ALGEBRAIC INTERSECTION IN REGULAR POLYGONS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

ALGEBRAIC INTERSECTION IN REGULAR POLYGONS

Résumé

We study the function KVol : (X, ω) → Vol(X, ω) sup α,β Int(α,β) lg (α)lg (β) defined on the moduli spaces of translation surfaces. More precisely, let Tn be the Teichmüller discs of the original Veech surface (Xn, ωn) arising from right-angled triangle with angles (π/2, π/n, (n − 2)π/2n) by the unfolding construction for n ≥ 5. For n ≡ 2 mod 4 and any (X, ω) ∈ Tn, we establish the (sharp) bounds a(n) 4 cot π n ≤ KVol(X, ω) ≤ a(n) 4 cot π n • 1 sin 2π a(n) , where a(n) = 2n if n is odd, and a(n) = n otherwise. The lower bound is uniquely realized at (Xn, ωn).
Fichier principal
Vignette du fichier
regPol_21_10_21_ARXIV.pdf (419.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03405176 , version 1 (27-10-2021)

Identifiants

  • HAL Id : hal-03405176 , version 1

Citer

Erwan Lanneau, Daniel Massart. ALGEBRAIC INTERSECTION IN REGULAR POLYGONS. 2021. ⟨hal-03405176⟩
14 Consultations
35 Téléchargements

Partager

More