On the enumeration of plane bipolar posets and transversal structures - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

On the enumeration of plane bipolar posets and transversal structures

Résumé

We show that plane bipolar posets (i.e., plane bipolar orientations with no transitive edge) and transversal structures can be set in correspondence to certain (weighted) models of quadrant walks, via suitable specializations of a bijection due to Kenyon, Miller, Sheffield and Wilson. We then derive exact and asymptotic counting results, and in particular we prove that the number tn of transversal structures on n + 2 vertices satisfies (for some c > 0) tn ∼ c (27/2) n n −1−π/arccos(7/8) , which also ensures that the associated generating function is not D-finite.
Fichier principal
Vignette du fichier
Posets.pdf (358.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03388045 , version 1 (20-10-2021)

Identifiants

Citer

Eric Fusy, Erkan Narmanli, Gilles Schaeffer. On the enumeration of plane bipolar posets and transversal structures. European Conference on Combinatorics, Graph Theory and Applications, Sep 2021, Barcelona (on line), Spain. ⟨10.1007/978-3-030-83823-2_90⟩. ⟨hal-03388045⟩
68 Consultations
83 Téléchargements

Altmetric

Partager

More