 are used
for the exterior border of the global domain, and the shifted hyperbolic absorbing function is used for both
PML-based transmission and boundary conditions. The selected continuous and discontinuous discretizations
have been tested with second and fourth degree basis functions for the u-fields.

In all the cases, the relative residual and the relative L2-error decrease with the number of iterations.
They have approximately the same order of magnitude at each iteration. We observe that an increase of the
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Figure 9: Convergence history of the second order PML-based DDM for different PML types. The dashed curves show the
convergence history of the one-layer-size PMLs while the plain ones show the convergence history of the six-layer-size PMLs.

PML thickness accelerate the convergence of the DDM process up to a particular point where an increase of
NPML does not change the convergence rate anymore. The convergence is not much faster with the NPML = 6
than with NPML = 4. For the cheapest PML, with only one mesh cell in the thickness, the convergence is
slower than with thicker PMLs, but it is much faster than with standard impedance transmission conditions.
The results are similar with second and fourth degree basis functions.

4.5. Influence of the wavenumber and the mesh density

It is well known that the solution of high-frequency wave problems requires fine meshes with high-degree
polynomial basis functions to decrease the dispersion error. Therefore, the efficiency of the solution procedures
for large wavenumbers and fine meshes is a critical issue. Ideally, the influence the wavenumber and the mesh
refinement on the convergence of the iterative procedure should be limited.

Figure 11 shows the number of GMRES iterations required to reach a relative residual lower than 10−6 as
a function of the wavenumber k (left) and the mesh density 1/h (right). The computations are performed for
a given mesh density (number of mesh vertices by wavelength equal to 15) in the first case, and for a given
wavenumber (k = 4π) in the second case. The results are presented for PML-based transmission conditions
with NPML = 1, 2, 4 or 6, and second and fourth degree basis functions for the u-fields.

In all the cases, the number of GMRES iterations slightly increases with the wavenumber and the mesh
density for very thin PMLs (i.e. with only one or two mesh cells in the thickness), while it remains very
stable for thick PMLs. The resultats are similar for second and fourth degree basis functions. These results
indicate that the PML-based transmission conditions are efficient for high-frequency scattering problems, as
soon as the layers are sufficiently thick.

4.6. Benchmark with a smoothly varying heterogeneous medium

Finally, the DDM procedure is tested with a spatially varying medium, though it is a priori designed
for problems with a constant wavenumber. The analysis is carried out with the Marmousi model shown
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Figure 10: History of the relative GMRES residual (left) and the relative mono-domain L2-error for different basis function
orders and different number of layers in the PML. The dashed black curve corresponds to the results obtained when a 0th order
transmission condition is imposed on interface edges while a six-layer-size PML is still imposed on the boundary edges of the
domain (the reference problem).
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Figure 11: Number of GMRES iterations needed to reach the relative residual of 10−6 as a function of the wavenumber k with
a constant number of point by wavelength of 15 (left graphs) and as a function of the inverse of the characteristic mesh size
1/h with a fixed wavenumber k = 4π (right graphs), for different basis function orders and different number of layers in the
interface PML. The dashed black curves correspond to the results obtained when a 0th order transmission condition is imposed
on interface edges while the six-layer-size PML is imposed on the boundary edges of the domain (the reference problem).
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Figure 12: Marmousi benchmark: wavenumber distribution (a), numerical solution (b) and subdomain where the source is
prescribed (c). One can notice the extruded wavenumber inside the surrounded PMLs.

in Figure 12a, which represents a realistic geological structure. The spatially varying wavenumber is given
by k(x) = 2πf/ν(x) with the velocity map ν(x) and the frequency f = 30Hz. The rectangular domain
Ωglo = [0, 9192 m] × [−2904 m, 0] is surrounded with PMLs. A point source is located at the position xs,
leading to the following Helmholtz equation

−∆u− k(x)2u = δ(x− xs), on Ωglo, (64)

where δ is the Dirac delta function. The domain is meshed with rectangular elements of characteristic size
h ≈ 10 m. First-degree basis functions are used for the u-fields.

The domain is partitioned into a checkerboard grid of 15×4 subdomains, as depicted in Figure 12a. Each
subdomain is composed of 4588 rectangular elements. The source term is placed at a cross-point in order
to demonstrate the flexibility of the method. In practice, it is taken into account by only one subdomain
touching this cross-point to ensure the equivalence with the original problem. The method is tested with PML
thicknesses equal to NPML = 1, 2 and 3 mesh cells in the transmission conditions, and equal to NPML = 6
for the exterior boundary condition. Because the wavenumber is not constant, a strategy must be chosen
to define the wavenumber in the PMLs. Inside the edge PMLs, the value of the wavenumber is simply
extruded from the interface with the subdomain, then it does not vary in the tangential direction. Inside the
corner PMLs, the wavenumber is constant, equal to the value at the corresponding corner of the subdomain.
Figure 12c illustrates the wavenumber for the subdomain where the source term is prescribed.

The convergence history for the relative residual is shown on Figure 13 for both continuous and dis-
continuous discretizations. In all the cases, the final relative L2-error between the DDM solution and the
reference numerical solution is close to 10−6. We observe on Figure 13 that the DDM procedure is much
faster with PML transmission conditions (even with the thinnest PMLs) than with the standard impedance
transmission conditions (dashed curves). Increasing the thickness of the PML accelerate the convergence for
both discretizations, but the efficiency is not much better when increasing the thickness from 2 to 3 mesh
cells.
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Figure 13: Marmousi benchmark. Convergence history with the PML transmissions conditions. The dashed curve corresponds
to the results obtained with the standard impedance transmission condition.

5. Conclusions and perspectives

We have proposed a non-overlapping DDM with PML transmission conditions for the Helmholtz equation.
Our approach naturally takes into account cross-points for two-dimensional checkerboard domain partitions.
It relies on Lagrange multipliers used for the weak coupling between subproblems defined on the rectangular
subdomains and the surrounding PMLs. They are also used to compute the transmission variables for the
DDM procedure. Two discretizations for the Lagrange multipliers and several stabilization strategies were
compared. The best two converging approaches are the continuous discretization with additional corner
equation, and the discontinuous discretization with higher polynomial degree and penalty. In addition to
convergence rates, selecting the best approach among all presented discretizations and stabilization strategies
might however depend on the user’s software implementation and accuracy requirements. Indeed, H(div)-
conforming basis functions might not be implemented in all finite element codes; and adding corner treatments
requires geometrical identifications and algebraic constraints that could be more or less straightforward to
deal with depending on the computational framework.

The extension to three-dimensional problems is clearly possible, but special attention will need to be paid
to the stability of the discretizations. The extension to other physical contexts such as electromagnetics,
electrodynamics or flow acoustics should be fairly straightforward as well, since PML formulations already
exist for these problems.
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(CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No.
2.5020.11 and by the Walloon Region.

References

[1] A. V. Astaneh and M. N. Guddati. A two-level domain decomposition method with accurate interface conditions
for the Helmholtz problem. International Journal for Numerical Methods in Engineering, 107(1):74–90, 2016.

[2] K.-J. Bathe. The inf-sup condition and its evaluation for mixed finite element methods. Computers and Structures,
pages 1–10, Sept. 2000.
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time-harmonic scattering problems. SIAM Journal on Scientific Computing, 30(1):312–338, Dec. 2007.

[9] D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Applications, volume 44. Springer, 2013.

[10] Y. Boubendir and D. Midura. Non-overlapping domain decomposition algorithm based on modified transmission
conditions for the Helmholtz equation. Computers & Mathematics with Applications, 75(6):1900–1911, 2018.

[11] Y. Boubendir, X. Antoine, and C. Geuzaine. A quasi-optimal non-overlapping domain decomposition algorithm
for the Helmholtz equation. Journal of Computational Physics, 231(2):262 – 280, 2012.

[12] X.-C. Cai and O. B. Widlund. Domain decomposition algorithms for indefinite elliptic problems. SIAM Journal
on Scientific and Statistical Computing, 13(1):243–258, 1992.

[13] X. Claeys. Non-local variant of the optimised schwarz method for arbitrary non-overlapping subdomain partitions.
ESAIM: M2AN, 55(2):429–448, 2021. doi: 10.1051/m2an/2020083.

[14] X. Claeys and E. Parolin. Robust treatment of cross points in optimized Schwarz methods, 2020. Preprint.
http://arxiv.org/abs/2003.06657.

[15] X. Claeys, F. Collino, and E. Parolin. Matrix form of nonlocal OSM for electromagnetics, 2021. Preprint.
http://arxiv.org/abs/2108.11352.

[16] F. Collino, S. Ghanemi, and P. Joly. Domain decomposition method for harmonic wave propagation: a general
presentation. Computer Methods in Applied Mechanics and Engineering, 184(2-4):171–211, 2000.

[17] F. Collino, P. Joly, and M. Lecouvez. Exponentially convergent non overlapping domain decomposition methods
for the Helmholtz equation. ESAIM: Mathematical Modelling and Numerical Analysis, 54(3):775–810, 2020.

[18] L. Conen, V. Dolean, R. Krause, and F. Nataf. A coarse space for heterogeneous Helmholtz problems based on
the Dirichlet-to-Neumann operator. Journal of Computational and Applied Mathematics, 271:83–99, 2014.

[19] A. de La Bourdonnaye, C. Farhat, A. Macedo, F. Magoules, and F.-X. Roux. A non-overlapping domain decom-
position method for the exterior helmhokz problem. Contemporary Mathematics, 218:42–66, 1998.
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[40] M. Lecouvez, B. Stupfel, P. Joly, and F. Collino. Quasi-local transmission conditions for non-overlapping domain
decomposition methods for the Helmholtz equation. Comptes Rendus Physique, 15(5):403–414, 2014.

[41] W. Leng and L. Ju. An additive overlapping domain decomposition method for the Helmholtz equation. SIAM
Journal on Scientific Computing, 41(2):A1252–A1277, 2019.

[42] N. Marsic and H. De Gersem. Convergence of classical optimized non-overlapping Schwarz method for Helmholtz
problems in closed domains, 2021. Preprint. http://arxiv.org/abs/2001.01502.

[43] A. Modave, C. Geuzaine, and X. Antoine. Corner treatments for high-order local absorbing boundary conditions
in high-frequency acoustic scattering. Journal of Computational Physics, 401:109029, 2020.

[44] A. Modave, A. Royer, X. Antoine, and C. Geuzaine. A non-overlapping domain decomposition method with
high-order transmission conditions and cross-point treatment for Helmholtz problems. Computer Methods in
Applied Mechanics and Engineering, 368:113162, 2020.

[45] A. Moiola and E. A. Spence. Is the Helmholtz equation really sign-indefinite? SIAM Review, 56(2):274–312,
2014.

[46] F. Nataf. Interface connections in domain decomposition methods. In Modern methods in scientific computing
and applications, pages 323–364. Springer, 2002.

[47] F. Nataf and F. Nier. Convergence rate of some domain decomposition methods for overlapping and nonover-
lapping subdomains. Numerische Mathematik, 75(3):357–377, 1997.

[48] F. Nataf, F. Rogier, and E. de Sturler. Optimal interface conditions for domain decomposition methods. CMAP
(Ecole Polytechnique), 301:1–18, 1994.
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