Anti-Bacterial Action of Plasma Multi-Jets in the Context of Chronic Wound Healing
Résumé
This work is a contribution to the development and implementation of non-thermal plasma technology for decontamination in the perspective of nosocomial and chronic wound innovative therapies. Multi jets devices based on Plasma Gun® technology in static and scanning operation modes and bacterial lawns inoculated with resistant and non-resistant bacterial strains were designed and used. A pilot toxicity study exploring plasma treatment of wound bearing patients, performed with a low voltage plasma applicator, is documented as a first step for the translation of in vitro experiments to clinical care. Bacterial inactivation was demonstrated for Staphylococcus aureus, Pseudomonas aeruginosa and drug resistant S. aureus, P. aeruginosa and Escherichia Coli strains collected from patient wounds at Orleans (France) hospital. A few square centimeter large contaminated samples were inactivated following a single plasma exposure as short as one minute. Samples inoculated with a single but also a mix of three resistant pathogens were successfully inactivated not only right after their contamination but for mature lawns as well. Similar bactericidal action was demonstrated for antibiotic-resistant and non-resistant P. aeruginosa. The time exposure dependent increase of the inhibition spots, following multi jets exposure, is discussed as either the accumulation of reactive species or the likely combinatory action of both the reactive species and transient electric field delivery on inoculated samples.
Origine | Fichiers produits par l'(les) auteur(s) |
---|