Graph Neural Network based scheduling : Improved throughput under a generalized interference model
Résumé
In this work, we propose a Graph Convolutional Neural Networks (GCN) based scheduling algorithm for adhoc networks. In particular, we consider a generalized interference model called the k-tolerant conflict graph model and design an efficient approximation for the wellknown Max-Weight scheduling algorithm. A notable feature of this work is that the proposed method do not require labelled data set (NP-hard to compute) for training the neural network. Instead, we design a loss function that utilises the existing greedy approaches and trains a GCN that improves the performance of greedy approaches. Our extensive numerical experiments illustrate that using our GCN approach, we can significantly (4-20 percent) improve the performance of the conventional greedy approach.
Origine | Fichiers produits par l'(les) auteur(s) |
---|