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Abstract

Semantic image annotation is a field of paramount importance in which
deep learning excels. However, some application domains, like security or
medicine, may need an explanation of this annotation. Explainable Arti-
ficial Intelligence is an answer to this need. In this work, an explanation
is a sentence in natural language that is dedicated to human users to
provide them clues about the process that leads to the decision: the la-
bels assignment to image parts. We focus on semantic image annotation
with fuzzy logic that has proven to be a useful framework that captures
both image segmentation imprecision and the vagueness of human spa-
tial knowledge and vocabulary. In this paper, we present an algorithm
for textual explanation generation of the semantic annotation of image
regions.

1 Introduction

Semantic image annotation is the ability for a computer to label images or
image regions. It is a task of paramount importance with the daily production
of images in all the domains (e.g. medicine, surveillance).

In this field, deep learning has enabled to build models that can efficiently
classify images and recognize objects. Sometimes, these models can even top

∗This work has been partly funded by the DeepHealth project, which has received funding
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human capabilities on several specific tasks [1]. For some critical applications of
Artificial Intelligence (AI), performance is not the only criterion to optimize [2].
Such applications may require a relative understanding of the logic performed
by the AI. In other words, the end-user would like to get a response to the
question “Why ?” [3]

For semantic annotation, Constraint Satisfaction Problems (CSP) have been
successfully applied to geometrical figure annotation [4] and region labelling
from a model [5]. Vanegas et al. extended these previous works to fuzzy con-
straint satisfaction problems (FCSP) to involve fuzzy spatial relations and il-
lustrate their approach with an automatic interpretation of Earth observation
images [6]. Since CSP and FCSP are interpretable models and the process of
solving is also interpretable and explainable, this kind of approaches are good
candidates for explainable semantic annotation of images. Pierrard et al. [7]
propose algorithms to extract automatically relevant fuzzy spatial relations for
image annotation from a few learning images whose regions are segmented and
labelled. The appropriate relations are then used to constitute a FCSP for
annotating areas of an image or a rule base to classify the image.

In this paper, we focus on the generation of a textual explanation of the
semantic annotation in the context of [7]. Given a solution of such FCSPs and
the degree of satisfaction of all the involved constraints, we propose and evaluate
two algorithms to extract clues of the reasoning and to order the pieces of the
explanation efficiently.

The paper is structured as follows. In section 2, fuzzy spatial relations,
constraint satisfaction problems and their solving are described. Next, sections 3
and 4 are devoted to describe the methods for generating explanation of semantic
annotation. Then, the two approaches are evaluated and compared in section 5.
Finally, we draw some conclusions and perspectives in section 6 .

2 Background

2.1 Fuzzy Spatial Relations

The fuzzy logic framework allows using words instead of numbers during compu-
tations and also during problem formalization. Indeed, relations are represented
by a linguistic description that can be directly used in the explanation [7].

Many fuzzy spatial relations have been studied in the literature [8]. For
instance, Vanegas considers three types of spatial relations: topological, metric
and structural relations [6]. The two first types are often used in computer
vision. We can cite for instance the RCC8 framework that defines relations
between regions and their fuzzy counterparts that have been introduced in [9,10].
Bloch introduced a framework based on fuzzy morpho-mathematics to evaluate
fuzzy spatial relations [8]. In particular, metric directional relations can be
expressed based on the fuzzy dilation operator.

Without loss of generality, in the remainder of this paper, we use specifically
directional, distance and symmetry relations. Directional and distance rela-
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tions [8] are computed as a fuzzy landscape and assessed using a fuzzy pattern
matching approach [11]. The symmetry relation [12] we use consists in finding
the line that maximizes a symmetry measure between two objects (regions).
Since this measure is not differentiable, a direct search method is used to solve
this optimization problem, such as the downhill simplex method.

2.2 Fuzzy Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists in assigning some values to a
set of variables that must respect a set of constraints.

An extension of CSP to the fuzzy logic framework to deal with imprecise
parameters and flexible constraints is presented in [13]. This is called a fuzzy
constraint satisfaction problem (FCSP). A FCSP is defined by:

• A set of variables X = {x1, ..., xn},

• A set of domains D = {D1, ..., Dn} such as Di is the range of values that
can be assigned to xi,

• A set of flexible constraints C = {c1, ..., cp}. Each constraint ck is defined
by a fuzzy relation Rk and by the set of variables Vk that are involved in
it.

To solve a FCSP, the backtracking algorithm is applied. It starts with an
empty set of instantiations and selects a variable x ∈ X to instantiate. Then, it
finds a value in the domain of X that maintains the consistency of the current
instantiation, regarding the set of constraints C. The steps are repeated until
all the variables are instantiated. When a variable x has no more value to test,
the algorithm backtracks and tries the next value of the previously instantiated
variable.

An instantiation that is consistent and complete is a solution. One solution
of the FCSP is evaluated by its degree of consistency. Given a solution γ, its
degree of consistency [6] is:

cons(γ) = min
ck∈C

µRk
(γ|Vk

) (1)

where γ|Vk
is the projection of γ on Vk and µRk

the membership function rep-
resenting Rk.

This consistency degree also enables to compare different solutions so that
the best one can be extracted.

To improve the performance of the backtracking algorithm, [6, 13] have
adapted the AC-3 algorithm of crisp CSP that prunes the domains, discard-
ing values that are inconsistent with the current instantiation.

2.3 Image Annotation with FCSP

When dealing with image annotation, the set of variables X corresponds to the
objects we would like to instantiate. The variables share the same domain D
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that represents the regions in the image that we get after segmentation. Thus,
|X| ≤ |D|. The constraints in C are defined by fuzzy relations: some of them
can deal with groups of objects [6].

This can solve specific annotation problems in which the objects to anno-
tate and the labels are known (even if they are automatically detected, by a
segmentation for instance). The intuition behind is that such annotation prob-
lem can be combinatorial and the labels are affected accordingly to each other,
by opposition with individually like in classical approaches.

In [7], this approach was applied to organ annotation in medical images, with
a focus on automatically generating the FCSP from few data. In the remain-
der of this paper, we will take this work as an illustration with an automatic
generated FCSP.

To generate our explanations, the algorithms we propose in this work (Algo
1 and Algo 2) take as input a trace T =

〈
P, s, C̄

〉
of the execution of the solving

algorithms. T is composed of:

• P = 〈X,D,C〉 is a FCSP.

• s, a chosen solution among all the solutions of P , for instance the best one
regarding the degree of consistency. s contains the assignment for each
variable in X.

• C̄, the set of degrees of satisfaction of each c ∈ C.

2.4 Surface Realization

In linguistics, a realization consists in generating a surface form, which is a cor-
rect sentence in a given natural language, from a more abstract representation,
in which the different components such as the subject or the verb are specified.
Therefore, a surface realizer is a system that is able to take an abstract semantic
representation as an input to generate a syntactically-correct sentence.

In this work, we rely on SimpleNLG [14] for performing this task. This
realization engine provides an API that is easy to use and complete enough
for the kind of explanation we would like to generate. We do not explain here
how we use it (e.g. the function calls). We will just describe the form of the
sentences.

3 Complete Textual Explanation Generation

In this section, we present a first algorithm for explanation generation in natural
language.

3.1 Algorithm

Algo1 uses all the constraints of the FCSP and turns them into sentences. The
vocabulary of relations contains: to the left of, to the right of, below, above, close
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to, symmetrical to and stretched. That makes 6 binary and one unary relations.
We note that c̄x is the complement of x in the scope of c, and the moderator
is selected among those cited in table 1 according to the satisfaction of c. This
idea is inspired from [15].

Moderator Degree of satisfaction
very high from 0.9

high from 0.7 to 0.9
average from 0.4 to 0.7

moderate from 0.2 to 0.4
low from 0 to 0.2

Table 1: Simplified confidence scale

Algorithm 1: Complete Explanations Generation

Input: a trace T =
〈
P, s, C̄

〉
Output: a complete textual explanation

1 foreach unprocessed variable x ∈ X do
2 v ← value of x in s
3 Create a sentence of the form: “Region v is annotated as x with a

moderator confidence because:”
4 foreach constraint c ∈ C involving x in its scope do
5 if x is the first variable in the scope of c then
6 Generate a sentence of the form: “it is c c̄x” (eventually, for each

variable x′ ∈ c̄x, indicate the associated v′ ∈ s)
7 else
8 Generate a sentence of the form: “c̄x is/are c x”
9 end

10 end

11 end

3.2 Results

In this work, the FCSP has been extracted automatically from few images from
the Visceral dataset1. Figure 1 shows one of the image and different organs of
interest.

The segmentation has been obtained automatically and the regions were
given an identifier in an arbitrary order. Thus, in this first approach, items are
not sorted. However, for the sake of comprehension of this article, we numerated
ourselves the organs, from left to right and top to bottom.

We consider the solution of such a FCSP for Figure 1 with the highest degree
of consistency.

1http://www.visceral.eu/
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Figure 1: Backward MRI image with different regions to annotate

The result, as it can be seen in figure 2 is obviously a long but complete
explanation.

Region 1 is annotated as the left lung with a high confidence because:

• it is completely to the left of
region 2 (annotated as the right
lung by the model),

• region 2 (right lung) is
completely to the right of
region 1,

• it is above region 3 (spleen),

• region 3 (spleen) is completely
below region 1,

• it is above region 7 (left psoas),

• region 7 (left psoas) is
completely below region 1,

• region 5 (left kidney) is
completely below region 1.

Region 2 is annotated as the right lung with a very high confidence because:

• it is completely to the right of
region 1 (left lung),

• region 1 (left lung) is completely
to the left of region 2,

• region 3 (spleen) is to the left of
region 2,

• region 4 (liver) is below region 2,

• it is above region 8 (right
psoas),

• region 8 (right psoas) is
completely below region 2,

• region 6 (right kidney) is
completely below region 2,

• region 9 (bladder) is below
region 2.

Figure 2: Extract of an explanation for an annotation with the complete ap-
proach. The complete one can be found in [7].

In the next, we investigate the possibility to shorten this explanation. Thus,
the next section is dedicated to describe a second algorithm to generate a more
concise explanation.
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4 Concise Textual Explanation Generation

4.1 Cognitive Science Considerations

Cognitive science has largely studied the way Humans represent a scene or
scan images. Thus, it seems natural to consider those insights to create an
explanation.

Zwaan et al. present more than a decade of studies about situation model,
i.e. a mental representation of affairs [16]. They highlight the difficulty to de-
scribe correctly a spatial scene with language, because of the difference between
its dimensionality and the dimensionality of space. For instance, if one describes
a room in a circular way, the first and the last objects are far from each other
in the description but close in the room. This also shows the importance of the
order in which the parts of the scene have to be described.

This leads us to the studies about image scanning [17], which is related to
the mental representation of a scene or an image. Authors of [18] state that the
visual images preserve the metric spatial information. This implies that starting
from a focus point, subjects need more and more time to mentally visualize the
information when going further to this focus point. Other works study the
difficulties of subjects to represent a scene if the description is too long and
if the description is too precise [19, 20]. Another difficulty is the direction of
reading: [21] indicates that it affects the description of a scene.

The studies about image scan paths bring also good information. The atten-
tion of subjects is classically attracted by focus points. In image understanding,
this is called salient objects and [22] gives a comprehensive review on their
automatic detection. Nevertheless, cognitive science warns of the difficulty of
defining saliency because it can be context-dependent, or due to the singularity
of an object, of the user’s goal, etc. However, when a same subject watches the
same picture, the scan paths may be different [23]: thus, the scan path does
not depend only on the objects in the image. If several similar pictures are
presented, the scan path can also be more and more efficient [23].

Finally, the Gestalt psychologists [24] studied the cognitive issues of visual
perception, in particular the shape of objects. The 7 Gestalt principles concern
figure-ground, similarity, proximity, common region, continuity, closure and fo-
cal point of images. They are particularly useful in design, but give some insight
about how objects are perceived. In particular, they recommend to group ob-
jects that are similar or that share properties.

This short overview of cognitive science helped us to design our explanation
strategy.

4.2 Principles

The previous subsection gives raw information from the cognitive science. The
idea of our approach is to improve the previous version of the generation of
explanation from a FCSP by considering cognitive science insights. We thus
observe these principles:
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• Sorting : the order of the results has an importance. It is important to
start with regions in images that are salient, and then, regarding the
recommendations of cognitive science papers, use diagonals and increasing
distances to select the next results. The spiral order is not recommended.

• Saliency : the saliency is a difficult concept that can be context-dependent.
A minima, one can select the biggest object or a group of objects as focus
point.

• Symmetry : a pair of objects that are symmetrical must be grouped.

• Priority : we must select the most satisfied constraints first.

• Associativity : some relations are associative (e.g. “to the left of”) and
explainees can immediately infer it, so we must use that to reduce the
number of constraints involved in the explanations.

• Locality : if possible, we will use first the constraints with the closest
regions in the image.

Moreover, an explanation must somehow indicate how the task has been
achieved. In our case, the solving of a FCSP is quite simple to explain since
the algorithm searches for the values of the variables such as the constraints are
satisfied. However, it makes the explanation more complicated when constraints
are not all unary, since these assignments are dependent from each other. In-
deed, for instance, a binary constraint will force the assignment of two variables
together. In the case of semantic annotation or classification, the constraints are
relations so that it is a little bit simpler than, for instance, quadratic constraints.

Another point is that we are selecting a maximum number of constraints
for each variable, such that there is no correlation between these constraints:
for instance, the values of “to the left of” and “to the very left of” may be
correlated and so we do not want to use them at the same time for the same
variable because they are redundant. We use mutual information to detect this
correlation.

In the next subsection, we introduce an algorithm that considers those dif-
ferent principles.

4.3 Algorithm

Algo 2 presents the algorithm to generate concise explanation for semantic an-
notation.

The explanation starts with a general sentence that indicates the global con-
fidence about the annotation based on the degree of consistency of the solution
(line 1). The algorithm then selects the region from the segmentation that is
the most salient (line 2). Regarding this object, the image is divided into four
quadrants. The explanation will start with the most salient region, then with
the other objects in the same quadrant, then quadrant by quadrant, in the
clockwise order. This order is materialized in an ordered set X ′ (lines 3-4).
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For each variable in X ′, the algorithm has to select at most Nmax constraints
to justify the explanation. The constraints are chosen regarding not only their
level of satisfaction (that must be the highest as possible not to overload the
text with moderators), but also their mutual link and the proximity with the
other variables (lines 5-12).

The mutual link between relations is a tricky part. We use a knowledge
graph about the relations as proposed in [7]. Such a graph emphasizes different
links between two relations r1 and r2, like r1 =⇒ r2, ¬r1 =⇒ r2, but also
symmetry. Symmetry is important not to use twice the same constraint. Let
o1 and o2 be two objects in the image, and r a symmetrical relation, if o1 r o2
is used in a sentence, we cannot use o2 r o1 anymore.

Then, the algorithm looks for grouping constraints such as “is symmetrical
to” that constitutes a pair of variables (line 9). Indeed, the previous section
highlights that groups of objects must be treated together. Thus, the other
variables in the scope of this constraint must be processed just after (line 10).

Algorithm 2: Concise Explanation Generation

Input: a trace T =
〈
P, s, C̄

〉
Output: a concise textual explanation

1 Write a sentence to introduce the result and the global confidence
2 Select f the variable in s region that is the focus point in the image
3 From the center of f , divide the image into 4 quadrants Q1, . . . , Q4

4 X ′ = set of variables x ∈ s sorted by quadrant
5 while X ′ 6= ∅ do
6 x← pop(X ′)
7 S ← Select Nmax constraints ci that are not linked in the knowledge

graph and with maximal degrees of satisfaction
8 Write the sentence “x is c1, ..., and is cj≤Nmax”
9 if x involves a grouping constraint c then

10 Move all variables in scope of c to the beginning of X ′

11 end

12 end

4.4 Results

In this work, we define the focus point as the biggest object (in terms of area).
We set Nmax = 2.

For the same example (see Figure 1), and the same solution s, the result is
shown in Figure 3.

Most of the constraints are linked in the knowledge graph, because we used
mainly directional relations like “to the right of” and “to the left of”. This
explains why we rarely reach Nmax constraints.

The result is obviously shorter, and seems easier to read. The quadrant
imposes an order for the description of each organ. The explanation seems less
redundant thanks to the selection of the constraints.
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“This is the annotation of the given image (with a very high confidence). The
right lung (region 2) is symmetrical to the left lung (region 1) and above the
liver (region 4).
The liver (region 4) is at the right of the right kidney (region 6) and at the right
of the right psoas (region 8).
The right psoas (region 8) is above of the bladder (region 9) and is symmetrical
to the left psoas (region 7).
The left psoas (region 7) is below the left kidney (region 5).
The spleen (region 3) is above the left kidney (region 5) and is below the left
lung (region 1).”

Figure 3: Concise explanation produced by Algorithm 2

The next section is dedicated to the evaluation of both types of explanation.

5 Evaluation and Discussion

To compare the two approaches, we evaluated both of them. In this aim, we
use the questionnaire presented in [25]: it is based on 17 questions organized
in 3 categories: natural language, human-computer interaction and content and
form. Each question is evaluated with a Likert scale (from 1 “strongly disagree”
to 5 “strongly agree”). Our panel consists in 40 respondents, with 20 medical
staff members (medical doctors, surgeons, nurses, radiologists), the other half
being computer scientists (6) and other various non-medical professionals (14).
To decrease the medical staff’s amount of time dedicated to the questionnaire,
we selected only 14 questions out of the 17 initial ones that will allow comparing
the both approaches. We removed the questions about the grammar and the one
that indicates if the explanation made a respondent change his mind. Because
of the lack of space, figure 4 highlights the answers to few questions.

Both explanations are comparable in terms of syntax correctness (87% for
approach 1 and 95% for approach 2), of reasoning comprehension (67.5% agree
for approach 1, 60% for approach 2), and of uncertainty communication (62.2%
for approach 1, 65% for approach 2). “Reasoning comprehension” indicates
if the respondents can infer about the reasoning process when they read the
explanation. The “uncertainty communication” criterion evaluates the ability
of the explanation to tell the user at which point the decision can be trusted.
In our case, it is achieved by the translation of the constraints satisfaction into
sentence parts like “with a very high confidence”. These facts show that not all
the people understood how the algorithm annotates the organs and understood
why the algorithm was not confident in all the cases.

For all other comparisons, the second approach outperforms the first ap-
proach. 19 persons found that the first explanation was too long whereas only 1
respondent was concerned by the length of the second explanation. Respondents
found the first explanation repetitive (87.5%) and hard to read (72.5%), whereas
only respectively 22.5% and 10% of the panel agree with these facts for the sec-
ond one. Only 32.5% of the respondents found the order of the items in the
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-40 -30 -20 -10 0 10 20 30 40

Explanation #1's language is correct

Explanation #2's language is correct

Explanation #1 is easy to read

Explanation #2 is easy to read

Explanation #1 is convincing

Explanation #2 is convincing

Explanation #1 allows understanding how the result was inferred

Explanation #2 allows understanding how the result was inferred

Explanation #1's length is adequate

Explanation #2's length is adequate

Explanation #1 is not repetitive

Explanation #2 is not repetitive

It was easy to reach the end of the explanation #1

It was easy to reach the end of the explanation #2

Explanation #1's items order is natural

Explanation #2's items order is natural

Explanation #1 helps trusting the results

Explanation #2 helps trusting the results

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 4: Highlights from the survey

explication suitable for explanation 1 versus 72.5% for the second explanation.
Both explanations make the respondents think they can trust the automatic

labelling (55% for first approach and 65% for the second one).
These results confirm the advantages of the second algorithm.
First, it is important to note that these algorithms are not domain-specific.

Indeed, the relations are generic in the sense that they could be used in another
domain (such as satellite image annotation). They also manipulate image re-
gions, and have no clue they represent organs. However, the labels that are used
are organ names, because we want a semantic annotation. We do not use ex-
ternal domain knowledge, for instance to replace the word “region” by “organ”
on the explanation, or to use a more technical vocabulary.

The results show that the order of the items inside an explanation are im-
portant for the end users. Conciseness seems to be a criterion of paramount
importance too.

The questionnaire invited also the respondents to write comments after each
type of explanation. Most of the medical staff felt uncomfortable with the fact
that the MRI image was taken from the back. Nevertheless, no one declared
the explanation was wrong: maybe it can have an impact on the confidence of
the users in the AI.

One of the medical respondent said it could be useful to use the spine as main
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region and use it for the labelling of the other regions. This idea emphasizes
the importance of saliency: indeed, in such an image, we can see the spine first
because it is whiter and central. Unfortunately, in the segmentation we use,
bones are not considered.

Finally, we also made a comparison between the medical respondents and
the others, but the results do not differ significantly.

6 Conclusion and Perspectives

In this paper, we presented our work on the generation of textual explanations
of image annotation. The first part provides a form of explanation that was not
pertinent for humans. The second part is an improvement of the first one that
generates a more concise explanation. It relies on a more sophisticated selection
of the constraints that are used in the explanation, based on cognitive science
principles.

This work also shows the importance of realizers for explainable AI: although
it is not the goal of this work, using synonyms or different sentence structures
to break the monotony of the explanations can help. However, the survey we
presented shows that most participants are convinced by the explanations and
they understand the logic of the model.

What we observe is that to develop a model, then an algorithm to extract
relevant clues and finally improve realizers involve too many fields and is difficult
to manage. In our future work, we are thinking of the separation of these tasks.
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