Graph Isomorphism for $$(H_1,H_2)$$-Free Graphs: An Almost Complete Dichotomy - Archive ouverte HAL
Article Dans Une Revue Algorithmica Année : 2021

Graph Isomorphism for $$(H_1,H_2)$$-Free Graphs: An Almost Complete Dichotomy

Nicolas Bousquet
Marthe Bonamy
Konrad Dabrowski
Matthew Johnson
Daniël Paulusma
Théo Pierron

Résumé

Abstract We resolve the computational complexity of Graph Isomorphism for classes of graphs characterized by two forbidden induced subgraphs $$ H_{1} $$ H 1 and $$H_2$$ H 2 for all but six pairs $$(H_1,H_2)$$ ( H 1 , H 2 ) . Schweitzer had previously shown that the number of open cases was finite, but without specifying the open cases. Grohe and Schweitzer proved that Graph Isomorphism is polynomial-time solvable on graph classes of bounded clique-width. Our work combines known results such as these with new results. By exploiting a relationship between Graph Isomorphism and clique-width, we simultaneously reduce the number of open cases for boundedness of clique-width for $$(H_1,H_2)$$ ( H 1 , H 2 ) -free graphs to five.

Dates et versions

hal-03394356 , version 1 (22-10-2021)

Identifiants

Citer

Nicolas Bousquet, Marthe Bonamy, Konrad Dabrowski, Matthew Johnson, Daniël Paulusma, et al.. Graph Isomorphism for $$(H_1,H_2)$$-Free Graphs: An Almost Complete Dichotomy. Algorithmica, 2021, 83 (3), pp.822-852. ⟨10.1007/s00453-020-00747-x⟩. ⟨hal-03394356⟩
36 Consultations
0 Téléchargements

Altmetric

Partager

More