Diameter, Decomposability, and Minkowski Sums of Polytopes - Archive ouverte HAL
Article Dans Une Revue Canadian Mathematical Bulletin Année : 2019

Diameter, Decomposability, and Minkowski Sums of Polytopes

Résumé

Abstract We investigate how the Minkowski sum of two polytopes affects their graph and, in particular, their diameter. We show that the diameter of the Minkowski sum is bounded below by the diameter of each summand and above by, roughly, the product between the diameter of one summand and the number of vertices of the other. We also prove that both bounds are sharp. In addition, we obtain a result on polytope decomposability. More precisely, given two polytopes $P$ and $Q$ , we show that $P$ can be written as a Minkowski sum with a summand homothetic to $Q$ if and only if $P$ has the same number of vertices as its Minkowski sum with $Q$ .
Fichier principal
Vignette du fichier
1806.07643.pdf (378.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03410029 , version 1 (30-10-2021)

Identifiants

Citer

Antoine Deza, Lionel Pournin. Diameter, Decomposability, and Minkowski Sums of Polytopes. Canadian Mathematical Bulletin, 2019, 62 (4), pp.741-755. ⟨10.4153/S0008439518000668⟩. ⟨hal-03410029⟩
42 Consultations
201 Téléchargements

Altmetric

Partager

More