Graph Neural Network based scheduling : Improved throughput under a generalized interference model - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Graph Neural Network based scheduling : Improved throughput under a generalized interference model

Résumé

In this work, we propose a Graph Convolutional Neural Networks (GCN) based scheduling algorithm for adhoc networks. In particular, we consider a generalized interference model called the k-tolerant conflict graph model and design an efficient approximation for the wellknown Max-Weight scheduling algorithm. A notable feature of this work is that the proposed method do not require labelled data set (NP-hard to compute) for training the neural network. Instead, we design a loss function that utilises the existing greedy approaches and trains a GCN that improves the performance of greedy approaches. Our extensive numerical experiments illustrate that using our GCN approach, we can significantly (4-20 percent) improve the performance of the conventional greedy approach.
Fichier principal
Vignette du fichier
rama-hal-valuetools.pdf (326.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03410462 , version 1 (31-10-2021)

Licence

Identifiants

Citer

Ramakrishnan Sambamoorthy, Jaswanthi Mandalapu, Subrahmanya Swamy Peruru, Bhavesh Jain, Eitan Altman. Graph Neural Network based scheduling : Improved throughput under a generalized interference model. EAI - Valuetools, Oct 2021, Guangzhou, China. pp.144-153, ⟨10.1007/978-3-030-92511-6_9⟩. ⟨hal-03410462⟩
84 Consultations
456 Téléchargements

Altmetric

Partager

More