Unequal Singleton Pair Distance for Evidential Preference Clustering - Archive ouverte HAL
Chapitre D'ouvrage Année : 2021

Unequal Singleton Pair Distance for Evidential Preference Clustering

Résumé

Evidential preference based on belief function theory has been proposed recently, simultaneously characterizing preference information with uncertainty and imprecision. However, traditional distances on belief functions do not adapt to some intrinsic properties of preference relations, especially when indifference relation is taken into comparison, therefore may cause inconsistent results in preference-based applications. In order to solve this issue, Unequal Singleton Pair (USP) distance has been proposed previously, with applications limited in preference aggregation. This paper explores forward the effectiveness of USP distance in preference clustering, especially confronting multiple conflicting sources. Moreover, a combination strategy for multiple conflicting sources of preference is proposed. The experiments on synthetic data show that USP distance can effectively improve the clustering results in Adjusted Rand Index (ARI).
Fichier principal
Vignette du fichier
BELIEF2021-2.pdf (381.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03410134 , version 1 (31-10-2021)

Identifiants

Citer

Yiru Zhang, Arnaud Martin. Unequal Singleton Pair Distance for Evidential Preference Clustering. Belief Functions: Theory and Applications, 12915, Springer International Publishing, pp.33-43, 2021, Lecture Notes in Computer Science, ⟨10.1007/978-3-030-88601-1_4⟩. ⟨hal-03410134⟩
217 Consultations
111 Téléchargements

Altmetric

Partager

More