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Abstract. In this work, we propose a Graph Convolutional Neural Net-
works (GCN) based scheduling algorithm for adhoc networks. In partic-
ular, we consider a generalized interference model called the k-tolerant
conflict graph model and design an efficient approximation for the well-
known Max-Weight scheduling algorithm. A notable feature of this work
is that the proposed method do not require labelled data set (NP-hard
to compute) for training the neural network. Instead, we design a loss
function that utilises the existing greedy approaches and trains a GCN
that improves the performance of greedy approaches. Our extensive nu-
merical experiments illustrate that using our GCN approach, we can
significantly (4-20 percent) improve the performance of the conventional
greedy approach.

Keywords: Resource Allocation · Graph Convolutional Neural Net-
works · Adhoc Networks.

1 Introduction

The design of efficient scheduling algorithms is a fundamental problem in wireless
networks. In each time slot, a scheduling algorithm aims to determine a subset of
non-interfering links such that the system of queues in the network is stabilized.
Depending on the interference model and the network topology, it is known that
there exists a ‘rate region’ - a maximal set of arrival rates - for which the network
can be stabilized. A scheduling algorithm that can support any arrival rate in the
rate region is said to be throughput optimal. A well-known algorithm called the
Max-Weight scheduling algorithm [1] is said to be throughput optimal. However,
the Max-Weight scheduler is not practical for distributed implementation due
to the following reasons: (i) global network state information is required, and
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(ii) requires the computation of maximum-weighted independent set problem in
each time slot, which is an NP-hard problem.

There have been several efforts in the literature to design low-complex, dis-
tributed approximations to the Max-Weight algorithm [2, 3]. Greedy approxima-
tion algorithms such as the maximal scheduling policies, which can support a
fraction of the maximum throughput, are one such class of approximations [4].
On the other hand, we have algorithms like carrier sense multiple access (CSMA)
algorithms [5, 6], which are known to be near-optimal in terms of the throughput
performance but known to suffer from poor delay performance.

Inspired by the success of deep-learning-based algorithms in various fields
like image processing and natural language processing, recently, there has been
a growing interest in their application in wireless scheduling as well [7–9]. Initial
research in this direction focused on the adaption of widely used neural archi-
tectures like multi-layer perceptrons or convolutional neural networks (CNNs)
[10] to solve wireless scheduling problems. However, these architectures are not
well-suited for the scheduling problem because they do not explicitly consider
the network graph topology. Hence, some of the recent works in wireless net-
works study the application of the Graph Neural Network (GNN) architectures
for solving the scheduling problem [11]. For instance, a recent work [12] has
proposed a GNN based algorithm, where it has been observed that the help of
Graph Neural networks can improve the performance of simple greedy scheduling
algorithms like Longest-Queue-First (LQF) scheduling.

However, this result is observed on a simple interference model called the
conflict graph model, which captures only binary relationships between links.
Nevertheless, in real wireless networks, the interference among the links is addi-
tive, and the cumulative effect of all the interfering links decides the feasibility
of any transmission. Hence, it is essential to study whether the GNN based ap-
proach will improve the performance of greedy LQF scheduling under a realistic
interference model like the (Signal-to-interference-plus-noise ratio) SINR model,
which captures the cumulative nature of interference.

One of the challenges in conducting such a study is that the concept of graph
neural networks is not readily applicable for the SINR interference model since a
graph cannot represent it. Hence, we introduce a new interference model which
retains the cumulative interference nature yet is amenable to a graph-based
representation and conduct our study on the proposed interference model. This
approach will provide insights into whether the GNN-based improvement for
LQF will work for practical interference models.

To that end, in this paper, we study whether GNN based algorithms can
be used for designing efficient scheduling under this general interference model.
Specifically, we consider a k-tolerant conflict graph model, where a node can
successfully transmit during a time slot if not more than k of its neighbors are
transmitting in that time slot. Moreover, when k is set to zero, the k-tolerance
model can be reduced to the standard conflict graph model, in which a node
cannot transmit if any of its neighbors is transmitting. We finally tabulate our
results and compare them with other GNN-based distributed scheduling algo-
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rithms under a standard conflict-graph-based interference model. In sum, our
contributions are as follows:

(i) We propose a GCN-based distributed scheduling algorithm for a generalized
interference model called the k-tolerant conflict graph model.

(ii) The training of the proposed GCN does not require a labeled data set (in-
volves solving an NP-hard problem). Instead, we design a loss function that
utilizes an existing greedy approach and trains a GCN that improves the
performance of the greedy approach by 4 to 20 percent.

The remainder of the paper is organized as follows. In Sec. 2, we briefly present
our network model. In Sec. 3, an optimal scheduling policy for k-tolerance con-
flict graph interference model, a GCN-based k-tolerant independent set solver,
is presented. In Sec. 4, we conduct experiments on different data sets and show
the numerical results of the GCN-based scheduling approach. Finally, the paper
is concluded in Sec. 5.

Motivation: In the SINR interference model, a link can successfully transmit if
the cumulative interference from all nodes within a radius is less than some fixed
threshold value. The conflict graph model insists that all the neighbours should
not transmit when a link is transmitting. However, in a real-world situation,
a link can successfully transmit as long as the cumulative interference from
all its neighbours (the links which can potentially interfere with a given link)
is less than a threshold value. As a special case, in this paper, we consider
a conservative SINR model called k-tolerance model in which, if imax is the
estimated strongest interference that a link can cause to another and let ith be
the cumulative threshold interference that a link can tolerate, then a conservative
estimate of how many neighbouring links can be allowed to transmit without
violating the threshold interference is given by k = ith/imax. In other words,
k-neighbours can transmit while a given link is transmitting. It can be seen that
this conservative model retains the cumulative nature of the SINR interference
model. Hence a study on this model should give us insights into the applicability
of GNN based solutions for realistic interference models.

2 Network Model

We model the wireless network as an undirected graph G = (V,E) with N nodes.
Here, the set of nodes V = {vi}Ni=1 of the graph represents links in the wireless
network i.e., a transmitter-receiver pair. We assume an edge between two nodes,
if the corresponding links could potentially interfere with each other. Let E and
A denote the set of edges and the adjacency matrix of graph G respectively.
We denote the set of neighbors of node v by N(v) i.e., a node v′ ∈ N(v), if the
nodes v and v′ share an edge between them. We say a node is k-tolerant, if it
can tolerate at most k of its transmitting neighbors. In other words, a k-tolerant
node can successfully transmit, if the number of neighbors transmitting at the
same time is at most k. We define a k-tolerant conflict graph as a graph in which
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each node is k-tolerant, and model the wireless network as a k−tolerant conflict
graph. Note that this is a generalization of the popular conflict graph model,
where a node can tolerate none of its transmitting neighbors. The conflict graph
model corresponds to 0-tolerant conflict graph (k = 0).

We assume that the time is slotted. In each time slot, the scheduler has to
decide on the set of links to transmit in that time slot. A feasible schedule is a
set of links that can successfully transmit at the same time. At any given time
t, a set of links can successfully transmit, if the corresponding nodes form a k-
independent set (defined below) in graph G. Thus, a feasible schedule corresponds
to a k-independent set in G.

Definition 1. (k-independent set) A subset of vertices of a graph G is k-inde-
pendent, if it induces in G, a sub-graph of maximum degree at most k.

A scheduler has to choose a feasible schedule at any given time. Let SG de-
notes the collection of all possible k−independent sets i.e., the feasible schedules.
We denote the schedule at time t by an N length vector σ(t) = (σv(t), v ∈ V ).
We say σv(t) = 1 if at time t, node v is scheduled to transmit and σv(t) = 0,
otherwise. Depending on the scheduling decision σ(t) ∈ SG taken at time t, node
v ∈ V (a link in the original wireless network) gets a rate of µv(t, σ). We assume
that packets arriving at node v can be stored in an infinite buffer. At time t,
let λv(t) be the number of packets that arrive at node v ∈ V . We then have the
following queuing dynamics at node v:

qv(t+ 1) = [qv(t) + λv(t)− µv(t, σ)]
+
. (1)

The set of arrival rates for which there exist a scheduler that can keep the queues
stable is known as the rate region of the wireless network.

2.1 Max-Weight Scheduler

A well known scheduler that stabilises the network is the Max-Weight algo-
rithm [1]. The Max-Weight algorithm chooses a schedule σ∗(t) ∈ SG that maxi-
mizes the sum of queue length times the service rate, i.e.,

σ∗(t) = arg max
σ∈SG

∑
v

qv(t)µv(t, σ). (2)

We state below one of the celebrated results in radio resource allocation.

Theorem 1. [1] Let the arrival process λv(t) be an ergodic process with mean
λv. If the mean arrival rates (λv) are within the rate region, then the Max-Weight
scheduling algorithm is throughput optimal.

In spite of such an attractive result, the Max-Weight algorithm is seldom imple-
mented in practice. This is because, the scheduling decision in (2) has complexity
that is exponential in the number of nodes. Even with the simplistic assump-
tion of a conflict graph model, (2) reduces to the NP-hard problem of finding
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the maximum weighted independent set. At the timescale of these scheduling
decisions, finding the exact solution to (2) is practically infeasible. Hence, we
resort to solving (2) using a Graph Neural Network (GNN) model. Before we
explain our GNN based algorithm, we shall rephrase the problem in (2) for the
k-tolerant conflict graph model below.

2.2 Maximum weighted k-independent set

In the k-tolerant conflict graph model G, the Max-Weight problem is equivalent
to the following integer program:

Maximize:
∑
v

σvwv

Such that: σv

 ∑
v′∈N(v)

σv′

 ≤ k
σv ∈ {0, 1}, for all v ∈ V

(3)

Here w = (wv : v ∈ V ) is the weight vector. The constraint in (3) ensures that
whenever a node is transmitting, at most k of its neighbors can transmit. It can
be observed that the maximum weight problem in (2) corresponds to using the
weights wv = qv(t)µv(t, σ) in the above formulation. Henceforth, the rest of this
paper is devoted to solving the maximum weighted k-independent set problem
using a graph neural network.

3 Graph Neural Network based Scheduler
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Fig. 1: The architecture of the Graph Convolutional Neural Network based maximum
weighted k−independent set problem solver.

In this section, we present a graph neural network based solution to solve the
maximum weighted k-independent set problem. We use the Graph Convolution
Neural network (GCN) architecture from [13, 14].
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The GCN architecture is as follows: We use a GCN with L layers. The input

of each layer is a feature matrix Zl ∈ RN×Cl

and its output is fed as the input
to the next layer. Precisely, at the (l + 1)th layer, the feature matrix Zl+1 is
computed using the following graph convolution operation:

Zl+1 = Φ(ZlΘl
0 + LZlΘl

1), (4)

whereΘl
0,Θ

l
1 ∈ RCl×Cl+1

are the trainable weights of the neural network, Cl de-
notes the number of feature channels in l-th layer, Φ(.) is a nonlinear activation
function and L is the normalized Laplacian of the input graph G computed as

follows: L = IN −D−
1
2 AD−

1
2 . Here, IN denotes the N ×N identity matrix and

D is the diagonal matrix with entries Dii =
∑
j Aij .

We take the input feature matrix Z0 ∈ RN×1 as the weights w of the nodes
(hence C0 = 1) and Φ(.) as a ReLU activation function for all layers except
for the last layer. For the last layer, we apply sigmoid activation function to
get the likelihood of the nodes to be included in the k-independent set. We
represent this likelihood map from the GCN network using an N length vector
π = (πv, v ∈ V ) ∈ [0, 1]N .

In summary, the GCN takes a graph G and the node weights w as input and
returns a N length likelihood vector π (see Figure 1). However, we need a k-
independent set. In usual classification problems, such a requirement is satisfied
by projecting the likelihood maps to a binary vector. Projecting the likelihood
map onto the collection of k-independent sets is not straightforward, since the
collection of k-independent sets are N length binary vectors that satisfy the
constraints in (3). Such a projection operation by itself might be costly in terms
of computation. Instead, by taking inspiration from [15], we pass the likelihood
map through a greedy algorithm5 to get a k-independent set.

The greedy algorithm requires each node to keep track of the number of
its neighbours already added in k-independent set. We sort the nodes in the
descending order of the product of the likelihood and the weight i.e., πvwv. We
add the node with highest likelihood-weight product to the k-independent set,
if at most k of its neighbors are already added in the k-independent set. We
remove the nodes that are neighbours to a node which has already added to the
set and also reached a tolerance of k. We then repeat the procedure until no
further nodes are left to be added.

We use a set of node-weighted graphs to train the GCN. Since the problem
at hand is NP-hard, we refrain from finding the true labels (maximum weighted
k-independent set) to train the GCN. Instead, we construct penalty and reward
functions using the desirable properties of the output π. We then learn the pa-
rameters by optimizing over a weighted sum of the constructed penalties and re-
wards. We desire the output π to predict the maximum weighted k-independent
set. With this in mind we construct the following rewards and penalties:

5 In practice, the greedy algorithm can be replaced with a distributed greedy algorithm
[16] and train the GCN model w.r.t the distributed greedy algorithm.
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a) The prediction π needs to maximize the sum of the weights. So, our predic-
tion needs to maximize R1 =

∑
v πvwv.

b) The prediction π needs to satisfy the k-independent set constraints. There-
fore, we add a penalty, if π violates the independent set constraints in (3),

i.e., P1 =
∑
v∈V

(
σv

(∑
v′∈N(v) σv′ − k

))2
.

c) Recall that we use the greedy algorithm to predict the k-independent set
from π. The greedy algorithm takes (πvwv, v ∈ V ) as the input and returns
a k-independent set. We desire the total weight of the output π, i.e.,

∑
v πvwv

to be close to the total weight of the k-independent returned by the greedy
algorithm. Let Wgcn be the total weight of the independent set predicted
by the greedy algorithm. Then, we penalise the output π if it deviates from
Wgcn, i.e., P2 = |

∑
v πvwv −Wgcn|2.

We finally construct our cost function as a weighted sum of the above i.e.,
we want the GCN to minimize the cost function:

C = β1P1 + β2P2 − β3R1 (5)

where β1, β2 and β3 denotes the optimization weights of the cost function defined
in equation (5).

4 Experiments

We perform our experiments on a single GPU GeForce GTX 1080 Ti 6. The data
used for training, validation and testing are described in the subsection below.

4.1 Dataset

We train our GCN using randomly generated graphs. We consider two graph
distributions, namely Erdos-Reyni (ER) and Barbasi-Albert (BA) models. These
distributions were also used in [12]. Our choice of these graph models is to ensure
fair comparison with prior work on conflict graph model [12] (k = 0).

In ER model with N nodes, an edge is introduced between two nodes with a
fixed probability p, independent of the generation of other edges. The BA model
generates a graph with N nodes (one node at a time), preferentially attaching
the node to M existing nodes with probability proportional to the degree of the
existing nodes.

For training purpose, we generate 5000 graphs of each of these models. For
the ER model, we choose p ∈ {0.02, 0.05, 0.075, 0.10, 0.15} and for the BA model
we choose M = Np. The weights of the nodes are chosen uniformly at random
from the interval [0, 1]. We use an additional 50 graphs for validation and 500
graphs for testing.

6 Training the models took around two hours.
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4.2 Choice of hyper-parameters

We train a GCN with 3 layers consisting i) an input layer with the weights of
the nodes as input features ii) a single hidden layer with 32 features and iii)
an output layer with N features (one for each node) indicating the likelihood of
choosing the corresponding node in the k-independent set. This choice of using a
smaller number of layers ensures that the GCN operates with a minimal number
of communications with its neighbors. We fix k = 0, and experiment training
the GCN with different choices of the optimization weights β1, β2 and β3. The
results obtained are tabulated in Figure 2. Let Wgr denote the total weight of
the plain greedy algorithm i.e., without any GCN and Wgcn denote the total
weight of the independent set predicted by the GCN-greedy combination. We
have tabulated the average ratio between the total weight of the nodes in the
independent set obtained from the GCN-greedy and the total weight of the nodes
in the independent set obtained from the plain greedy algorithm, i.e., Wgcn/Wgr.
The average is taken over the test data set. The training was done with BA and

Test Data = ER Test Data = BA
Training Data β1 β2 β3 Average Variance Average Variance

Wgcn/Wgr × 10−3 Wgcn/Wgr × 10−3

BA

5 5 10 1.038 3.047 1.11 10.16
10 10 1 1.035 3.297 1.11 10.37
5 5 1 1.035 3.290 1.11 10.14
1 1 1 1.034 3.253 1.10 10.23
5 5 30 1.041 3.230 1.10 10.39
5 5 50 1.041 3.214 1.10 10.28
5 5 100 1.035 2.838 1.09 10.02
30 1 1 1.031 2.401 1.07 8.25

ER

5 5 30 1.040 2.929 1.10 10.12
5 5 10 1.039 3.145 1.11 10.71
5 5 50 1.039 2.957 1.09 9.92
1 1 1 1.038 3.135 1.11 10.74
1 20 1 1.036 3.070 1.11 10.55
10 10 1 1.034 3.428 1.11 10.34
5 5 1 1.034 3.331 1.11 10.34
5 5 100 1.031 2.420 1.08 8.42

Distributed scheduling using GNN [12] 1.039 3.5 1.11 11.0

Fig. 2: Table showing the average and variance of the ratio of the total weight of the
nodes in the independent set (K = 0) obtained using GCN to that of the independent
set obtained using greedy algorithm. We observe a 3 percent increase in the total weight
for the ER model and 11 percent increase in the total weight for the BA model. Our
performance matches with the performance of the GCN used in [12].

ER models separately. We test the trained models also with test data from both
models to understand if the trained models are transferable. We see that GCN
trained with parameters β1 = 5, β2 = 5 and β3 = 10 performs well for both
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ER and BA graph models. The GCN improves the total weight of the greedy
algorithm by 4 percent for the ER model and by 11 percent for the BA model.
Also, we see that the GCN trained with ER model performs well with BA data
and vice versa.

4.3 Performance for different k

We also evaluate the performance for different tolerance values k ∈ {1, 2, 3, 4}.
We use the parameters β1 = 5, β2 = 5 and β3 = 10 in the cost function. Recall
that we have come up with this choice using extensive simulations for k = 0.
In Figure 3, we tabulate the average ratio between the total weight of the k-
independent set obtained using the GCN-greedy combo and that of the plain
greedy algorithm i.e., Wgcn/Wgr. We have also included the variance from this
performance. We observe that the performance for a general k is even better as
compared to k = 0. For example, we see that for k = 2, 3, 4, we see 6 percent
improvement for the ER model and close to 20 percent improvement for the BA
model.

Test Data = ER Test Data = BA
Training Data k Average Variance Average Variance

Wgcn/Wgr × 10−3 Wgcn/Wgr × 10−3

BA

1 1.056 4.07 1.143 10.22
2 1.062 5.26 1.193 10.92
3 1.067 5.55 1.209 20.14
4 1.063 4.53 1.241 20.57

ER

1 1.056 3.99 1.143 10.18
2 1.064 5.12 1.187 10.81
3 1.066 4.82 1.205 20.13
4 1.062 4.18 1.225 20.29

Fig. 3: The table shows the average and variance of the ratio between the total weight
of the k-independent set obtained using GCN-greedy combo to that of the plain greedy
algorithm for k ∈ {1, 2, 3, 4}. We observe that the improvement is consistently above 5
percent for the ER model and above 14 percent for the BA model.

Interestingly, the GCN trained with ER graphs performs well on the BA data
set as well. This indicates that the trained GCN is transferable to other models.

5 Conclusion

In this paper, we investigated the well-studied problem of link scheduling in wire-
less adhoc networks using the recent developments in graph neural networks. We
modelled the wireless network as a k-tolerant conflict graph and demonstrated
that using a GCN, we can improve the performance of existing greedy algorithms.
We have shown experimentally that this GCN model improves the performance



10 S. Ramakrishnan et al.

of the greedy algorithm by at least 4-6 percent for the ER model and 11-22
percent for the BA model (depending on the value of k).

In future, we would like to extend the model to a node dependent tolerance
value kv and pass the tolerance value as the node features of the GNN in addition
to the weights.
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