Generation of Textual Explanations in XAI: the Case of Semantic Annotation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Generation of Textual Explanations in XAI: the Case of Semantic Annotation

Résumé

Semantic image annotation is a field of paramount importance in which deep learning excels. However, some application domains, like security or medicine, may need an explanation of this annotation. Explainable Artificial Intelligence is an answer to this need. In this work, an explanation is a sentence in natural language that is dedicated to human users to provide them clues about the process that leads to the decision: the labels assignment to image parts. We focus on semantic image annotation with fuzzy logic that has proven to be a useful framework that captures both image segmentation imprecision and the vagueness of human spatial knowledge and vocabulary. In this paper, we present an algorithm for textual explanation generation of the semantic annotation of image regions.
Fichier principal
Vignette du fichier
article_JeanPhilippePoli_FuzzIEEE2021_Generation of Textual Explanations in XAI.pdf (623.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03408917 , version 1 (19-04-2022)

Identifiants

Citer

Jean-Philippe Poli, Wassila Ouerdane, Regis Pierrard. Generation of Textual Explanations in XAI: the Case of Semantic Annotation. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jul 2021, Luxembourg, Luxembourg. pp.9494589, ⟨10.1109/FUZZ45933.2021.9494589⟩. ⟨hal-03408917⟩
140 Consultations
151 Téléchargements

Altmetric

Partager

More