(k − 2)-linear connected components in hypergraphs of rank k - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2023

(k − 2)-linear connected components in hypergraphs of rank k

Résumé

We define a q-linear path in a hypergraph H as a sequence (e_1,...,e_L) of edges of H such that |e_i ∩ e_i+1 | ∈ [[1, q]] and e_i ∩ e_j = ∅ if |i − j| > 1. In this paper, we study the connected components associated to these paths when q = k − 2 where k is the rank of H. If k = 3 then q = 1 which coincides with the well-known notion of linear path or loose path. We describe the structure of the connected components, using an algorithmic proof which shows that the connected components can be computed in polynomial time. We then mention two consequences of our algorithmic result. The first one is that deciding the winner of the Maker-Breaker game on a hypergraph of rank 3 can be done in polynomial time. The second one is that tractable cases for the NP-complete problem of "Paths Avoiding Forbidden Pairs" in a graph can be deduced from the recognition of a special type of line graph of a hypergraph.
Fichier principal
Vignette du fichier
(k-2)_linear_connected_components_in_hypergraphs_of_rank_k.pdf (1.38 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03412083 , version 1 (02-11-2021)
hal-03412083 , version 2 (24-10-2022)
hal-03412083 , version 3 (14-07-2023)
hal-03412083 , version 4 (25-11-2023)

Identifiants

Citer

Florian Galliot, Sylvain Gravier, Isabelle Sivignon. (k − 2)-linear connected components in hypergraphs of rank k. Discrete Mathematics and Theoretical Computer Science, 2023, 25 (3 special issue ICGT'22), pp.10202. ⟨10.46298/dmtcs.10202⟩. ⟨hal-03412083v4⟩
387 Consultations
554 Téléchargements

Altmetric

Partager

More