Partial neighborhood local searches - Archive ouverte HAL
Article Dans Une Revue International Transactions in Operational Research Année : 2022

Partial neighborhood local searches

Recherches locales à voisinage partiel

Résumé

In this work, we study partial neighborhood local search (PNLS) techniques, which consist of adaptive walks where moves are chosen in a random subset of the current solution neighborhood. PNLSs balance between intensification and diversification is mainly determined by its single parameter λ designing the subset size. We analyze and discuss three PNLSs variants, using the abstraction of several combinatorial optimization problems into fitness landscapes: NK landscapes, Unconstrained Binary Quadratic Programming, Flow-shop scheduling, and Quadratic Assignment. Our empirical study first analyses the structure of these landscapes through indicators. Then, we perform a parameter study of PNLSs for two computational budgets to study the impact of the sample size on the balance between intensification and diversification on different landscapes. Moreover, these experiments allow us to set an appropriate parameter value to compare the ability of PNLSs to reach good-quality solutions accurately. Finally, we compare PNLS variants with two classical metaheuristics, identifying links between landscape characteristics and algorithms behavior.
Fichier principal
Vignette du fichier
Partial_neighborhood_Local_Searches_for_Navigating_Through_Fitness_Landscapes.pdf (433.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03384306 , version 1 (09-02-2023)
hal-03384306 , version 2 (17-01-2024)

Identifiants

Citer

Sara Tari, Matthieu Basseur, Adrien Goëffon. Partial neighborhood local searches. International Transactions in Operational Research, 2022, 29 (5), pp.2761-2788. ⟨10.1111/itor.12983⟩. ⟨hal-03384306v2⟩
90 Consultations
110 Téléchargements

Altmetric

Partager

More