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Abstract. Evidential preference based on belief function theory has
been proposed recently, simultaneously characterizing preference infor-
mation with uncertainty and imprecision. However, traditional distances
on belief functions do not adapt to some intrinsic properties of preference
relations, especially when indifference relation is taken into comparison,
therefore may cause inconsistent results in preference-based applications.
In order to solve this issue, Unequal Singleton Pair (USP) distance has
been proposed previously, with applications limited in preference aggre-
gation. This paper explores forward the effectiveness of USP distance in
preference clustering, especially confronting multiple conflicting sources.
Moreover, a combination strategy for multiple conflicting sources of pref-
erence is proposed. The experiments on synthetic data show that USP
distance can effectively improve the clustering results in Adjusted Rand
Index (ARI).

Keywords: Belief function theory · Preference clustering · Distance.

1 Introduction

With the blossomy development of the digital world, there are various ways
to describe one’s preference information, such as binary choice (like, dislike),
rated with ranks, scores, even colors. Indeed, it is challenging to accurately and
effectively cluster preferences, and data quality is one problem. Low quality may
be caused by uncertainty, conflicts, incompleteness, or other flaws. We refer to
such preference data as “imperfect” in this paper.

Many works have been devoted to modeling imperfect preferences. For ex-
ample, fuzzy preference [11], possibilistic model [1], probabilistic model [8] and
Plackett-Luce model [9] have been proposed to deal with preference with un-
certainty and have gained success in various scenarios of applications. However,
these methods are usually limited to uncertainty information with uncertainty
by proportional or probabilistic values by imposing distribution assumptions.

Dissimilarity measures play an important role in preference analysis, notably
in preference aggregation [13, 5] and preference learning [7, 14] applications. The
former application concerns combining multiple preferences into a consensus one,
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while the latter one concentrates on machine learning over preference informa-
tion, usually applied in ranking problems [4]. Preference clustering is a mission
in preference learning, aiming at categorize the preference information based
on their similarities, often applied in recommendation systems and community
detection tasks [6, 16, 17]. Indeed, some preference aggregation strategies are in-
trinsically identical to the minimization of distance sums, as demonstrated in a
work of Viappini [15].

Naturally, dissimilarity measure methods in BFT come into the focus for
evidential preferences. Even though many dissimilarity measures have been pro-
posed in BFT, they are proved not suitable for evidential preference in [19]
because of the conflicts between inherent properties of preference relations. An
important one is the equal dissimilarity value between singletons. Formally, in a
framework of discernment (FoD) Ω = {ω1, ω2, . . . , ωH}, ∀ωp, ωq ∈ Ω, to the limit
of our knowledge, the dissimilarity function d(·) over two singletons d(ωp, ωq) is
a constant, usually normalized as 1. However, dissimilarity between singletons
should be naturally discriminated in preference relation. For example, the dissim-
ilarity d∆ between three binary preference relations “strict prefer to” (denoted as
�), “indifferent to” (denoted as ≈), and “inverse strict prefer to” (or “preferred
by”, denoted as ≺) is naturally d∆(�,≺) > d∆(�,≈) while all dissimilarity
measures in BFT output d∆(�,≺) = d∆(�,≈). This valuation set ignores the
intermediate role of “indifference” between the two directions of “strict prefer-
ence”, which is detrimental in distance based applications with weak preferences.
Zhang et. al. [19] discussed negative consequences of such valuation in preference
aggregation application and proposed Unequal Singleton Pair (USP) distance,
solving the issue by discriminating the dissimilarity between different singleton
pairs with other important properties in BFT still guaranteed.

The effectiveness of USP distance in evidential preference aggregation has
already been demonstrated [19], while not applied in evidential preference clus-
tering.

In this paper, we study USP distance in evidential preference clustering ap-
plications. The evidential preferences are obtained from conflicting preference
sources over identical alternative pairs. In our method, the conflicts between
multiple sources are interpreted as the ignorance of an agent. The experiments
show that the clustering results are improved by applying USP distance in terms
of Adjust Rand Index (ARI).

The paper is organized as follows: in Section 2, basic notions on belief func-
tions as well as evidential preference model are introduced, followed by the cal-
culation tutorial of USP distance and clustering model in Section 3. Afterward,
the comparison experiments of clustering with other distances are depicted in
Section 4. Conclusion and discussions are given finally in Section 5.



Unequal Singleton Pair Distance for Evidential Preference Clustering 3

2 Preliminary

2.1 Belief functions

Let Ω = {ω1, . . . , ωH} be a finite set representing all possible status of a cate-
gorical attribute, the uncertainty and imprecision of this attribute is expressed
by Basic Belief Assignment (BBA).

Definition 1. (Basic Belief Assignment (BBA)) A Basic Belief Assignment
(BBA) on Ω is a function m : 2Ω → [0, 1] such that:

m(∅) = 0 and
∑
X⊆Ω

m(X) = 1. (1)

The subsets X of Ω such that m(X) > 0 are called focal elements, while the
finite set Ω is called the framework of discernment (FoD). Ω is also considered as
total ignorance since it represents all the possibilities. A BBA representing total
ignorance (m(Ω) = 1) is also called a vacuous BBA. A BBA is simple supported
if a non-zero value is assigned only to one singleton and Ω. Besides, a BBA m is
called categorical on element X,X ∈ 2Ω if m(X) = 1, denoted as X0. We refer
to a categorical BBA on one singleton as categorically simple supported.

2.2 Evidential Preference Model

Preference modeling is usually based on order theory. In this paper, we use the
widely accepted notions in studies of preferences from [12].

Definition 2. (Preference relation) Between any two alternatives ai, aj , only
three exclusive relations possibly exist {�,≈,∼}, defined from binary relation
R, with ¬ denoting logic negation, as:

Strict preference: ai � aj iff aiRaj and aj¬Rai;
Indifference: ai ≈ aj iff aiRaj and ajRai;

Incomparability: ai ∼ aj iff ai¬ � aj and ai¬ ≺ aj and ai¬ ≈ aj .

Definition 3. (Preference Structure) A preference structure is a collection of
binary relations defined on the set A and such that:

– for each couple (ai, aj), ai, aj ∈ A, at least one relation is satisfied;
– for each couple (ai, aj), ai, aj ∈ A, if one relation is satisfied, any other

relation cannot be satisfied.

The evidential preference model is originally proposed by [10] on weak orders
and extended to quasi orders with the consideration of incomparability by [18].

Definition 4. (Evidential preference) For any alternative pair ai, aj ∈ A, four

relations are possible. Therefore, the preference FoD Ωprefij is defined as:

Ωprefij = {ωRij |R ∈ {�,≺,≈,∼}}. (2)
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The degree of uncertainty on preference relation is represented by values on
singletons. The imprecision is characterized by values on union sets.

With the combination rules in the framework of BFT, the evidential pref-
erence model is effective in group decision-making with imperfect preference
information sources, as systematically discussed in [19].

3 Clustering model for evidential preferences with
Unequal Singleton Pair (USP) distance

In this section, we introduce the clustering model over evidential preference with
USP distance, followed by a brief tutorial for calculating USP distance.

3.1 Strategy of reasoning and clustering

The reasoning strategy is designed with the procedure depicted in Figure 1,
where σ denotes a preference structure, u an agent, and D the matrix of pairwise
distances.

Fig. 1: Strategy of clustering

In a case that an identical agent u’s (u ∈ U) preference is expressed by
multiple sources, agent u is therefore represented by a list of pairwise evidential
preferences obtained by the combination of multiple sources. Afterward, pairwise
distances between different agents are calculated for the clustering process. In
this strategy, three main steps are included:

1. Combination of multiple conflicting preference sources for one agent;
2. Calculation of distances between different agents;
3. Clustering over agents based on the proximity distances.

In the following parts, we introduce the combination of multiple preferences and
the calculation of distances, while the clustering method is out of the scope
because any clustering method for proximity data is available.

3.2 Evidential preference reasoning and combination

Evidential preferences are reasoned from conventional crisp preference informa-
tion, wildly conflicting preferences from multiple sources. We develop an eviden-
tial preference reasoning strategy for multiple (conflicting) sources.
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Given multiple preference structures (from multiple sources) S = {σ1, σ2, . . .}
for one agent u on identical alternative set A, the average mutual conflicting
(AMC) κAMC among S is defined as:

κAMC =
1(|S|
2

) ∑
σp,σq∈S
p<q

d(σp, σq), (3)

where d denotes a distance function for preference orders (rather than pair-wise
preferences). In this paper, we apply Fagin’s distance [3], which is an extended
version of Kendall’s distance.

The BBAs’ values are obtained by mean rule combination with normalization
of AMC. For agent u’s opinion between ai and aj , denote the crisp preference
from source s as σs(ai, aj). The BBA mu

ij representing agent u’s evidential pref-
erence opinion between ai, aj is calculated by:

mu
ij(X) =


1− κAMC

|S|
∑
s∈S

ms
ij(X), if X 6= Ω;

κAMC , X = Ω,

where ms
ij is categorical as it comes from a crisp preference source without

uncertainty nor imprecision.
The distance between two agents ur and ul are calculated by the mean value

of their pairwise preference distance, defined as:

d(ur, ul) =
1(|A|
2

) ∑
ai,aj∈A
i<j

dBFT (mur
ij ,m

ul
ij ), (4)

where dBFT denotes a distance function for BBAs in the theory of belief func-
tions,

(|A|
2

)
the combination number of 2 elements out of A. In our work, we

apply USP distance as introduced below to avoid the flaw mentioned in the
Section 1.

3.3 USP distance

Unequal Singleton Pair distance is originally proposed to solve a flaw existing
in all dissimilarity measures in BFT. Before USP distance, all measures value
the dissimilarity between singletons equally. In a FoD Ω = {ω1, ω2, . . . , ωH}, the
dissimilarity between any two different singletons is a constant (normalized as
1), formally, ∀ωm, ωn ∈ Ω,ωm 6= ωn:

d({ωm}0, {ωn}0) ≡ 1. (5)

USP distance, which is an extensive version of Jousselme distance, can solve
this flaw. given for two BBAs m1 and m2 in Ω, USP distance is defined by:

dUSP (m1,m2) =
√

(m1 −m2)TΣ(m1 −m2), (6)
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where Σ denotes the similarity matrix between elements in 2Ω . In Jousselme
distance, Σ is a Jaccard matrix defined on the structure of elements, while in
USP distance, Σ is defined by resemblance resemb and entirety entire of the two
elements. The value of resemblance and entirety are calculated by the difference
in the similarity between singleton pairs.

Here we give a tutorial for USP distance calculation. Define a set of ele-
ments in 2Ω , W = {X1, X2, . . . , XM}, therefore W ⊆ 2Ω . Denote resemb(W )
for resemb(X1, X2, . . . , XM ) and entire(W ) for entire(X1, X2, . . . , XM ) to sim-
plify the expression. The size of W is defined by the number of elements X ∈ 2Ω ,
denoted by |W |. Singletons in W is defined by the union of all elements in W ,
formally:

∪W =
⋃

Xi∈W
Xi. (7)

To guarantee the uniqueness of the solution, the entirety value of a singleton is
set as 1. Denote the subset of W by Wsub, entire(W ) is defined as a generalized
version of cardinal function on the union sets:

entire(W ) =
∑
ω∈∪W

entire(ω) +

|2Ω |∑
t=1

∑
Wsub⊆W
|Wsub|=t

resemb(Wsub)× (−1)t. (8)

To simplify the calculation, we assume that the resemblance values are non-
zero only between two singletons and the entirety of a singleton is 1, formally:

resemb(W ) = 0, ∀W ⊆ 2Ω , |W | ≥ 3, (9)

entire(ω) = 1, ∀ω ∈ Ω. (10)

Inserting above equations into Equation (8), we have:

entire(X,Y ) =
∑

ω∈X∪Y
entire(ω)−

∑
ωm∈X
ωn∈Y
m6=n

resemb(ωm, ωn). (11)

Hence, the similarity between two elements X and Y is calculated by:

sim(X1, X2) =

∑
ωm∈X1
ωn∈X2
m 6=n

resemb(ωm, ωn)

∑
ω∈X1∪X2

entire(ω)−
∑

ωm∈X1
ωn∈X2
m6=n

resemb(ωm, ωn)
. (12)

To guarantee Equation (9), the following constraint can be deduced:∑
ωm,ωn∈Ω
ωm 6=ωn

sim(ωm, ωn) ≤ 1. (13)
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3.4 Value setting of USP distance for evidence preference

Assume that similarities between categorical BBA representing preferences are:

d∆(ω�, ω≈) = d∆(ω≺, ω≈) = x;

d∆(ω�, ω≺) = 1.
(14)

Assume resemb(ω�, ω≈) = p, from Equation (12), we get:

p =
2x

1 + x
(15)

In this work, we take the extreme value as in [19], shown in Table 1, with
which the similarity matrix Sim over 2Ω can be obtained by Equation (12).

Table 1: Similarity between singletons
sim ω� ω≺ ω≈

ω� 1 0 1/3

ω≺ 0 1 1/3

ω≈ 1/3 1/3 1

For preference structures, by applying Equation (4), the USP distance de-
grades to Fagin’s distance. Due to the space limitations, the proof will be pro-
vided in an extended version.

4 Experiments

In this paper, we show our first experiments on synthetic data generated by
Algorithm 1. The implementation is realised by Python 3.7, based on iBelief
package4. After calculation of pairwise distance over agents, a proximity measure
applicable clustering method is used. In this paper, EkNNclus [2] is chosen as
the clustering learner. Parameter selection in EkNNclus is not in the scope of
this paper. In this paper, we directly set the number of clusters as in the data
generation process.

Algorithm 1 Generate conflicting preference sources in |C| clusters

Require: Cluster number |C|
Switch time T
neighbour size N
Alternative size in each order |A|

Ensure: |C| clusters of preferences
1: Initialise |C| preference structures as

centroids
2: for each centroid σc do
3: for n in 1 : N do

4: for t in 1 : T do
5: randomly generate index i, j;
6: exchange ranking order of

ai, aj in σc to making a new
order;

7: end for
8: end for
9: end for

4 https://github.com/jusdesoja/iBelief python
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Confronting multiple preference sources, several methods are respectively
compared with the average of Euclidean distance and Fagin (Kendall) distance.
Clustering results are evaluated by Adjusted Rand Index and Silhouette score,
depicted in Figure 2. To avoid random errors, the average value of 20 times
experiments is calculated.

Two sets of experiments are conducted to demonstrate the effectiveness of
USP distance in preference clustering. The first one is done with two conflicting
sources, while the neighborhood size of preferences over 10 items increment,
depicted in Figure 2. The second one is done with 8 clusters of preferences, with
number of sources varying from 1 to 10 with step 2, depicted in Figure 3.
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Fig. 2: Clustering results with different neighbourhood size
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Fig. 3: Clustering results with different number of sources

It can be easily observed from Figure 2 that USP distance outperforms other
distances, especially in terms of ARI. The advantages of USP distance are ob-
tained by moderating the dissimilarity between ≺,� and ≺,≈, which respects
better the natural definition of the preference relations. From Figure 3, the re-
sult is consistent with Experiment 1, that USP distance out performs other in
ARI while worse in sihouette score. Moreover, with one source, experiments with
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Jousslem distance, USP distance and Kendall distance return identical clustering
results. This proves the assertation that Jousselme distance and USP distance
degrade to Kendall distance confronting conventional preferences in total orders.
We also observe that both ARI and silhouette score dramatically decrease with
the number of conflicting sources augmenting. This is due to the fact that the
alternative space is small (with only 10 alternatives), therefore one pair of con-
flicting preference already takes a big portion in all preference structure. In deed,
with 10 sources of conflicting sources, two agents often become identical after
the combination step. The results with 10 sources are similar in all distances,
because the data is barely separable at this stage.

5 Discussion and conclusion

This paper explores the usage of a previously proposed distance, Unequal Single-
ton Pair (USP) distance, into clustering applications over evidential preferences.
A combination rule for multiple preference sources is also proposed by inter-
preting the conflicts as imprecision. By applying USP distance over evidential
preferences, clustering results are improved in terms of ARI.

Compared with the simple average strategy, evidential reasoning with USP
distance can moderate the conflict between different information sources. Un-
fortunately, this also causes some side effects on the clustering mission: The
clustering results are improved while the clustering quality is jeopardized in
terms of silhouette scores.

Despite that USP distance is empirically proven useful, its effectiveness over
incomplete preference structure remains suspicious. In the evidential preference
model, missing information is usually modeled by total ignorance, which is equiv-
alent to complete imprecision. However, pieces of missing information are mea-
sured as identical by USP distance, making them easily clustered into one iden-
tical group. Such a phenomenon is ridiculously against logical facts. To correctly
clustering incomplete data within BFT is in the scope of our future work.
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