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Abstract. We show that plane bipolar posets (i.e., plane bipolar orien-
tations with no transitive edge) and transversal structures can be set in
correspondence to certain (weighted) models of quadrant walks, via suit-
able specializations of a bijection due to Kenyon, Miller, Sheffield and
Wilson. We then derive exact and asymptotic counting results, and in
particular we prove that the number tn of transversal structures on n+2
vertices satisfies (for some c > 0) tn ∼ c (27/2)nn−1−π/arccos(7/8), which
also ensures that the associated generating function is not D-finite.
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1 Introduction

The combinatorics of planar maps (i.e., planar multigraphs endowed with an
embedding on the sphere) has been a very active research topic ever since the
early works of W.T. Tutte. In the last few years, after tremendous progress
on the enumerative and probabilistic theory of maps, the focus has started to
shift to planar maps endowed with constrained orientations. Indeed constrained
orientations capture a rich variety of models [7] with connections to (among
other) graph drawing, pattern-avoiding permutations, Liouville quantum grav-
ity, or theoretical physics. From an enumerative perspective, these new families
of maps are expected to depart (e.g. [6]) from the usual algebraic generating func-
tion pattern followed by many families of planar maps with local constraints [11].
From a probabilistic point of view, they lead to new models of random graphs
and surfaces, as opposed to the universal Brownian map limit capturing earlier
models. Both phenomena are first witnessed by the appearance of new critical
exponents α 6= 5/2 in the generic γnn−α asymptotic formulas for the number of
maps of size n.

A fruitful approach to oriented planar maps is through bijections (e.g. [1])
with walks with a specific step-set in the quadrant, or in a cone, up to shear
transformations. We rely here on a recent such bijection [10] that encodes plane
bipolar orientations by certain quadrant walks (so-called tandem walks): we show
in Section 2 that it can be furthermore adapted to other models by introducing
properly chosen weights. Building on these specializations, in Section 3 we obtain
exact enumeration results for plane bipolar posets and transversal structures. In
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particular we show that the number bn of plane bipolar posets on n+2 vertices is
equal to the number of plane permutations of size n recently studied in [4], and
that a reduction to small-steps quadrant walks models (which makes coefficient
computation faster) can be performed for the number en of plane bipolar posets
with n edges and the number tn of transversal structures on n + 2 vertices. In
Section 4 we obtain asymptotic formulas for the coefficients bn, en, tn all of the
form cγnn−α with c > 0 and with γ, α 6= 5/2 explicit, and by the approach of [3]
we deduce from these estimates that the generating functions for en and tn are
not D-finite.

Note: An extended version on these results is available at arXiv:2105.06955.

2 Oriented planar maps and quadrant tandem walks

A plane bipolar orientation B is a planar map endowed with an acyclic orienta-
tion having a single source S and a single sink N , which both lie in the outer
face, see Fig.1(a). It is known that the contour of each face f of B (including the
outer one) splits into a left lateral path Lf and a right lateral path Rf (which
share the same origin and end); the type of f is the pair (i, j) where i+ 1 (resp.
j+1) is the length of Lf (resp. Rf ). The outer type of B is the type of the outer
face. The pole-type of B is the pair (p, q) such that p+ 1 is the degree of S and
q + 1 is the degree of N .

S

N

f

(0, 1) → (1, 0) → (1, 2)
SE (0, 2)

→ (0, 2) → (1, 1) → (1, 1)
SE (0, 0)(-1, 0)

→ (2, 0) → (2, 1) → (3, 0)
SE (0, 1) SE

→ (1, 1) → (2, 0)
(-2, 1) SE

S

N

S′

N ′

(a) (b) (c) (d)

S

N

W

E

Fig. 1. (a) A plane bipolar orientation of outer type (1, 2) (the marked inner face f
has type (2, 1)). (b) A quadrant tandem walk from (0, 1) to (2, 0) (actually the one
associated to (a) by the KMSW bijection). (c) From a plane bipolar orientation (round
vertices) with n edges and f + 2 vertices to one of the associated plane bipolar posets
(square vertices) with n + 2 vertices and f inner faces. (d) A 4-triangulation endowed
with a transversal structure (blue edges are dashed).

On the other hand, a tandem walk (see Fig.1(b)) is defined as a walk on Z2

with steps in SE ∪ {(−i, j), i, j ≥ 0}; it is a quadrant walk if it stays in N2 all
along. Every step (−i, j) in such a walk is called a face-step, and the pair (i, j)
is called its type. We will crucially rely on the following bijective result:
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Theorem 1 (KMSW bijection [10]). Plane bipolar orientations of outer type
(a, b) with n + 1 edges are in bijection with quadrant tandem walks of length n
from (0, a) to (b, 0). Every non-pole vertex corresponds to a SE-step, and every
inner face corresponds to a face-step, of the same type.

An edge e = (u, v) ∈ B is called transitive if there is a path from u to v
avoiding e. If B has no transitive edge it is called a plane bipolar poset.

Remark 1. Let B be a plane bipolar orientation. Then B is a plane bipolar poset
iff it has no inner face whose type has a zero entry. Hence the KMSW bijection
specializes into a bijection (with same parameter-correspondence) between plane
bipolar posets of outer type (a, b) and quadrant tandem walks from (0, a) to (b, 0)
such that the type of every face-step has no zero-entry.

In Remark 1 the primary parameter of the poset (the one corresponding to
the walk length) is the number of edges (minus 1). We will see below another way
to relate plane bipolar posets to (weighted) quadrant tandem walks, this time
with the number of vertices as the primary parameter. Other oriented maps to be
related below to weighted quadrant tandem walks are transversal structures [8].
A 4-triangulation is a map whose outer face contour is a (simple) 4-cycle and
whose inner faces are triangles; the outer vertices are denoted W,N,E, S in
clockwise order, and V denotes the set of inner vertices. A transversal structure
on such a map (see Fig.1(d)) is an orientation and bicoloration of its inner edges
(in blue or red) so that red (resp. blue) edges form a bipolar poset with V as the
set of non-pole vertices and (S,N) (resp. (W,E)) as the pair (source,sink), and
moreover any intersection of a blue path with a red path is a crossing where the
blue path arrives from the left side of the red path.

For w a function from N2 to N, a w-weighted plane bipolar orientation is a
bipolar orientation where every inner face f carries an integer ι(f) in [1..w(i, j)]
with (i, j) the type of f . A w-weighted tandem walk is a tandem walk where
every face-step s carries an integer ι(s) in [1..w(i, j)] with (i, j) the type of s.

Proposition 1. For w : (i, j) →
(
i+j
i

)
, plane bipolar posets of pole-type (p, q),

with n + 2 vertices and f inner faces, are in bijection with w-weighted plane
bipolar orientations of outer type (p, q), with n edges and f + 2 vertices. These
correspond (via KMSW) to w-weighted quadrant tandem walks of length n − 1
from (0, p) to (q, 0) with f SE-steps.

For w : (i, j) →
(
i+j−2
i−1

)
(with w(i, j) = 0 if i = 0 or j = 0), transversal

structures having n inner vertices and m blue edges are in bijection with w-
weighted plane bipolar posets of outer type (1, 1) having n+ 4 vertices and m+ 4
edges. These correspond (via KMSW) to w-weighted quadrant tandem walks from
(0, 1) to (1, 0) of length m+ 3 with n+ 2 SE-steps.

Proof. The first correspondence (see Fig.1(c)) is adapted from [9]. Starting from
a plane bipolar orientation B, insert a square vertex in the middle of each edge
(these are to be the non-pole vertices of the bipolar poset). Then in each inner
face f , with (i, j) its type, insert i + j + 1 non-crossing edges from the square



4 Éric Fusy, Erkan Narmanli, Gilles Schaeffer

vertices on L(f) to the square vertices on R(f); there are precisely w(i, j) =
(
i+j
i

)
ways to do so (so the chosen way can be encoded by an integer ι(f) ∈ [1..w(i, j)]).
Finally create a square vertex S′ (resp. N ′) in the left (resp. right) outer face
and connect it to all square vertices on the left (resp. right) lateral path of B.
Then the bipolar poset is obtained by erasing the vertices and edges of B in the
obtained figure.

The second correspondence relies on the fact that a transversal structure is
completely encoded by its red bipolar poset (augmented by the 4 outer edges
oriented from S to N) and the knowledge of how each inner face is transversally
triangulated by blue edges: if the face has type (i, j) then there are precisely(
i+j−2
i−1

)
ways to do so.

3 Exact counting results

Let Pwa (x, y) denote the generating series of w-weighted quadrant tandem walks
starting in position (0, a), with respect to the number of steps (variable t),
end positions (variables x and y) and number of SE steps (variable u). A last
step decomposition immediately yields the following master equation in the ring
Q((x̄))[[y, t]] of formal power series in t and y with coefficients that are Laurent

series in x̄ = 1/x, where Wk(x̄, y) =
∑
i≥k,j≥0 w(i, j)y

j

xi :

Pwa (x, y) = ya + tu
x

y
(Pwa (x, y)− Pwa (x, 0)) + tW0(x̄, y)Pwa (x, y)

− t
∑
k≥0

Wk+1(x̄, y)xk[xk]Pwa (x, y).

In the case of plane bipolar posets enumerated by vertices, we have (cf Propo-

sition 1) w(i, j) =
(
i+j
i

)
for i, j ≥ 0, so thatWk(x̄, y) = 1

1−(x̄+y)
x̄k

(1−y)k
in Q[[y, x̄]].

For B(x, y) ≡ Pw0 (x, y) the master equation then rewrites

B(x, y)=1+ t
x

y
(B(x, y)−B(x, 0))+

t

1−y
1

x− 1
1−y

(
xB(x, y)− 1

1−y
B

(
1

1−y
, y

))
.

Let bn denote the number of plane bipolar posets with n+2 vertices. It is also,
by adding a new sink of degree 1 (connected to the former sink), the number
of plane bipolar posets of pole-type (0, b) with n + 3 vertices and arbitrary
b ≥ 0, so that bn = [tn]B(1, 0). Then we prove3 that bn is also the number of
plane permutations of size n which are studied in [4]: to see this let S(u, v) :=
x(B(x, y) − 1) under the change of variable relation {y = 1 − ū, x = v} (note
that B(1, 0) = 1+S(1, 1)), and observe that the equation for S derived from the
above equation for B is exactly [4, Eq. (2)] (they use (x, y, z) for our (t, u, v)).
Furthermore B(1, 0) = 1 + S(1, 1) is D-finite [4, Prop 13], and there are single
sum expressions for bn [4, Thm 14]).

3 Our proof relies on generating function manipulations, but a similar bijective ap-
proach as in [2] also applies, as detailed in the extended version.
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The case of bipolar posets counted by edges corresponds to having w(i, j) =
1i 6=0,j 6=0 (cf Remark 1). By some manipulations on the functional equation in
that case, we can show that the number en of plane bipolar orientations with n
edges coincides with the number of quadrant excursions of length n−1 with steps
in {0, E, S,NW,SE}. While the series

∑
n ent

n is non D-finite (as discussed in
the next section) the reduction to a quadrant walk model with small steps allows
to compute the sequence e1, . . . , en with time complexity O(n4) using O(n3) bit
space. The sequence starts as 1, 1, 1, 2, 5, 12, 32, 93, 279, 872, 2830, . . ..

The case of transversal structures corresponds to having w(i, j) =
(
i+j−2
i−1

)
for

i, j ≥ 1, 0 otherwise. The corresponding weighted quadrant walks can be turned
into unweighted quadrant walks with small steps (see the extended version for
details), ensuring that the number tn of transversal structures on n+ 2 vertices
is equal to the coefficient d3n−2(1, 0), where dn(i, j) and un(i, j) are coefficients
specified by the recurrence{
dn(i, j) = dn−1(i−1, j+1) + un−1(i−1, j+1),
un(i, j) = dn−2(i+1, j−1) + un−2(i+1, j−1) + un−1(i+1, j) + un−1(i, j − 1),

with boundary conditions dn(i, j) = un(i, j) = 0 for any (n, i, j) with n ≤ 0 or i <
0 or j < 0, with the exception (initial condition) of d0(0, 1) = 1. The recurrence
allows us again to compute the sequence t3, . . . , tn with O(n4) bit operations
using O(n3) bit space, giving an alternative to the recurrence in [12] (again the
series of tn is non D-finite). The sequence starts as 1, 2, 6, 24, 116, 642, 3938, . . ..

4 Asymptotic counting results

We adopt here the method by Bostan, Raschel and Salvy [3] (itself relying on
results by Denisov and Wachtel [5]) to obtain asymptotic estimates for the count-
ing coefficients of plane bipolar posets (by vertices and by edges) and transversal
structures (by vertices). Let S = SE ∪ {(−i, j), i, j ≥ 0} be the tandem step-
set. Let w : N2 → R+ satisfying the symmetry property w(i, j) = w(j, i). The
induced weight-assignment on S is w(s) = 1 for s = SE and w(s) = w(i, j)

for s = (−i, j). Let a
(w)
n be the weighted number (i.e., each walk σ is counted

with weight
∏
s∈σ w(s)) of quadrant tandem walks of length n, for some fixed

starting and ending points. Let S(z;x, y) := x
y z
−2 +

∑
i,j≥0 w(i, j)y

j

xi z
i+j , let

S(z) := S(z; 1, 1), and let ρ be the radius of convergence (assumed here to be

strictly positive) of S(z) − z−2. Let w̃(s) := 1
γw(s)z

y(s)−x(s)
0 be the modified

weight-distribution where γ, z0 > 0 are adjusted so that w̃(s) is a probability
distribution (i.e.

∑
s∈S w̃(s) = 1) and the drift is zero, which is here equiva-

lent to having z = z0 ∈ (0, ρ) solution of S′(z) = 0 (one solves first for z0

and then takes γ = S(z0)). Then according to [3] we have, for some c > 0,

a
(w)
n ∼ c γn n−α, where α = 1 + π/arccos(ξ), with ξ = −∂x∂yS(z0;1,1)

∂x∂xS(z0;1,1) .

Plane bipolar posets counted by vertices correspond to w(i, j) =
(
i+j
i

)
, giv-

ing S(z;x, y) = x
y z
−2+ 1

1−z/x−zy , z0 = 3−
√

5
2 ≈ 0.38, γ = 1

2 (11 + 5
√

5) ≈ 11.09 ,
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ξ = 1
4 (1 +

√
5) ≈ 0.81 , and α = 6 . We recover, as expected in view of the pre-

vious section, the asymptotic constants γ and α for plane permutations, which
were obtained in [4] (where c was also explicitly computed).
Plane bipolar posets counted by edges correspond to taking w(i, j) =

1i 6=0,j 6=0, which gives S(z;x, y) = x
y z
−2+ z/x

1−z/x
zy

1−zy . We find that z0 ≈ 0.54 is the

unique positive root of z4 +z3−3z2 + 3z−1, γ = 5z3
0 + 7z2

0 − 13z0 + 9 ≈ 4.80 ,

ξ = 1− z0/2 ≈ 0.73 , and α ≈ 5.14 . With the method in [3] one can also check

that α is irrational (this amounts to checking that the minimal polynomial P (X)
of ξ is such that no prime factor of P ( 1

2 (X + 1/X)) is cyclotomic) so the gener-
ating function of plane bipolar posets by edges is not D-finite.
Finally for transversal structures we take w(i, j) =

(
i+j−2
i−1

)
but to count by

vertices we aggregate the steps into groups formed by a SE step followed by a
(possibly empty) sequence of non-SE steps. The series for one (aggregated) step is

S(z;x, y) = xy−1z−2

1−yx−1z2/(1−zx−1−zy) , which gives z0 = 1/3, γ = 27/2 , ξ = 7/8 ,

and α ≈ 7.21 . Again the method of [3] ensures that the associated series is
not D-finite. Another consequence of our estimate is that the coding procedure
in [12] can be made asymptotically optimal, as it yields the bound γ ≤ 27/2.
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