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We define a q-linear path in a hypergraph H as a sequence (e1, . . . , eL) of edges of H such that |ei ∩ei+1| ∈
[[1, q]] and ei ∩ ej = ∅ if |i − j| > 1. In this paper, we study the connected components associated to these
paths when q = k − 2 where k is the rank of H. If k = 3 then q = 1 which coincides with the well-known
notion of linear path or loose path. We describe the structure of the connected components, using an
algorithmic proof which shows that the connected components can be computed in polynomial time. We
then mention two consequences of our algorithmic result. The first one is that deciding the winner of
the Maker-Breaker game on a hypergraph of rank 3 can be done in polynomial time. The second one is
that tractable cases for the NP-complete problem of "Paths Avoiding Forbidden Pairs" in a graph can be
deduced from the recognition of a special type of line graph of a hypergraph.

Keywords: hypergraph, 3-uniform, path, linear path, chain, connectivity, polynomial-time algorithm

1 Introduction
There are many possible definitions for a path between two vertices in a hypergraph. Each

one has its own associated connectivity problem, consisting in the algorithmic computation of
the connected components and the potential study of their structure. Possible fields where such
problems apply include system security [Guzzo et al. (2014)] on undirected hypergraphs as well as
propositional logic [Gallo et al. (1993)], system transfer protocols [Thakur and Tripathi (2009)] or
computational tropical geometry [Allamigeon (2014)] on directed hypergraphs.

In an undirected hypergraph, a linear path (or loose path) is a sequence of edges such that
any two consecutive edges intersect on exactly one vertex and any two non-consecutive edges do
not intersect. Our main motivation is the connectivity problem associated with linear paths in
3-uniform hypergraphs. The existence of such paths is the subject of numerous extremal results
[Omidi and Shahsiah (2014)] [Jackowska (2015)] [Jackowska et al. (2016)] [Wu and Peng (2021)].
For instance, [Jackowska et al. (2016)] determines the Turán number of the 3-uniform linear path
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of length 3, so that a 3-uniform hypergraph on n ≥ 8 vertices with at least
(

n−1
2

)
edges necessarily

contains a 3-uniform linear path of length 3. Such results are proven using counting methods.
The study of linear structures in potentially sparser hypergraphs, however, requires tools of a
qualitative nature. It then seems reasonable to start by studying the linear connected components.
In order to describe their structure, we develop methods that actually generalize to hypergraphs
of rank k ≥ 4 when replacing linearity with a notion of (k − 2)-linearity.

We thus introduce the general concept of q-linear path, where any two consecutive edges intersect
on between 1 and q vertices (and non-consecutive edges do not intersect). Extremal results also
exist on paths with similar restrictions on the size of the intersections, for example paths where
any two consecutive edges must intersect on exactly q vertices [Tomescu (2012)] [Dudek et al.
(2017)] with emphasis on the linear case q = 1 [Füredi et al. (2014)] [Gu et al. (2020)]. Throughout
this article, let H be a hypergraph of rank k: as for any hypergraph, we denote its vertex set
by V (H) and its edge set by E(H). Define the q-linear connected component of x∗ ∈ V (H) as
the set LCC q

H(x∗) of all vertices x such that there exists a q-linear path between x∗ and x in H.
We will see that q-linear paths do not define a transitive relation, so that the q-linear connected
components of H do not form a partition of V (H), unlike most other connectivity problems. This
paper is a study of the q-linear connected components of H in the case q = k− 2, meaning that we
only prohibit tight intersections of size k − 1. Linear paths in 3-uniform hypergraphs correspond
to the case k = 3 i.e. q = 1. Our first main result describes the structure of the subhypergraph
H[LCC k−2

H (x∗)] induced by a (k − 2)-linear connected component.

The proof of the structural result is algorithmic and provides us with a way to compute the
(k − 2)-linear connected components in polynomial time. More precisely, our second main result
is an algorithm that computes LCC k−2

H (x∗) in O(m2k) time where m = |E(H)|, which remains
polynomial even if k is part of the input. This result has consequences on two algorithmic problems
that have long existed in the literature.

The first one is the problem of deciding the winner of the Maker-Breaker positional game. Two
players, Maker and Breaker, take turns picking vertices of a hypergraph H: Maker wins if she
owns all the vertices of some edge of H, and Breaker wins if he prevents this from happening. The
problem of deciding the winner of the game with optimal play is trivially tractable for hypergraphs
of rank 2, and is known to be PSPACE-complete for 6-uniform hypergraphs [Rahman and Watson
(2021)]. In a separate paper [Galliot et al. (2022)], we show tractability for hypergraphs of rank
3, by reducing to the linear path existence problem in 3-uniform hypergraphs and using the
polynomial-time algorithm provided by the present paper. This validates part of a conjecture by
[Rahman and Watson (2020)].

The second one is the "Paths Avoiding Forbidden Pairs" problem (known as PAFP) which,
given two vertices x, y in a graph G with blue and red edges, asks whether there exists a blue
induced path between x and y in G. Indeed, consider a bicolored version of the line graph of a
hypergraph, where a blue (resp. red) edge indicates an intersection of size between 1 and k − 2
(resp. of size k − 1): if G is the bicolored line graph of some k-uniform hypergraph H, then there
exists a blue induced path between two vertices of G if and only if there exists a (k − 2)-linear
path in H between the corresponding (hyper)edges. Since our connectivity problem is solvable in
polynomial time, the study of the bicolored line graph recognition problem has the potential to
unearth new tractable cases for PAFP, which is known to be NP-complete in general [Gabow



(k − 2)-linear connected components in hypergraphs of rank k 3

et al. (1976)].

After some basic definitions given in Section 2, including the introduction of q-linear paths,
Section 3 presents structures that are specific to the case q = k − 2 as well as some of their
properties. It is then shown algorithmically in Section 4 that these structures describe the
(k − 2)-linear connected components, which can be computed in polynomial time: these are our
two main results. Finally, Section 5 addresses the links that our algorithmic problem has with the
Maker-Breaker game and the PAFP problem. We end by formulating some open problems that
arise from our study.

2 q-linear paths
2.1 Sequences of edges
Definition 2.1. A sequence of edges of H is some −→P = (e1, . . . , eL) where ei ∈ E(H) for all
1 ≤ i ≤ L. The case L = 0 is authorized: we may then denote −→P = ().

Notation 2.2. Let −→P = (e1, . . . , eL) be a sequence of edges of H.
• We define V (−→P ) := e1 ∪ . . . ∪ eL ⊆ V (H) and E(−→P ) := {e1, . . . , eL} ⊆ E(H).
• Let −→Q = (e′

1, . . . , e′
M ) be another sequence of edges of H. We denote by −→P ⊕ −→Q the

concatenation of −→P and −→Q , that is −→P ⊕−→Q := (e1, . . . , eL, e′
1, . . . , e′

M ).

2.2 Description of the problem
Definition 2.3. A path in H is a sequence −→P = (e1, . . . , eL) of edges of H such that one can
write V (−→P ) = {x1, . . . , xN} and ei = {xsi , xsi+1, . . . , xfi} with si < si+1 ≤ fi < fi+1 for all
1 ≤ i ≤ L − 1. Note that ei ∩ ei+1 ̸= ∅ for all 1 ≤ i ≤ L − 1. The path is deemed simple if
ei ∩ ej = ∅ for all 1 ≤ i, j ≤ L such that |i− j| > 1. See Figure 1.

e1 e2 e3 e4 e5

e1 e2 e4 e5

Fig. 1: The top path is not simple because e2 ∩ e4 ̸= ∅. Removing e3 yields a simple path (bottom).

We study paths with the additional q-linearity property that |ei ∩ ei+1| ≤ q for some fixed
integer q. Since we are only interested in existence questions, we can focus on simple such paths:
indeed, from any path it is possible to extract a simple path by removing some edges if necessary,
and this obviously preserves the q-linearity property. An equivalent definition is the following:
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Definition 2.4. Let q ≥ 1. A q-linear path in H is a sequence −→P = (e1, . . . , eL) of edges of H

such that for all 1 ≤ i < j ≤ L: |ei ∩ ej |

{
∈ [[1, q]] if j = i + 1.

= 0 otherwise.
.

Definition 2.5. Let q ≥ 1 be an integer and let X, Y ⊆ V (H) be nonempty such that |X ∩Y | ≤ q.
A q-linear path from X to Y in H is a q-linear path −→P = (e1, . . . , eL) in H such that:

• If X ∩ Y ̸= ∅, then L = 0.
• If X ∩ Y = ∅, then L ≥ 1 and:

(i) X ∩ e1 ̸= ∅, and if L ≥ 2 then X ∩ ei = ∅ for all 2 ≤ i ≤ L.
(ii) Y ∩ eL ̸= ∅, and if L ≥ 2 then Y ∩ ei = ∅ for all 1 ≤ i ≤ L− 1.

Whenever X = {x}, we may use the abuse of notation X = x (same for Y ). See Figure 2.

X Ye1 e2 e3 e4 e5

Fig. 2: Schematic representation of a q-linear path from X to Y .

Lemma 2.6. Let −→P = (e1, . . . , eL) be a q-linear path in H such that L ≥ 1. Let X, Y ⊆ V (H) be
disjoint such that X ∩ e1 ̸= ∅ and Y ∩ eL ̸= ∅. Then −→P contains a q-linear path −→Q from X to
Y in H. More precisely: −→Q = (er, . . . , es) where s := inf{1 ≤ i ≤ L such that ei ∩ Y ̸= ∅} and
r := sup{1 ≤ i ≤ s such that ei ∩X ̸= ∅}.

Proof: This is clear by minimality (resp. maximality) of s (resp. r).

Definition 2.7. Let x ∈ V (H). The q-linear connected component of x in H is defined as:

LCC q
H(x) := {y ∈ V (H) such that there exists a q-linear path from x to y in H}.

It is important to note that q-linear paths do not define a transitive relation, so that the q-linear
connected components of a hypergraph do not necessarily form a partition of its vertex set. Indeed,
the union of a q-linear path from x to y and a q-linear path from y to z does not necessarily
contain a q-linear path from x to z. An illustration in the case q = 1 is provided in Figure 3
(this graphical representation of 3-uniform hypergraphs will be used throughout, with each edge
pictured as a "claw" joining its three vertices). Therefore, the problem consisting in computing
the q-linear connected component of a given vertex is nontrivial.

This problem reduces polynomially to the case where H is uniform. Indeed, if H is of rank k
then let H0 be the k-uniform hypergraph obtained from H by adding k − |e| new vertices to each
edge e: it is easy to see that there exists a q-linear path from x to y in H if and only if there
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x y

z

Fig. 3: There is no 1-linear path from x to z.

exists one in H0. We thus introduce the following decision problem:

HypConnectivityk,q

Input : a k-uniform hypergraph H and two distinct vertices x, y of H.
Output : YES if and only if there exists a q-linear path from x to y in H.

The case q = k − 1 corresponds to standard (i.e. non-constrained) connectivity in hypergraphs,
which is tractable via a simple DFS/BFS-type search. We now address the case q = k − 2.

3 (k − 2)-linear paths in k-uniform hypergraphs
In this section, we suppose H is k-uniform with k ≥ 3.

3.1 Extendable paths and islands
3.1.1 Principle

Let x∗ ∈ V (H) be the vertex whose (k − 2)-linear connected component we wish to compute.
The idea is to design an algorithm that searches through E(H) and accepts edges under some
guarantee that all their vertices are in LCC k−2

H (x∗).
Consider the situation in the middle of the execution of the algorithm. Some edges have already

been accepted, forming a subhypergraph I1 of H containing x∗ such that: for all x ∈ V (I1),
there exists a (k − 2)-linear path from x∗ to x in I1. Now, the algorithm encounters some edge
e intersecting both V (I1) and V (H) \ V (I1), and needs to decide whether or not e should be
accepted right away: let x ∈ e \ V (I1), can we find a (k − 2)-linear path from x∗ to x made of
edges in E(I1) ∪ {e}?

The only way would be to use a (k− 2)-linear path −→P = (e1, . . . , eL) from x∗ to X := e∩ V (I1)
in I1 (Lemma 2.6 ensures there exists one), and prolong it with the edge e to reach e \ V (I1).
However, though −→P ⊕ (e) = (e1, . . . , eL, e) is obviously (k − 2)-linear if |X| ≤ k − 2, it might not
be if |X| = k − 1: indeed, in that case, if X ⊂ eL then |eL ∩ e| = k − 1. On this account, if
|X| = k−1 then we need −→P to not just be any (k−2)-linear path from x∗ to X but to be one that
satisfies X ̸⊂ eL: such a path will be deemed (x∗, X)-extendable, because it can be prolonged by
an edge that contains X while preserving the (k− 2)-linearity. An illustration is given in Figure 4.

So, what property must I1 have if we want to be able to accept any edge intersecting both
V (I1) and V (H) \ V (I1)? As we have just seen, the existence of a (k − 2)-linear path from x∗ to
x in I1 for all x ∈ V (I1) is not sufficient. Additionally to this, we would need the existence of an
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(x∗, X)-extendable path in I1 for all X ⊂ V (I1) of size k − 1. If I1 satisfies these two properties,
we will say I1 is an island with entry {x∗}.

x
∗

e

I
x
∗I

e

Fig. 4: Here k = 4 and |X| = 3 (the red hatched area is X). The grey path from x∗ to X on the left is
(x∗, X)-extendable, but the one on the right is not because its final edge contains X entirely.

However, the accepted edges might not always form an island. Suppose I1 is an island and
we next discover an edge e0 such that |e0 ∩ V (I1)| = 1 (so we accept e0) i.e. e0 is of the form
e0 = {x1} ∪ ε where e0 ∩ V (I1) = {x1} and |ε| = k − 1. Then the accepted edges do not form
an island anymore: the only known (k − 2)-linear paths from x∗ to ε use e0 so they contain ε
entirely, meaning they are not (x∗, ε)-extendable. Suppose the next few accepted edges form a
subhypergraph I2 that contains ε but is disjoint from I1, such that for all x ∈ V (I2) there exists
a (k − 2)-linear path from ε to x in I2. The algorithm now encounters some edge e whose known
vertices are in I2 (see Figure 5): should we accept e? Let X := e ∩ V (I2) and y ∈ e \X. The
only way to reach y from x∗ is via −→R := −→P ⊕ (e0) ⊕ −→Q ⊕ (e) where −→P is a (k − 2)-linear path
from x∗ to x1 in I1 and −→Q is a (k − 2)-linear path from ε to X in I2. We know such a −→P exists,
however there are conditions on −→Q = (e1, . . . , eL) for −→R to be (k − 2)-linear:

• As before, if |X| = k − 1 then we need X ̸⊂ eL.
• Since ε ⊂ e0, we also need ε ̸⊂ e1.
Such a path −→Q will be deemed (ε, X)-extendable (this time, there are conditions at both ends

of the path). In conclusion, to be able to accept any such e, we would need the existence of an
(ε, X)-extendable path in I2 for all X ⊂ V (I2) of size at most k − 1. If I2 satisfies these two
properties, we will say I2 is an island with entry ε.

We see the premises of the archipelago structure of H[LCC k−2
H (x∗)], which we are going to

establish.

3.1.2 Definitions
We now give the formal definitions that we are going to use.
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x
∗

I1

I2

e

e0

Fig. 5: Here k = 4 so |ε| = 3.

Definition 3.1. Let X, Y ⊆ V (H) such that 1 ≤ |X|, |Y | ≤ k − 1 and |X ∩ Y | ≤ k − 2. An
(X, Y )-extendable path in H is a (k − 2)-linear path −→P = (e1, . . . , eL) from X to Y in H with the
additional property if L ≥ 1 that |e1 ∩X| ≤ k − 2 and |eL ∩ Y | ≤ k − 2.

X Y

Fig. 6: An (X, Y )-extendable path in the case k = 3: the path contains exactly one vertex of X and one
vertex of Y .

Note that the condition on X is empty if |X| ≤ k− 2: it is only when |X| = k− 1 that we need
to make sure that prolonging −→P with an edge containing X maintains the (k − 2)-linearity (same
for Y ). Therefore, if |X|, |Y | ≤ k − 2, then an (X, Y )-extendable path is simply a (k − 2)-linear
path from X to Y . It is also important to keep in mind that the definition is dependent on X
and Y : we do not define an "extendable path", we define an "(X, Y )-extendable path".

Definition 3.2. Let I be a subhypergraph of H and ε ⊂ V (I) such that 1 ≤ |ε| ≤ k − 1. We
say I is an island with entry ε if, for all X ⊂ V (I) satisfying 1 ≤ |X| ≤ k − 1 (and X ̸= ε if
|ε| = k − 1), there exists an (ε, X)-extendable path in I.

Example. The empty island with entry ε ⊂ V (H), where 1 ≤ |ε| ≤ k − 1, is the island I with
entry ε defined by V (I) = ε and E(I) = ∅. It is an island because, for all X ⊂ V (I) satisfying
1 ≤ |X| ≤ k − 1 (and X ≠ ε if |ε| = k − 1), −→P = () is an (ε, X)-extendable path in I. This
example is illustrated at the far left of Figure 7.
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Fig. 7: Some islands for k = 3, except the far right one where k = 4 (with the same "claw" representation
for edges). The grey hatched area will always represent the entry. For three of them, we show an
(ε, X)-extendable path (in blue) for some X of size k − 1 (circled in blue).

3.1.3 Extension lemmas
The notion of (X, Y )-extendable path has been introduced to prolong and compose (k−2)-linear

paths. In that direction, we now prove two useful lemmas which are illustrated in Figures 8 and 9.

Lemma 3.3. Let A, B ⊆ V (H) such that 1 ≤ |A|, |B| ≤ k − 1 and |A ∩B| ≤ k − 2, and let −→P be
an (A, B)-extendable path.

• If B′ ⊃ B is such that |B′| ≤ k − 1 and B′ ∩ (A ∪ V (−→P ) ∪ B) = B, then −→P is an
(A, B′)-extendable path.

• If A′ ⊃ A is such that |A′| ≤ k − 1 and A′ ∩ (A ∪ V (−→P ) ∪ B) = A, then −→P is an (A′, B)-
extendable path.

Proof: By symmetry, we only need to prove the first assertion. First notice that A∩B = A∩B′,
so that |A ∩B′| ≤ k − 2 as required in Definition 2.5.

• If A ∩B′ ̸= ∅ then A ∩B ̸= ∅, hence −→P = () which is an (A, B′)-extendable path.
• If A ∩B′ = ∅ then A ∩B = ∅, so we can write −→P = (e1, . . . , eL) where L ≥ 1. We already

know −→P is (k − 2)-linear, moreover the assumption on B′ ensures that −→P is from A to B′.
Finally, since −→P is (A, B)-extendable and eL ∩B′ = eL ∩B, we have |e1 ∩A| ≤ k − 2 and
|eL ∩B′| = |eL ∩B| ≤ k − 2, therefore −→P is (A, B′)-extendable.

A B

B
′

e1 eL· · · · · ·

Fig. 8: Illustration of Lemma 3.3.
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Lemma 3.4. Let A, B ⊆ V (H) such that 1 ≤ |A|, |B| ≤ k − 1 and |A ∩B| ≤ k − 2, and let −→P be
an (A, B)-extendable path. Let C, D ⊆ V (H) such that 1 ≤ |C|, |D| ≤ k − 1 and |C ∩D| ≤ k − 2,
and let −→Q be a (C, D)-extendable path. We assume that A ∪ V (−→P ) ∪B and C ∪ V (−→Q) ∪D are
disjoint. If e ∈ E(H) satisfies e ∩ (A ∪ V (−→P ) ∪ B) = B and e ∩ (C ∪ V (−→Q) ∪ D) = C, then
−→
P ⊕ (e)⊕−→Q is an (A, D)-extendable path.

Proof: Write −→P = (e1, . . . , eL) and −→Q = (e′
1, . . . , e′

M ), and define −→R := −→P ⊕ (e)⊕−→Q . Let us first
check that −→R is a (k − 2)-linear path. Any intersection between two edges of −→R is of one of four
forms:

(1) ei ∩ ej or e′
i ∩ e′

j .
Those are covered by the (k − 2)-linearity of −→P and −→Q respectively.

(2) ei ∩ e′
j .

Those are empty because V (−→P ) and V (−→Q) are disjoint by assumption.
(3) ei ∩ e where 1 ≤ i ≤ L− 1 or e ∩ e′

i where 2 ≤ i ≤M .
By symmetry, we only address ei ∩ e. Since −→P is from A to B, we know ei ∩ B = ∅.
Moreover e ∩ V (−→P ) ⊆ B by assumption, so ei ∩ e = ∅.

(4) eL ∩ e or e ∩ e′
1.

By symmetry, we only address eL∩e. Since −→P is (A, B)-extendable, we know |eL∩B| ≤ k−2,
moreover the assumption on e implies eL ∩ e = eL ∩B hence |eL ∩ e| ≤ k − 2.

We now verify that −→R is from A to D and is (A, D)-extendable. By symmetry, we only show the
conditions on A, for which we distinguish two cases:

• If L = 0, then the first edge of −→R is e. We have A ∩ e = A ∩ B by the assumption on
e, where A ∩ B ≠ ∅ (because L = 0) and |A ∩ B| ≤ k − 2 (by assumption), therefore
1 ≤ |A ∩ e| ≤ k − 2. It remains to show that A ∩ e′

i = ∅ for all 1 ≤ i ≤M , which is obvious
since A is disjoint from V (−→Q).

• If L ≥ 1, then the first edge of −→R is e1. Since −→P is from A to B, we have A ∩ e1 ≠ ∅ and
A ∩ ei = ∅ for all 2 ≤ i ≤ L. Moreover |A ∩ e1| ≤ k − 2 because −→P is (A, B)-extendable. It
remains to show that A ∩ e = ∅, which is clear since A ∩ e ⊆ B and A ∩ B = ∅ (L ≥ 1),
and that A ∩ e′

i = ∅ for all 1 ≤ i ≤M , which is obvious since A is disjoint from V (−→Q).

A B

D
e

e1 eL· · · · · ·

e
′

M e
′

1· · ·· · ·

Fig. 9: Illustration of Lemma 3.4.
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3.2 Archipelagos
In this subsection, we fix some x∗ ∈ V (H).

3.2.1 Definition
Definition 3.5. Let I and I ′ be disjoint islands in H, where I ′ has an entry ε of size k − 1.
An edge e ∈ E(H) of the form e = {x} ∪ ε for some x ∈ V (I) is called a crossing edge from I
to I ′. We denote by C(I, I ′) ⊆ E(H) the set of all crossing edges from I to I ′ in H. If A is a
subhypergraph of H containing I and I ′, we use the notation CA(I, I ′) := C(I, I ′) ∩ E(A).

Remark. The above definition depends on the choice of ε (an island might have several possible
entries suiting the definition). However, we will always specify the entries when defining islands
and therefore consider crossing edges for those specific entries.

Definition 3.6. An x∗-archipelago is a subhypergraphA ofH such that there exist subhypergraphs
I1, . . . , IN of A that are pairwise-disjoint islands with respective entries ε1, . . . , εN satisfying the
following properties:

• ε1 = {x∗}.
• |εi| = k − 1 for all 2 ≤ i ≤ N .
• V (A) = V (I1) ∪ . . . ∪ V (IN ).
• All edges in E(A) \ (E(I1) ∪ . . . ∪ E(IN )) are crossing edges between some of the Ii, such

that the digraph G defined by V (G) = {I1, . . . , IN} and E(G) = {(Ii, Ij), CA(Ii, Ij) ̸= ∅}
contains a spanning arborescence rooted at I1. If G is exactly a spanning arborescence
rooted at I1, we say A is an arborescent x∗-archipelago.

Since x∗ is fixed, we usually call A an archipelago for short.

Remark. By definition of a crossing edge, there cannot exist a crossing edge from some Ii to I1 in
an archipelago since |ε1| = 1 ̸= k − 1. In other words, I1 has in-degree zero in G.

Therefore, an archipelago is a union of pairwise-disjoint islands and crossing edges between some
of them, satisfying specific properties. See Figure 10 for an example (for clarity, we will use k = 3
for all figures from now on). We will later see that an archipelago has a unique decomposition in
islands, but for now we have to give ourselves islands and entries suiting the definition whenever
we consider an archipelago.

3.2.2 Properties
The next two results show how (k − 2)-linear paths in A are related to paths in the digraph G.

Obviously, by definition of an archipelago, a (k − 2)-linear path in A starting from x∗ necessarily
visits successive islands, using crossing edges to jump from one island to another. The following
proposition states that, additionally, a crossing edge can only be used in one direction which is
given by the digraph G, therefore each island is entered through its entry (hence the terminology)
and it is impossible to reenter an island after leaving it.
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x
∗

I1

I2

I3

I4

I5

I6

I1

I2 I3

I5 I6I4

Fig. 10: An archipelago which is not arborescent (with the digraph G on the right). Crossing edges will
always be represented in red.

Definition 3.7. Let G be a digraph and let v, v′ ∈ V (G). A path from v to v′ in G is a sequence
denoted by v = v1 → v2 → . . . → vl = v′ (l ≥ 1) where v1, . . . , vl ∈ V (G) are pairwise distinct
and (vi, vi+1) ∈ E(G) for all 1 ≤ i ≤ l − 1.

Proposition 3.8. Let A be an archipelago, with I1, . . . , IN , ε1, . . . , εN , G suiting the definition.
Let −→P = (e1, . . . , eL) be a (k− 2)-linear path from x∗ to some x ∈ V (Ii) (1 ≤ i ≤ N) in A. Then
the islands visited by −→P form a path I1 = Ii1 → . . . → IiM

= Ii in G, and −→P is of the form
−→
P = −→P1 ⊕ (e1,2)⊕−→P2 ⊕ (e2,3)⊕ . . .⊕

−−−→
PM−1 ⊕ (eM−1,M )⊕−→PM where:

• For all 1 ≤ p ≤M : E(−→Pp) ⊆ E(Iip
).

• For all 2 ≤ p ≤M : ep−1,p ∈ CA(Iip−1 , Iip
).

In particular, if L ≥ 1, then for all 1 ≤ p ≤M there is an edge of −→P that contains εip
.

Proof: That last assertion is clear: for p = 1 we have εip = ε1 = {x∗} ⊂ e1, and for p ≥ 2 we
have εip

⊂ ep−1,p by definition of CA(Iip−1 , Iip
). Let us now prove the main assertion.

We proceed by induction on L. The case L = 0 is trivial: we have x = x∗ so we can set M = 1
and −→P1 = −→P = (). Let L ≥ 1 and assume the result to be true for all (k − 2)-linear paths that are
shorter than −→P . The idea is to separate two simple cases: either we are currently visiting the
island Ii (case eL ∈ E(Ii)) or we have just jumped onto Ii from another island (case eL ̸∈ E(Ii)).
Let y ∈ eL−1 ∩ eL if L ≥ 2, or define y = x∗ if L = 1 , so that in both cases −→Q := (e1, . . . , eL−1)
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is a (k − 2)-linear path from x∗ to y in A. We have y ∈ V (Ij) for some 1 ≤ j ≤ N . By the
induction hypothesis, there exists a path I1 = Ii1 → . . .→ IiM

= Ij in G such that we can write
−→
Q = −→Q1 ⊕ (e1,2) ⊕ −→Q2 ⊕ (e2,3) ⊕ . . . ⊕

−−−−→
QM−1 ⊕ (eM−1,M ) ⊕ −−→QM where E(−→Qp) ⊆ E(Iip

) for all
1 ≤ p ≤M and ep−1,p ∈ CA(Iip−1 , Iip

) for all 2 ≤ p ≤M .

x∗

Ii1 = I1

e1,2

Ii2 IiM = Ij

eLeM−1,M

Ii

y

x

−→
Q1

−→
Q2

−→
QM

x∗

Ii1 = I1

e1,2

Ii2 IiM = Ij = Ii

eM−1,M

−→
Q1

−→
Q2 eL

y

x
−→
QM

Fig. 11: Top: eL ∈ E(Ii). Bottom: eL ̸∈ E(Ii).

• First suppose that eL ∈ E(Ii) (see Figure 11, top). Since y ∈ eL, this implies i = j, so
−→
PM := −−→QM ⊕ (eL) satisfies E(−→PM ) ⊆ E(Ii). Therefore, the following writing of −→P completes
the proof: −→P = −→Q ⊕ (eL) = −→Q1 ⊕ (e1,2)⊕−→Q2 ⊕ (e2,3)⊕ . . .⊕

−−−−→
QM−1 ⊕ (eM−1,M )⊕−→PM .

• Now suppose eL ̸∈ E(Ii) (see Figure 11, bottom), then by definition of an archipelago we
have either eL ∈ CA(Ii, Ij) or eL ∈ CA(Ij , Ii).
Suppose for a contradiction that eL ∈ CA(Ii, Ij) i.e. eL = {x} ∪ εj : in particular j ̸= 1
(and |εj | = k − 1), so the fact that εj ⊂ eM−1,M contradicts the (k − 2)-linearity of −→P since
εj ⊂ eL.
Therefore eL ∈ CA(Ij , Ii). In particular i ̸= 1 (and |εi| = k − 1), so it is impossible that
Ii has been visited before: if we had i ∈ {i1, . . . , iM} then some edge of −→Q would contain
εi which would contradict the (k − 2)-linearity of −→P once again. Setting iM+1 := i, this
ensures that the islands visited by −→P form a path I1 = Ii1 → . . .→ IiM

= Ij → IiM+1 = Ii

in G, and we can write −→P = −→Q ⊕ (eM,M+1)⊕−−−→PM+1 where eM,M+1 := eL ∈ CA(IiM
, IiM+1)

and −−−→PM+1 := (), which concludes.



(k − 2)-linear connected components in hypergraphs of rank k 13

Conversely, paths in G yield (k − 2)-linear paths in A. The following proposition is a general-
ization to archipelagos of the property that defines an island.

X

IiMIi1 Ii2

e1,2

x

−→
P1

Fig. 12: An (εi1 , X)-extendable path in an archipelago.

Proposition 3.9. Let A be an archipelago, with I1, . . . , IN , ε1, . . . , εN , G suiting the definition.
Let X ⊂ V (A) such that 1 ≤ |X| ≤ k − 1 and X ̸∈ {ε2, . . . , εN}. For all 1 ≤ j ≤ N and
for every path Ij = Ii1 → . . . → IiM

in G satisfying X ∩ V (IiM
) ̸= ∅ and X ∩ V (Iip

) = ∅
for all 1 ≤ p ≤ M − 1, there exists an (εj , X)-extendable path −→P in A of the form −→

P =
−→
P1 ⊕ (e1,2)⊕−→P2 ⊕ (e2,3)⊕ . . .⊕

−−−→
PM−1 ⊕ (eM−1,M )⊕−→PM where:

• For all 1 ≤ p ≤M : E(−→Pp) ⊆ E(Iip
).

• For all 2 ≤ p ≤M : ep−1,p ∈ CA(Iip−1 , Iip
).

Proof: We proceed by induction on M .

• First suppose M = 1: we need to show that if X ∩ V (Ij) ̸= ∅ then there exists an (εj , X)-
extendable path in Ij . This is basically the definition of an island, except that X is not
necessarily entirely included in V (Ij). This is not a problem: since X ̸∈ {ε2, . . . , εN} by
assumption, there exists an (εj , X ∩ V (Ij))-extendable path −→P in Ij by definition of an
island, and −→P is also (εj , X)-extendable by Lemma 3.3.

• Now suppose M ≥ 2 and assume the result to be true for all shorter paths in G. We build
the desired (εi1 , X)-extendable path by assembling three parts:

(1) By the induction hypothesis, there exists an (εi2 , X)-extendable path
−→
P ′ in A of the

form
−→
P ′ = −→P2⊕(e2,3)⊕−→P3⊕(e3,4)⊕ . . .⊕

−−−→
PM−1⊕(eM−1,M )⊕−→PM where E(−→Pp) ⊆ E(Iip

)
for all 2 ≤ p ≤M and ep−1,p ∈ CA(Iip−1 , Iip

) for all 3 ≤ p ≤M .
(2) Let e1,2 ∈ CA(Ii1 , Ii2), which exists since (Ii1 , Ii2) ∈ E(G): we have e1,2 = {x} ∪ εi2

for some x ∈ V (Ii1).

(3) Finally, by definition of an island, there exists an (εi1 , x)-extendable path −→P1 in Ii1 .
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The path −→P := −→P1 ⊕ (e1,2)⊕
−→
P ′ is represented in Figure 12. Lemma 3.4 applied to A = εi1 ,

B = {x}, C = εi2 and D = X ensures that −→P is an (εi1 , X)-extendable path.

We get the following characterization for the entries of an archipelago:

Proposition 3.10. Let A be an archipelago, with I1, . . . , IN , ε1, . . . , εN suiting the definition.
Let X ⊆ V (A) such that 1 ≤ |X| ≤ k − 1. There exists an (x∗, X)-extendable path in A if and
only if X ̸∈ {ε2, . . . , εN}.

Proof: We distinguish both cases:
• Suppose X = εi for some 2 ≤ i ≤ N . Let −→P be a (k − 2)-linear path from x∗ to εi in A,

then −→P is a (k− 2)-linear path from x∗ to x in A for some x ∈ εi. By Proposition 3.8, some
edge of −→P (necessarily the last one, since −→P is from x∗ to εi) contains εi, which proves that
−→
P is not (x∗, εi)-extendable.

• Suppose X ̸∈ {ε2, . . . , εN}. Out of all the paths in G from I1 to one of the islands intersecting
X (recall that G contains a spanning arborescence rooted at I1, so there exists at least one),
consider a shortest one, so that X only intersects the last island of that path. We can now
apply Proposition 3.9: there exists an (ε1, X)-extendable path in A, which concludes since
ε1 = {x∗}.

Corollary 3.11. Let A be an archipelago in H. For all x ∈ V (A), there exists a (k − 2)-linear
path from x∗ to x in A. In particular, V (A) ⊆ LCC k−2

H (x∗).

Proof: Let x ∈ V (A): applying Proposition 3.10 to X = {x} shows that there exists a (k−2)-linear
path from x∗ to x in A.

Finally, we show that an archipelago has a unique decomposition.

Proposition 3.12. Any archipelago A has unique islands and entries suiting the definition.

Proof: Let ε1, . . . , εN be entries suiting the definition: we have ε1 = {x∗}, moreover {ε2, . . . , εN}
is exactly the set of all subsets X ⊂ V (A) such that 1 ≤ |X| ≤ k − 1 and there exists no (x∗, X)-
extendable path in A by Proposition 3.10, so these entries are unique. Suppose for a contradiction
that {I1, . . . , IN} and {I ′

1, . . . , I ′
N} are two distinct sets of islands suiting the definition, where

Ii and I ′
i have the same entry εi for all 1 ≤ i ≤ N . Since islands are induced subhypergraphs

of A, {V (I1), . . . , V (IN )} and {V (I ′
1), . . . , V (I ′

N )} are two distinct partitions of V (A), so there
exists 1 ≤ i ̸= j ≤ N such that V (Ii) ∩ V (I ′

j) ̸= ∅. Let x ∈ V (Ii) ∩ V (I ′
j).
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• Using the first decomposition, there exists an (εi, x)-extendable path −→P = (e1, . . . , eL) in Ii

by definition of an island. For all 2 ≤ l ≤ N , no edge of −→P contains εl: if l = i then this is
the definition of an (εi, x)-extendable path, and if l ̸= i then this is obvious since V (Ii) is
disjoint from εl.

• Using the second decomposition, since x ∈ V (I ′
j) and εi is disjoint from V (I ′

j), we can
define r := inf{1 ≤ p ≤ L such that ep ̸⊂ V (I ′

j)}. We have er ̸⊂ V (I ′
j), however er

intersects V (I ′
j) by minimality of r, therefore er is necessarily a crossing edge for the second

decomposition. This means that εl ⊂ er for some 2 ≤ l ≤ N , which contradicts what we
have just established.

Notation 3.13. Let A be an archipelago. Proposition 3.12 allows us to define without ambiguity:
• I(A): the set of islands of A.
• ε(A): the set of entries of the islands of A.
• G(A): the digraph from the definition of an archipelago.

4 (k − 2)-linear connected components: structure and computation
In this section, we suppose again that H is k-uniform and we fix some x∗ ∈ V (H).

4.1 Main results
Our two main results about (k − 2)-linear connected components, one structural and the other

algorithmic, can be assembled into the following main theorem which will be proven in this section.

Definition 4.1. An x∗-archipelago A in H is said to be maximal if there is no x∗-archipelago in
H that has A as a strict subhypergraph.

Theorem 4.2. H[LCC k−2
H (x∗)] is the unique maximal x∗-archipelago in H, and it can be computed

in O(m2k) time where m = |E(H)|.

Corollary 4.3. For all k ≥ 3, HypConnectivityk,k−2 is solvable in polynomial time.

4.2 The key intermediate result
Theorem 4.2 will come as a straightforward consequence of the following theorem, which is

illustrated in Figure 13:

Theorem 4.4. There exists an x∗-archipelago A in H and a partition E(H) = E(A)∪Ecut∪Eext

(where Ecut and/or Eext may be empty) such that:
(1) Every e ∈ Ecut is of the form e = ε ∪ {x} for some entry ε of A of size k − 1 and some

x ̸∈ V (A);
(2) Every e ∈ Eext is disjoint from V (A).
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Moreover, this partition can be computed in O(m2k) time where m = |E(H)|.

x
∗

Fig. 13: The hypergraph H is represented in full. In black and red: E(A) (archipelago). In blue: Ecut.
In grey, below the dashed line: Eext.

4.2.1 Augmenting archipelagos
Our algorithm proving Theorem 4.4 will build the archipelago A = H[LCC k−2

H (x∗)] edge by
edge until reaching maximality, and then throw the remaining edges into Ecut and Eext. Therefore,
we need to address the following question: given an archipelago A and an edge e ∈ E(H) \ E(A),
is A∪e an archipelago (and if so, for what decomposition)? Here A∪e denotes the subhypergraph
of H defined by V (A ∪ e) = V (A) ∪ e and E(A ∪ e) = E(A) ∪ {e}. The answer will depend on
the way e intersects A:

Definition 4.5. Let A be an archipelago. An edge e ∈ E(H) \ E(A) is of one of five A-types:
1. "exterior": |e ∩ V (A)| = 0.
2. "new crossing": |e ∩ V (A)| = 1.
3. "crossing": e is a crossing edge between two islands of A.
4. "cut": e is of the form e = ε∪{x}, where ε is an entry of A of size k−1 and x ∈ V (H)\V (A).
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5. "other": e is none of the above.
Those are well defined because the islands and entries of an archipelago are unique by Proposi-
tion 3.12. The five A-types are illustrated in Figure 14.

e2

e1

e4

e3

e5
e
′

5

e
′′

5

e
′′′

5

x
∗

e
′′′′

5

Fig. 14: An arborescent archipelago A (the inside of the islands is not detailed), and some edges in
E(H) \ E(A) (in purple). The names of the edges follow the numbering from Definition 4.5: e1 is of
A-type "exterior", e2 is of A-type "new crossing", etc.

Fundamentally:
• The A-types "crossing", "new crossing" and "other" correspond to edges that get added to

the archipelago.
• The A-type "cut" corresponds to Ecut.
• The A-type "exterior" corresponds to Eext.

Let A be an archipelago, with islands I1, . . . , IN and entries ε1, . . . , εN , and let e ∈ E(H) \E(A).
We now explain why A∪ e is an archipelago if e is of A-type "crossing", "new crossing" or "other".
In the case of the A-types "new crossing" and "other", the arborescent nature of the archipelago
will be preserved, so those edges will be added first in our algorithm so that the archipelago
remains arborescent for as long as possible. Even though the decomposition of A ∪ e is given by
I(A ∪ e) and ε(A ∪ e) alone, we also describe G(A ∪ e) in the arborescent case.
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I) e is of A-type "new crossing"

This case is easy: a new island is created, with e being the crossing edge that connects it to the
rest (see Figure 15).

IN+1

e

x
∗

Ii0

I1 I1

Ii0

I1

Ii0

IN+1

Fig. 15: The archipelago A ∪ e where A is as in Figure 14 and e = e2. On the right: the arborescences
G(A) (top) and G(A ∪ e) (bottom).

Proposition 4.6. Suppose A is arborescent and e is of A-type "new crossing". Let 1 ≤ i0 ≤ N
be the index of the only island that intersects e, and let IN+1 be the empty island with entry
εN+1 := e \ V (Ii0). Then A ∪ e is an arborescent archipelago with:

• I(A ∪ e) = I(A) ∪ {IN+1}.
• ε(A ∪ e) = ε(A) ∪ {εN+1}.
• G(A ∪ e) defined as the digraph obtained from G(A) by adding a new vertex IN+1 and an

arc (Ii0 , IN+1).

Proof: This is clear: e is a crossing edge from Ii0 to IN+1, hence the new arc in G(A∪ e) which
is obviously an arborescence since G(A) is.

II) e is of A-type "other"

By definition, this means that: |e∩ V (A)| ≥ 2, e is not a crossing edge, and e is not of the form
ε ∪ {x} where ε is an entry of A of size k − 1 and x ∈ V (H) \ V (A).
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This case is more complicated. Consider Figure 14. If e only intersects one island (e = e′
5 or

e = e′′′
5 for instance), then it should be easy to show that this island plus e is still an island. If e

links several islands however, then the way to redefine islands is not as straightforward, since e is
not a crossing edge. Suppose e = e5 for instance, as in Figure 16. The fact that e acts as a bridge
between several islands creates new paths: for example, we have an (x∗, ε6)-extendable path in
A∪ e (represented schematically in Figure 16), therefore ε6 would not be an entry of A∪ e (recall
Proposition 3.10). Actually, it can be shown that the subhypergraph I, formed by the union of
I2, I4, I5, I6, I8, I9 and the crossing edges between them as well as e, is an island with entry ε2.
Therefore, A ∪ e is an archipelago with five islands: I1, I3, I7, I10, I. On this example, we see
how adding en edge can merge islands together. We are now going to generalize this argument.

e

x
∗I1

I2 I3

I10

I4 I5 I6

I7 I8 I9

I1

I1

I3I2

I4 I5 I6

I7 I8 I9 I10

I3I2

I7 I10

I =

new I2

x

y

Fig. 16: The archipelago A ∪ e where A is as in Figure 14 and e = e5. On the right: the arborescences
G(A) (top) and G(A ∪ e) (bottom).

Definition 4.7. Let G be an arborescence rooted at some v∗ ∈ V (G), and let U = {v1, . . . , vr} ⊆
V (G). For all 1 ≤ i ≤ r, let v∗ = vi,1 → . . .→ vi,li

= vi be the unique path from v∗ to vi in G.
Define i0 := sup{1 ≤ p ≤ min1≤i≤r li | v1,p = . . . = vr,p}. The lowest common ancestor of U in G
is defined as LCAG(U) := vi0 .

Definition 4.8. Let G be an arborescence and let v ∈ V (G). For all 1 ≤ i ≤ r, let v = vi,1 →
. . .→ vi,li

= vi be a path from v to some vi ∈ V (G) in G. Let U :=
⋃

1≤i≤r{vi,1, . . . , vi,li
} be the

set of all vertices on these paths. Merging U into v means:
• deleting all vertices in U \ {v};



20 Florian Galliot, Sylvain Gravier, Isabelle Sivignon

• deleting all arcs between vertices in U ;
• replacing every arc (u, w) ∈ (U \ {v})× (V (G) \ U) by an arc (v, w).

Example. Figure 16 features a merging process on the right. The three considered paths are:
I2 ← I4, I2 ← I5 ← I8, I2 ← I6 ← I9. The set U = {I2, I4, I5, I6, I8, I9} has been merged into
v = I2.

Proposition 4.9. Suppose A is arborescent and e is of A-type "other". Define:
• J0 := {1 ≤ i ≤ N such that V (Ii) ∩ e ̸= ∅}, the set of indices of the islands that e intersects.
• i0 the index such that Ii0 := LCAG(A)({Ii, i ∈ J0}).
• J :=

⋃
i∈J0
{1 ≤ j ≤ N | Ij is on the path from Ii0 to Ii in G(A)} ⊇ J0.

• I := A[
⋃

j∈J V (Ij)], the island that will replace Ii0 (with the same entry εi0).
Then A ∪ e is an arborescent archipelago with:

• I(A ∪ e) = (I(A) \ {Ij , j ∈ J}) ∪ {I}.
• ε(A ∪ e) = ε(A) \ {εj , j ∈ J \ {i0}}.
• G(A ∪ e) defined as the digraph obtained from G(A) by merging {Ij , j ∈ J} into Ii0 .

Proof: For visual help, refer to Figure 16: in this example we have J0 = {4, 8, 9}, i0 = 2,
J = {2, 4, 5, 6, 8, 9}. The merging process that defines G(A∪ e) clearly preserves the fact that the
digraph is an arborescence. To complete the proof, we only need to show that I is an island with
entry εi0 : let X ⊂ V (I) such that 1 ≤ |X| ≤ k − 1 (and X ̸= εi0 if i0 ̸= 1), we need to find an
(εi0 , X)-extendable path in I. As visible in Figure 14, e might or might not be included in V (A),
so in general we have V (I) =

⋃
j∈J V (Ij) ∪ e. We distinguish four possibilities:

1) Case 1: X ⊂
⋃

j∈J V (Ij) and X ̸∈ {εj , j ∈ J \ {i0}}.
Of all paths in G(A) from Ii0 to an island intersecting X, let Ii0 = Ij1 → . . .→ IjM

be a
shortest one, so that X∩V (IjM

) ̸= ∅ and X∩V (Ijp
) = ∅ for all 1 ≤ p ≤M−1. Note that, by

definition of J , we have {j1, . . . , jM} ⊆ J , so the islands Ij1 , . . . , IjM
are all subhypergraphs

of I and all crossing edges between them in A are edges of I. By Proposition 3.9, there exists
an (εi0 , X)-extendable path −→P in A such that E(−→P ) ⊆

⋃M
p=1 E(Ijp)∪

⋃M
p=2 CA(Ijp−1 , Ijp) ⊆

E(I), which concludes.

2) Case 2: X intersects both
⋃

j∈J V (Ij) and e \
⋃

j∈J V (Ij).
Define X ′ := X ∩

⋃
j∈J V (Ij), we have 1 ≤ |X ′| ≤ k − 1. Case 1 applied to X ′ gives us an

(εi0 , X ′)-extendable path −→P in I, which is also (εi0 , X)-extendable by Lemma 3.3 applied
to A = εi0 , B = X ′ and B′ = X.

3) Case 3: X ⊂ e \
⋃

j∈J V (Ij).
Define X ′ := e∩

⋃
j∈J V (Ij), we have 2 ≤ |X ′| ≤ k−1 hence 1 ≤ |X| ≤ k−2: indeed |X ′| ≥ 2

by definition of the A-type "other", and |X ′| ≤ k − 1 because e \
⋃

j∈J V (Ij) ⊇ X ̸= ∅.
Moreover X ′ ̸∈ {εj , j ∈ J \ {i0}}, otherwise e would be of A-type "cut". We can thus apply
Case 1 to X ′, which gives us an (εi0 , X ′)-extendable path −→P in I. Lemma 3.4 applied to
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A = εi0 , B = X ′, C = D = X and −→Q = () ensures that −→P ⊕ (e) is an (εi0 , X)-extendable
path in I.

4) Case 4: X = εj for some j ∈ J \ {i0}.
In particular |J | ≥ 2, so e intersects several islands. Note that, since Ii0 is a strict ancestor
of Ij in G(A), we have j ̸= 1. Remember our example from Figure 16: we considered
X = ε6, and the (ε2, X)-extendable path was obtained by going from ε2 to e∩ V (I4) = {y},
then using e to jump from I4 to I9, then going from e ∩ V (I9) = {x} to X. Let us now
build this path in general.

e

Ij′
0

A

B

C

D

Ij0

Ij

Ii0

Fig. 17: Illustration of Case 4 from Proposition 4.9. The bold paths (in red and black) are −→
P on the

right and −→
Q on the left.

• Let j0 ∈ J0 such that the path Ij = Ii1 → . . . → IiM
= Ij0 in G(A) is shortest, so

that ip ̸∈ J0 for all 1 ≤ p ≤M − 1. This means e∩V (IiM
) ̸= ∅ and e∩V (Iip

) = ∅ for
all 1 ≤ p ≤M − 1. Since e intersects several islands, we know 1 ≤ |e ∩ V (Ij0)| ≤ k− 1.
Moreover the fact that j ̸= 1 implies that j0 ̸= 1, so e∩V (Ij0) ̸= εj0 , otherwise e would
be of A-type "crossing". We can thus apply Proposition 3.9 and get an (εj , e∩ V (Ij0))-
extendable path −→P in A such that E(−→P ) ⊆

⋃M
p=1 E(Iip

) ∪
⋃M

p=2 CA(Iip−1 , Iip
), hence

E(−→P ) ⊆ E(I) since {i1, . . . , iM} ⊆ J by definition of J . See Figure 17 (path on the
right).

• Since the lowest common ancestor of {Ii, i ∈ J0} is Ii0 and not Ij , there exists j′
0 ∈
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J0\{j0} such that Ij is not an ancestor of Ij′
0
, so the path Ii0 = Ii′

1
→ . . .→ Ii′

M′
= Ij′

0

from Ii0 to Ij′
0

in G(A) satisfies {i1, . . . , iM}∩{i′
1, . . . , i′

M ′} = ∅ (see Figure 17 for the
relative positions of the four islands in play: Ii0 , Ij , Ij0 , Ij′

0
). As usual, we choose j′

0
so that this path is shortest, this way we have e∩ V (Ii′

M′
) ̸= ∅ and e∩ V (Ii′

p
) = ∅ for

all 1 ≤ p ≤M ′− 1. Since e intersects several islands, we know 1 ≤ |e∩V (Ij′
0
)| ≤ k− 1.

Moreover, if j′
0 ̸= 1 then e ∩ V (Ij′

0
) ̸= εj′

0
otherwise e would be of A-type "crossing".

We can thus apply Proposition 3.9 and get an (εi0 , e ∩ V (Ij′
0
))-extendable path −→Q in

A such that E(−→Q) ⊆
⋃M ′

p=1 E(Ii′
p
) ∪

⋃M ′

p=2 CA(Ii′
p−1

, Ii′
p
), hence E(−→Q) ⊆ E(I) since

{i′
1, . . . , i′

M ′} ⊆ J by definition of J . See Figure 17 (path on the left).

• Let
−→
P ′ be the sequence obtained by reversing −→P . Since −→P is an (εj , e ∩ V (Ij0))-

extendable path,
−→
P ′ is an (e ∩ V (Ij0), εj)-extendable path. Lemma 3.4 applied to

A = X = εi0 , B = e ∩ V (Ij′
0
), C = e ∩ V (Ij0) and D = εj , whose conditions

are fulfilled since {i1, . . . , iM} ∩ {i′
1, . . . , i′

M ′} = ∅, ensures that −→Q ⊕ (e) ⊕
−→
P ′ is an

(εi0 , εj)-extendable path in I which concludes.

III) e is of A-type "crossing"

This is the easiest case: e is added as a crossing edge and the decomposition remains the same.
Note that A ∪ e might not be arborescent anymore (see e = e3 from Figure 14 for example).

Proposition 4.10. If e is of A-type "crossing", then A ∪ e is an archipelago with:
• I(A ∪ e) = I(A).
• ε(A ∪ e) = ε(A).

Proof: This is straightforward.

4.2.2 Formal algorithm

The algorithm Partition_Archipelago (Algorithm 1) returns a partition of the edges that
satisfies Theorem 4.4. The procedures Add_NewCrossing, Add_Other and Add_Crossing
(Algorithms 2 to 4) are nothing but algorithmic translations of Propositions 4.6, 4.9 and 4.10
respectively. Note that islands are simply implemented as vertex sets, because their edge sets are
never used.
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Algorithm 1 Partition_Archipelago(H, x∗)
1: initialize V (I1)← {x∗}
2: define ε1 ← {x∗}
3: initialize the archipelago A with:
4: E(A)← ∅
5: I(A)← {V (I1)}
6: ε(A)← {ε1}
7: G(A)← a digraph with only one vertex, labelled I1
8: initialize N ← 1 (index of the last created island)
9: while there exists e ∈ E(H) \ E(A) of A-type "new crossing" or "other" do

10: if e is of A-type "new crossing" then
11: update A as A ∪ e by performing Add_NewCrossing
12: else
13: update A as A ∪ e by performing Add_Other
14: end if
15: end while
16: while there exists e ∈ E(H) \ E(A) of A-type "crossing" do
17: update A as A ∪ e by performing Add_Crossing
18: end while
19: define Ecut ← {e ∈ E(H) \ E(A), e is of A-type "cut"}
20: define Eext ← {e ∈ E(H) \ E(A), e is of A-type "exterior"}
21: return E(A), Ecut, Eext

Algorithm 2 Add_NewCrossing
1: define 1 ≤ i0 ≤ N as the only index such that e ∩ V (Ii0) ̸= ∅
2: initialize V (IN+1)← e \ V (Ii0)
3: define εN+1 ← e \ V (Ii0)
4: update the archipelago A as follows:
5: E(A)← E(A) ∪ {e}
6: I(A)← I(A) ∪ {V (IN+1)}
7: ε(A ∪ e)← ε(A) ∪ {εN+1}
8: G(A ∪ e)← the digraph obtained from G(A) by adding a new vertex labelled IN+1 and

an arc (Ii0 , IN+1)
9: N ← N + 1
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Algorithm 3 Add_Other
1: define J0 := {1 ≤ i ≤ N such that V (Ii) ∩ e ̸= ∅}
2: define 1 ≤ i0 ≤ N such that Ii0 = LCAG(A)({Ii, i ∈ J0})
3: define J :=

⋃
i∈J0
{1 ≤ j ≤ N such that Ij is on the path from Ii0 to Ii in G(A)}

4: V (Ii0)←
⋃

i∈J V (Ij)
5: update the archipelago A as follows:
6: E(A)← E(A) ∪ {e}
7: I(A)← I(A) \ {V (Ij), j ∈ J \ {i0}}.
8: ε(A)← ε(A) \ {εj , j ∈ J \ {i0}}.
9: G(A) ← the digraph obtained from G(A) by merging the vertices {Ij , j ∈ J} into the

vertex Ii0 .

Algorithm 4 Add_Crossing
1: update the archipelago A as follows:
2: E(A)← E(A) ∪ {e}

Let us explain the algorithm. At the start, the archipelago A consists of the empty island with
entry {x∗}. We then augment A one edge at a time, by adding firstly the edges of A-type "new
crossing" or "other" and then the edges of A-type "crossing":

• Throughout the first While loop, A is an arborescent archipelago, as guaranteed by Proposi-
tions 4.6 and 4.9. It is very important to understand that, every time A is augmented in
that loop, the vertices and entries of A may change, so the A-types of the remaining edges
may change as well: the A-types of the edges in E(H) \E(A) must be redetermined at each
iteration of that loop.

• Throughout the second While loop, A is an archipelago, as guaranteed by Proposition 4.10.
This time, the decomposition in islands does not change during that loop (we are adding
crossing edges between already existing islands) so the A-types of the remaining edges do
not change.

That last remark proves that, after the two While loops, all remaining edges are of A-type either
"cut" or "exterior" (the A-types "new crossing" and "other" have not reappeared during the second
While loop). In conclusion, Partition_Archipelago does output a partition of E(H) and is
therefore correct.

4.2.3 Time complexity
Let n = |V (H)| and m = |E(H)|. We now show that Partition_Archipelago runs in

O(m2k) time.

Let us first consider the three procedures Add_NewCrossing, Add_Other and Add_Crossing,
to figure out how much time each update of A takes. Since basic operations on data structures
can be language-dependent, let us clarify: when we use a list, what matters is the ability to
remove the current element in O(1) time; when we use an array, what matters is the ability to
access and modify any element in O(1) time.
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• E(H)\E(A) can be implemented as a list. Indeed, it is sensible to store E(H)\E(A) rather
than E(A) since this is the set in which edges are searched for throughout. Each update
consists in removing the current edge which is done in O(1) time.

• I(A) can be implemented as an array of size n which contains, for each vertex x ∈ V (H),
the index of the island containing x (or 0 if x ̸∈ V (A)). Each update requires going through
the array once and is therefore done in O(n) time.

• ε(A) can be implemented as an array of size n which contains, for each vertex x ∈ V (H), a
1 if x is in an entry of A or a 0 otherwise. Each update requires going through the array
once and is therefore done in O(n) time.

• G(A) is an arborescence for the entire time that it is kept updated. Since O(n
k ) islands

are created in total (a new island can only be created during Add_NewCrossing, and
this requires k − 1 previously undiscovered vertices), G(A) can be implemented as an array
of size O(n

k ) containing the parent of each island, i.e. for all index i ̸= 1 it contains the
only index j such that (Ij , Ii) ∈ E(G(A)). In Add_NewCrossing, updating G(A) is
clearly done in O(1) time. In Add_Other, updating G(A) is done in O(n) time: indeed,
computing |J0| ≤ k paths to the root takes O(k × n

k ) = O(n) time, going through them a
second time to compute i0 and J takes O(k× n

k ) = O(n) time again, and finally the merging
process is performed in O( n

k ) time since it only requires going through the array once.
All in all, performing Add_NewCrossing, Add_Other or Add_Crossing once is done in
O(n) time.

Determining the A-type of a given edge e is easily done in O(k) time since it boils down to
determining, for all x ∈ e, which island/entry (if any) contains x.

We can now conclude on the time complexity of Partition_Archipelago:
• The initializations before the first While loop are done in O(m + n) time.
• During the first While loop, finding an edge of A-type "new crossing" or "other" and then

adding it takes O(mk + n) time: indeed, at most m edges are gone through (with the A-type
being determined for each one in O(k) time as we have just seen) before finally finding one
of A-type "new crossing" or "other" which is added in O(n) time as shown above. Since at
most m edges of A-type "new crossing" or "other" are added in total, the first While loop
ends in O(m(mk + n)) = O(m2k + mn) time.

• During the second While loop, no A-types need to be redetermined, and each update of A
is done in O(1) time so that this loop ends in O(m) time.

• Finally, computing Ecut and Eext at the very end of the algorithm takes O(m) time.
In conclusion, Partition_Archipelago runs in O(m2k + mn) time. Since the (k − 2)-linear
connected component is a subset of the connected component, it is reasonable to assume that H
is connected, which implies that m ≥ n−1

k−1 . Therefore, we can simplify O(m2k + mn) as O(m2k).
This ends the proof of Theorem 4.4.

Notice that the algorithm can easily be tweaked so as to also return a (k − 2)-linear path
from x∗ to x for each x ∈ LCC k−2

H (x∗). Indeed, it suffices, throughout the algorithm, to keep
in memory an (x∗, X)-extendable path in A for each X ⊂ V (A) such that 1 ≤ |X| ≤ k − 1 and
X ̸∈ ε(A), which is possible by following the construction given in the proof of Proposition 4.9. If
k = O(1) then the algorithm remains in polynomial time.
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4.3 Proof of the main results

Proof of Theorem 4.2: Let A, Ecut, Eext be as in Theorem 4.4.

• Let us first show that A = H[LCC k−2
H (x∗)]. Since no edge in Ecut ∪ Eext is included in

V (A), we know A is an induced subhypergraph of H. Moreover V (A) ⊆ LCC k−2
H (x∗) by

Corollary 3.11, so it remains to verify that LCC k−2
H (x∗) ⊆ V (A). The idea is simple: the

only way to leave the archipelago is through an edge in Ecut, however a (k − 2)-linear path
in A from x∗ to an entry of size k − 1 necessarily contains that entry entirely, making it
impossible to then use an edge in Ecut without violating the (k − 2)-linearity. We now give
the rigorous proof.
Suppose for a contradiction that there exists x ∈ LCC k−2

H (x∗)\V (A). Let −→P = (e1, . . . , eL)
be a (k − 2)-linear path from x∗ to x in H. Since x ̸∈ V (A), we can define M := inf{1 ≤
p ≤ L such that ep ̸⊂ V (A)}. Since all edges adjacent to x∗ are necessarily in E(A), we
have e1 ⊂ V (A) hence M ≥ 2. Moreover eM intersects eM−1 ⊂ V (A), so eM ∈ Ecut from
which eM ∩ V (A) = ε for some entry ε of A of size k − 1. Let y ∈ eM ∩ eM−1 ⊂ ε: since
−→
Q := (e1, . . . , eM−1) is a (k− 2)-linear path from x∗ to y in A, Proposition 3.8 ensures that
ε ⊂ eM−1. Since ε ⊂ eM , this contradicts the (k − 2)-linearity of −→P .

• Any archipelago A′ in H is a subhypergraph of H[LCC k−2
H (x∗)] = A, because V (A′) ⊆

LCC k−2
H (x∗) by Corollary 3.11. This shows both that A is a maximal archipelago and that

it is the only one.

• Finally, the complexity result is obvious since computing H[LCC k−2
H (x∗)] = A is equivalent

to computing E(A).

5 Consequences of the algorithmic result
5.1 Link with the Maker-Breaker positional game

A positional game is played on a hypergraph H, with two players taking turns picking previously
unpicked vertices of H, and the winner is decided by one of several conventions. In the Maker-
Breaker convention, the first player ("Maker") wins if she owns all vertices of some edge of H,
while the second player ("Breaker") wins if he can prevent this from happening. Note that, since
both players have complementary goals, no draw is possible. The algorithmic problem consisting
in deciding which player wins the Maker-Breaker game with optimal play is studied in the literature:

MakerBreaker
Input : a hypergraph H.
Output : YES if and only if Maker wins the Maker-Breaker game on H.

The MakerBreaker problem is trivially tractable on hypergraphs of rank 2 (Breaker wins
on a graph G if and only if all connected components of G are of size 1 or 2), and is known to be
PSPACE-complete on 6-uniform hypergraphs [Rahman and Watson (2021)]. In a separate paper
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[Galliot et al. (2022)], we study the Maker-Breaker problem on hypergraphs of rank 3, in which
linear paths play a crucial role. If H contains a linear path from x to y, where Maker owns x
and y while the other vertices of the path are free (xy-nunchaku), then Maker easily wins when
playing first, by forcing all of Breaker’s moves along the path until Breaker is trapped. It is shown
in [Galliot et al. (2022)] that Maker wins on a hypergraph of rank 3, when playing first, if and
only if she has a strategy ensuring that the updated hypergraph contains a nunchaku at the end
of one of the first four rounds of play. Therefore:

Theorem. [Galliot et al. (2022)] MakerBreaker on hypergraphs of rank 3 reduces polynomially
to HypConnectivity3,1.

Corollary 4.3 thus concludes that MakerBreaker is solvable in polynomial time on hyper-
graphs of rank 3. This validates part of a conjecture by [Rahman and Watson (2020)].

5.2 Link with PAFP

5.2.1 Reducing HypConnectivityk,q to PAFP
A first attempt at tackling the algorithmic complexity of HypConnectivityk,q, for general

1 ≤ q ≤ k − 2, could be the following reduction to the "Paths Avoiding Forbidden Pairs" problem
known as PAFP (sometimes PPFP or PFP):

PAFP
Input : a bicolored graph G (all edges are blue or red), and x, y ∈ V (G).
Output : YES if and only if there exists a blue induced path from x to y in G.

Notation 5.1. Let φk,q be the function that associates to a k-uniform hypergraph H the bicolored
graph G defined by:

• V (G) = E(H);
• For all distinct e1, e2 ∈ V (G), there is a blue (resp. red) edge between e1 and e2 in G if and

only if 1 ≤ |e1 ∩ e2| ≤ q (resp. if and only if |e1 ∩ e2| > q).
Therefore G is simply the line graph of H with added colors that carry information on the size of
the intersections. See Figure 18 for an example.

Proposition 5.2. For all k ≥ 3 and 1 ≤ q ≤ k − 2, HypConnectivityk,q polynomially reduces
to PAFP.

Proof: This is clear: by definition, a sequence of edges (e1, . . . , eL) in H is a q-linear path if
and only if it is a blue induced path in φk,q(H) ("blue" means two consecutive edges intersect on
between 1 and q vertices, "induced" means two non-consecutive edges do not intersect). Therefore,
there exists a q-linear path from x to y in H (x ̸= y) if and only if there exist edges ex ∋ x and
ey ∋ y in H such that there exists a blue induced path between ex and ey in φk,q(H).
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However, PAFP is known to be NP-complete in general [Gabow et al. (1976)]. In fact, unless
P=NP, there is no linear approximation ratio for the minimum number of red edges induced by
a blue path between two given vertices [Hajiaghayi et al. (2012)]. For the problem on directed
graphs (the blue edges are directed arcs), which is by far the most studied version in the literature,
a few tractable cases are known but they are of little help to us:

• It is shown in [Yinnone (1997)] that the problem is tractable if the red edges form a matching
and a skew symmetry condition is satisfied. Even though the undirected version is also
true with basically the same proof, it does not solve HypConnectivityk,q since a general
bicolored graph in Im(φk,q) does not satisfy these conditions (nor does it easily reduce to
one that does).

• Other tractable cases are addressed in [Chen et al. (2001)] and [Kolman and Pangrac (2009)],
however they are very specific to directed acyclic graphs.

e1

e4

e5

e3e2

e6 e7

e9 e10

e8

Fig. 18: On the left: a 3-uniform hypergraph H. On the right: the bicolored graph G = φ3,1(H).

5.2.2 Reducing some instances of PAFP to HypConnectivityk,q

Instead, now that we know HypConnectivityk,k−2 is solvable in polynomial time for all
k ≥ 3, it is interesting to turn the tables and examine the implications on PAFP:

Theorem 5.3. PAFP is tractable on bicolored graphs in
⋃

k≥3 Im(φk,k−2) for which a preimage
can be computed in polynomial time.

Proof: Let G = φk,k−2(H) for some k-uniform hypergraph H, and let e, e′ ∈ V (G) = E(H)
be distinct. As we have seen before, the blue induced paths between e and e′ in G are exactly
the (k − 2)-linear paths (e = e1, . . . , eL = e′) in H. Since HypConnectivityk,k−2 requires a
start vertex and an end vertex in its input, define, for all x ∈ e and y ∈ e′, the hypergraph Hx,y

obtained from H by removing all edges adjacent to x and y other than e and e′, so that any
(k − 2)-linear path from x to y in Hx,y necessarily starts with e and ends with e′. There exists a
blue induced path between e and e′ in G if and only if there exist x ∈ e and y ∈ e′ such that there
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is a (k − 2)-linear path from x to y in Hx,y, which concludes since HypConnectivityk,k−2 is
solvable in polynomial time.

Therefore, any sufficient condition for a bicolored graph G to be in Im(φk,k−2) for some k ≥ 3, if
it can be checked in polynomial time and comes with a way to reconstruct a preimage hypergraph
in polynomial time, would add to the very short list of known tractable cases for PAFP.

For standard (i.e. non-colored) line graphs, the recognition problem has been studied extensively.
Line graphs of graphs are characterized by a finite list of forbidden induced subgraphs ("FIS")
[Beineke (1970)]. Line graphs of hypergraphs, on the other hand, are notoriously difficult to
recognize. There is no finite FIS characterization for line graphs of k-uniform hypergraphs if
k ≥ 3 [Lovász (1977)], and this recognition problem is even known to be NP-complete for k = 3
[Poljak et al. (1981)]. However, adding information about the size of the pairwise intersections
of (hyper)edges, instead of simply telling which ones are non-empty, changes the problem. For
example, if all these sizes are given and in {0, 1} (which is equivalent to asking the hypergraph
to be linear) then, while remaining NP-complete for k = 3 [Poljak et al. (1981)] [Hlineny and
Kratochvil (1997)], the problem becomes easier in some cases:

• For k = 3, there is a finite FIS characterization for line graphs of 3-uniform linear hypergraphs
if the minimum vertex-degree of the graph is at least 69, as well as a polynomial time
algorithm to reconstruct the hypergraph in the positive case [Naik et al. (1982)]. This
bound has since been improved from 69 to 16 for the finite FIS characterization and 10 for
the tractability of the recognition problem [Skums et al. (2009)]. There is no analogous
result for k ≥ 4, no matter what constant lower bound is put on the minimum vertex-degree
[Metelsky and Tyshkevich (1997)].

• For any k ≥ 3, there is a finite FIS characterization for line graphs of k-uniform linear
hypergraphs if the minimum edge-degree of the graph is at least f(k), where f is a polynomial
function, as well as a polynomial (whose power increases with k) time algorithm to reconstruct
the hypergraph in the positive case [Naik et al. (1982)]. This result has been generalized by
replacing the linearity of the hypergraph by any constant upper bound on its multiplicity
[Bhattacharya et al. (2021)].

These results bring some hope of a finite FIS characterization for bicolored line graphs under
some similar restriction over the minimum vertex-degree or edge-degree of the graph, and of a way
to reconstruct a preimage in polynomial time which we crucially need. The case k = 3 is the most
promising because the exact size of each intersection is also given (in {0, 1, 2}: 0 = no edge, 1 =
blue edge, 2 = red edge), although it is NP-complete in general since instances with all blue edges
correspond to the 3-uniform linear case for standard line graphs which we know is NP-complete.
Figure 19 features some induced bicolored subgraphs that cannot appear in a bicolored graph
from

⋃
k≥3 Im(φk,k−2). For instance, an induced red path on three vertices is impossible because,

in a k-uniform hypergraph with k ≥ 3, if |e1 ∩ e2| = |e2 ∩ e3| = k − 1 then |e1 ∩ e3| ≥ k − 2 > 0.

6 Conclusion and perspectives
In this paper, we have introduced q-linear paths in hypergraphs of rank k, and in the case

q = k − 2 we have described the structure of the (k − 2)-linear connected components as well as a
polynomial time algorithm to compute them. The time complexity in O(m2k) might be optimal,
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...

edges
k + 1

Fig. 19: Some induced subgraphs that cannot appear in G ∈ Im(φk,k−2).

since it seems difficult to avoid an "accept or put aside" process on the edges where each edge is
potentially examined O(m) times, and the mere computation of the intersection of two edges is in
O(k) time.

What about other values of q? The linear case q = 1 is of particular interest, since linear paths
appear in numerous other problems. However, if we want to try and generalize our techniques
while maintaining a time complexity that is polynomial in k, it might be more reasonable to
look at the case q = k − c where c ≥ 3 is a constant, with adapted definitions of islands and
archipelagos (whose entries would be of size between k − c + 1 and k − 1). As an illustration of
the difficulties that can be encountered during the algorithm, consider the case k = 4 and q = 1,
where at some point an edge e = {x, y, z, t} is discovered with x, y already known vertices from
different islands and z, t unknown: on one hand e could be part of a new merged island (since
x, y ∈ e), but on the other hand e could be a crossing edge towards a new island with entry {z, t}
(since z and t are not separated), and it seems hard to conciliate the two.

The bicolored line graph recognition problem is open. As mentioned in Section 5, the added
information on the size of the pairwise intersections of edges might make this problem somewhat
easier compared to standard line graphs, especially in the case k = 3. The characterization of line
graphs of hypergraphs by a Krausz partition into cliques [Naik et al. (1982)] is easily adaptable
to the bicolored version. Some characterizations by finite families of induced subgraphs from
[Naik et al. (1982)] and their proofs might be adaptable as well, which would yield new classes of
tractable instances for PAFP. Looking beyond applications to PAFP, a general weighted line
graph recognition problem, where each edge of the graph would wear a number between 1 and
k − 1 indicating the exact size of the corresponding intersection, seems interesting in itself.
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