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Abstract

In this work, we study partial neighborhood local search (PNLS) techniques, which consist of adaptive walks where
moves are chosen in a random subset of the current solution neighborhood. PNLSs balance between intensification
and diversification is mainly determined by its single parameter λ designing the subset size. We analyze and discuss
three PNLSs variants, using the abstraction of several combinatorial optimization problems into fitness landscapes:
NK landscapes, Unconstrained Binary Quadratic Programming, Flow-shop scheduling, and Quadratic Assignment.
Our empirical study first analyses the structure of these landscapes through indicators. Then, we perform a param-
eter study of PNLSs for two computational budgets to study the impact of the sample size on the balance between
intensification and diversification on different landscapes. Moreover, these experiments allow us to set an appro-
priate parameter value to compare the ability of PNLSs to reach good-quality solutions accurately. Finally, we
compare PNLS variants with two classical metaheuristics, identifying links between landscape characteristics and
algorithms behavior.

Keywords: fitness landscapes, local search, discrete optimization, metaheuristics

1. Introduction

In the field of combinatorial optimization, research can follow two complementary directions: on the
one hand, problem-oriented approaches that exploit specificities of the studied problem (Moura, 2019;
Guerine et al., 2020), and on the other hand, generic approaches that try to provide guidelines to es-
tablish solvers that can handle optimization problems in general (Bianchi et al., 2009; Hao, 2012). This
observation can be done for exact algorithms as well as for heuristic search algorithms. When it comes to
search algorithms, problem-oriented ones use the structure of a given problem to guide the search toward
high-quality solutions (Yafrani et al., 2018). In contrast, generic methods aim at finding guidelines that
can be applied to many combinatorial optimization problems (Srinivas, 2019).
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Heuristics search algorithms include neighborhood-based metaheuristics that consist of navigating
through the search space guided by a neighborhood relation and a move strategy. The navigation process
creates a sample of the search space where solutions are examined; thus, obtaining a good sample is cru-
cial for such methods. Finding an appropriate neighborhood relation and an appropriate move strategy
is the key to find good solutions within the search space (Blum and Roli, 2003). The general princi-
ple of neighborhood-based metaheuristics is elementary since it mainly consists of constructing search
trajectories by applying a move strategy on a neighborhood structure.

Methods proposed in the field of metaheuristics are more sophisticated than ever, especially since the
dramatic increase in the number of dispensable bio-inspired methods (Michalewicz, 2012; Sörensen,
2015). While metaheuristics are meant to be generic methods, a significant part of them is dedicated to
solving a given problem. They usually exploit relevant problem specificities, which leads to be highly ef-
ficient on a given problem but also reduces their generic aspect. Using such problem-oriented approaches
aims to achieve the best possible results but also requires designing sophisticated methods that involve
many mechanisms and parameters interacting in complex ways. Thus, understanding the behavior of
such approaches is a complicated task (Sorensen et al., 2018; Sala and Müller, 2020).

Nevertheless, improving the understanding of metaheuristics can provide insights on when and how
to use them. Such knowledge is crucial to determine which approach is the most suited for a given
problem, particularly when approaches are intended to be generic. Analyzing metaheuristics, instead of
only proposing new methods without further knowledge, is the primary key to better use such methods.

Neighborhood-based metaheuristics operate from associations between solutions. More fundamental
studies about such search strategies can be realized through the fitness landscapes analysis (Pitzer and
Affenzeller, 2012; Malan and Engelbrecht, 2014). The concept of fitness landscapes leads to an abstrac-
tion of the problem where the height of solutions corresponds to their fitness, and the neighborhood
relation defines the connections between solutions. One can establish correlations between the dynamics
of methods and the characteristics of landscapes to obtain insights on why the method is efficient or not,
and why a problem instance can be considered as more or less difficult to solve. Among the properties
that characterize fitness landscapes, some are recognized to make the landscape challenging to tackle.
Investigating methods with a landscape-aware approach can help in determining the type of landscapes
where some methods are expected to be efficient (Liefooghe et al., 2017; Baumann et al., 2019).

While fitness landscapes can be used to study neighborhood-based search algorithms, investigating so-
phisticated exploration strategies without preliminary studies is particularly complicated. Indeed, many
metaheuristics consist of assembled mechanisms whose individual contribution and parameterization are
challenging to measure. However, studying interactions between mechanisms require beforehand to un-
derstand precisely their individual behavior. For this reason, there is a need to deconstruct metaheuristics
to facilitate the understanding of what makes a search algorithm efficient. Advanced metaheuristics of-
ten alternate different mechanisms to manage the balance between sufficiently intensifying the search on
promising areas of the search space and sufficiently exploring the search space (Xu and Zhang, 2014).
Achieving such a balance is often possible with fewer mechanisms.

Here, we are interested in more stochastic search algorithms that reduce the effort dedicated to neigh-
borhood exploration and increase the frequency of steps during the search. We propose to consider
Partial Neighborhood Local Search algorithms (PNLS), which randomly restrict the neighborhood at
each search step. In particular, we investigate the Sample Walk algorithm (SW) introduced in Tari et al.
(2017), which, in a certain way, can be viewed as a local search transposition of a (1, λ) evolution strat-



egy (Rechenberg, 1984; Beyer, 1994; Engelbrecht, 2007), with mutation possibilities restricted by the
neighborhood function. We also consider a previously described algorithm that also falls into the scope
of PNLS (IDwalk in Neveu et al. (2004)). The two main contributions of this work are the following. First,
we perform a parameter sensitivity analysis of PNLS methods, which only consists of determining the
appropriate λ values. Then, we study the behavior of partial neighborhood-based methods on different
landscapes to highlight some relations between landscape properties and PNLS efficiency. The experi-
ments include the consideration of four classical optimization problems and two different computational
budgets.

The outline of the paper is as follows. In the next section, we recall the main concepts relating to fitness
landscapes and local search and discuss some observations that motivate the study of partial neighbor-
hood local searches. The three last sections are dedicated to the empirical analysis of fitness landscapes
and PNLS algorithms. We realize experiments on various bit-string and permutation landscapes derived
from various problems and described in section 3: NK landscapes and unconstrained binary quadratic
programming problem (binary string solution representation), as well as quadratic assignment problem
and flow-shop scheduling problem (permutation solution representation). In section 4, we report ex-
periments that allow us to characterize landscapes according to indicators. In section 5, we report the
experimental results which aim to determine the adequate parameterization of considered algorithms.
Particular attention is devoted to PNLS methods and the sensibility of the results to λ values. In section
6, we confront PNLS methods with a tabu search and an iterated local search. The last section provides
some conclusions and points out some possible ways forward.

2. Background

2.1. Fitness Landscapes

The concept of fitness landscapes takes its origin in Wright (1932), and are nowadays used in various
fields to better apprehend the behavior of complex systems. In evolutionary computation, such a model
can help to observe difficulties induced by a given problem when tackled with an optimization method.
Indeed, the difficulty of solving a problem is not only determined by the problem instance but also de-
pends on the considered method. In particular, as showed for some problems (e.g., flow-shop scheduling
(Murata et al., 1996)), choosing a relevant neighborhood operator is essential to ease the navigation
of search methods through the search space. Fitness landscapes describe the search space structured
through a neighborhood relation and a fitness function. Landscapes properties can give insights about
the adequacy and complementarity of search algorithm components.

A fitness landscape is a triplet (X ,N , f) where X denotes the search space,N : X → 2X a neighbor-
hood function describing a set of neighbors associated to each solution, and f the fitness function which
assigns a score to each solution. Given a combinatorial problem instance (X , f), one can derive a fitness
landscape by adding a neighborhood structure. Neighborhood-based search algorithms behavior can be
analyzed by studying such derivated landscapes.

Therefore, several fitness landscapes can be defined for a given instance, depending on the neighbor-
hood definition possibilities. In some cases, one can also use different solutions representations as well
as various search spaces (for example, including non-feasible solutions or excluding some feasible solu-
tions). A primary interest of fitness landscapes is the study of neighborhood-based optimization methods



depending on landscape properties. Most of these properties, such as the ones described in Pitzer and
Affenzeller (2012); Malan and Engelbrecht (2013), can influence the behavior of search algorithms. In
particular, the characteristics relating to the ruggedness and the neutrality of the landscape strongly in-
fluence the difficulty of optimizing the underlying problem using the considered neighborhood operator:
number and distribution of local optima, size of their basins of attraction (Ochoa et al., 2008), presence
of plateaus (Marmion et al., 2011).

The ruggedness level of landscapes is a key aspect determining the hardness of the problem. At the
same time, ruggedness cannot be clearly described using a single indicator (Malan and Engelbrecht,
2013). In our study, we focus on the autocorrelation function, the k-ruggedness, and the average distance
between local optima. Moreover, we also consider the neutral rate of landscapes since neutrality also
has a significant impact on the behavior of search algorithms.

The autocorrelation function (Weinberger, 1990) ρ reports the correlation between the fitness of so-
lutions and their distances. One can estimate this dependence from a random walk in the landscape.
While the efficiency of metaheuristics is often influenced by deteriorating and improving moves, the
autocorrelation measure is based on fitness variation. It does not sufficiently consider sign epistasis,
which leads to the appearance of local optima (Kvitek and Sherlock, 2011) and tends to influence local
search algorithms performance. Consequently, we also use the k-ruggedness indicator based upon the
k-sign-epistasis principle introduced hereafter.

Let x0 and xk two k-distant solutions with respect to the considered neighborhood (e.g., the Ham-
ming distance while considering binary strings and the 1-flip operator). Let x′0 and x′k neighbors
of respectively x0 and xk resulting from the same move application (e.g., the same bit is flipped,
considering binary strings and 1-flip). Moreover, the solutions x′0 and x′k have to respect the con-
straints d(x0, x′k) = k + 1 and d(x′0, x

′
k) = k (considering binary strings and 1-flip, the flipped

bit cannot differ in x0 and xk). The k-sign-epistasis is defined as k−epis(x0, x′0, xk, x′k) = 0, if
(f(x0)−f(x′0))·(f(xk)−f(x′k)) is positive, and 0 otherwise. The k-sign-epistasis concept is somehow
natural in binary string landscapes and is depicted in figure 1. However, applying this concept to other
solution representations can be complicated, if not impossible, in particular when the landscape is not a
hypercube.

1-ruggedness is called local ruggedness and refers to the 1-epistasis rate on several pairs of mutations.
k-ruggedness reflects a global ruggedness and refers to the k-epistasis rates when the same mutation is
applied to solutions of distance k. The result is a plot of k-ruggedness ∈ [0, 1] (0 indicates the absence
of sign epistasis in the landscape, whereas a landscape with random fitness values tends to have a k-
ruggedness value close to 0.5).

Finally, the number of local optima is the primary aspect of characterizing a problem hardness and is
strongly related to the two previous measures previously introduced. These measures are useful for eval-
uating this aspect but assume a uniform distribution of ruggedness throughout the landscape. The study
of local optima distribution can also provide information on the difficulty of solving a given landscape.
Here we consider the average distance between local optima—more accurately, given the distribution
induced by a search strategy.

LetO be a set of distinct local optima found by executing a first improvement hill-climbing algorithm.
DLO is the average distance between two solutions ofO. LetDrand be the average distance between two
random solutions of the search space. If DLO and Drand are similar, then local optima are likely to be
uniformly distributed in the search space. Oppositely, the more DLO is smaller than Drand, the more



Fig. 1. Illustration of k-sign-epistasis while applying a given mutation on two solutions x0 and xk (x0 and xk are linked by a
minimal set of solutions {x1, . . . , xk−1}, such that ∀i ∈ J1, kK, xi ∈ N (xi−1)).

clustered are the local optima. Of course, this indicator is estimated using a local search strategy so that
the set of local optima is conditioned by the effect of the basins of attraction. Nevertheless, the indicator
remains worthy of interest in characterizing the landscapes, particularly concerning our study, the object
of which is local search algorithms.

Many landscapes derived from specific combinatorial problems tend to have a central massif (or big
valley) structure, where the local optima are clustered around a central global optimum (lowDLO value).
In such cases, there exist many local optima that are easy to escape from, making the optimization of
such landscapes less difficult. The difficulty of landscapes can be characterized by their balance between
a random distribution of local optima and a big valley structure.

Studying methods behavior is facilitated by the use of models allowing tunable ruggedness, such
as NK landscapes (Kauffman and Weinberger, 1989). Studies on artificial landscapes with common
features are essential to comprehend the link between ruggedness and mechanisms efficiency better.
The general aspect of such landscapes is limited since their ruggedness is uniformly distributed, unlike
in real problems. In light of this specific fact, conducting studies related to the ruggedness only on
NK landscapes should not be considered sufficient. Tackling landscapes derived from classical discrete
optimization problems can help to obtain better insights into the behavior of the considered methods
within such studies. The studies presented in this paper are based on both NK landscapes and three
classes of academic problems: UBQP, FSP, QAP (see section 5).

2.2. Local Search, Diversification Issue

In their general description, local search algorithms (Hoos and Stützle, 2015) are particularly str-
aightforward and therefore enable the addition of a considerable number of mechanisms to enhance
the search process and its capacity to reach good solutions.

A local search algorithm explores the search space by navigating through a set of solutions with respect
to a neighborhood relation and an evaluation function. Algorithm 1 describes a local search where x is
the current solution, N (x) is the neighborhood of x, and x∗ the best-encountered solution.

Such an algorithm is defined by the way to determine an initial solution, a move policy (also called
a pivoting rule), and a stopping criterion. Move policies can be complex and often defined in a general
way, leading to well-known metaheuristics such as simulated annealing or tabu search.



Algorithm 1 Local search algorithm
1: Choose x0 ∈ X (initialization)
2: x← x0
3: x∗ ← x
4: while stop criterion not reached do
5: Select a neighbor x′ ∈ N (x)
6: x← x′

7: if f(x) > f(x∗) then
8: x∗ ← x
9: end if

10: end while
11: return x∗

Studying local search move policies leads to insights for establishing links between the structure of
optimization problems and local search efficiency. We focus here on basic methods to better isolate
and study some mechanisms used among search algorithms. In the case of local search algorithms,
hill-climbers do not require many mechanisms and are widely used as metaheuristic components. We
previously showed that despite their simplicity, climbers have a high potential since a (random) first
improvement hill-climbing often has the possibility to reach the global optimum from most initial so-
lutions (Basseur et al., 2014). This means that there often exists a monotonous trajectory leading from
a medium-quality solution to the global optimum of the problem. Of course, the issue comes from the
exponential number of possible trajectories, and therefore from the difficulty of defining a pivoting rule
allowing to make good choices throughout the search. In other words, to exhibit a more restrictive rule
that selects an improving neighbor without reducing the possibility of reaching the optimum.

Some studies investigating climbers pivoting rules showed that among widely used first and best
improvement, the first improvement is, in general, the most likely to reach high local optima (Hansen
and Mladenović, 2006), especially when used in the early phase of the search (Whitley et al., 2013).
In general, the first improvement is particularly efficient to climb significantly rugged landscapes while
the best improvement leads to better local optima on highly smooth and extremely rugged landscapes
(Ochoa et al., 2010; Basseur and Goëffon, 2013) . Let us notice that difficult landscapes derived from
hard optimization problems are often significantly rugged. Furthermore, on such rugged landscapes, the
worst improvement leads more likely toward good local optima than the first and best improvement rules
(Basseur and Goëffon, 2014).

The acceptance of neutral solutions can potentially avoid the termination of the climbing process and
drive toward higher local optima. Since improving the current solution seems more natural, the selection
of a neutral neighbor is often only considered once a strict local optimum is reached. As previously
shown on probabilistic and quantized NK landscapes (which hold neutrality), a stochastic hill-climber
which indifferently selects the first encountered improving or neutral neighbor outperforms climbers
selecting improving neighbors as a priority (Basseur and Goëffon, 2013). Since accepting indifferently
neutral and improving ones during the search process helps to reach higher pikes, we measured the
effect of adding artificial neutrality within climbers (Basseur et al., 2015). In the proposed method, arti-
ficial neutrality is obtained by discretizing an adaptative fitness function within a climber. The resulting



climber outperforms classic hill-climbing processes since the search is less likely to be trapped in local
optima. Intuitively, this performance is linked to the addition of neutrality, which tends to decrease the
ruggedness rate within the landscape. However, adding too much neutrality can lead to more difficult
landscapes by creating plateaus and inducing an increased number of moves. A too high value of arti-
ficial neutrality induces too much diversification within the process by allowing the selection of weak
solutions. In contrast, an adequate rate of artificial neutrality helps to diversify the search within climbers
sufficiently.

Classic climbers are usually used as intensification mechanisms within sophisticated single-solution
or population-based metaheuristics (Lourenço et al., 2019; Sánchez-Oro et al., 2014; Ersoy et al., 2007)
since they almost only perform pure intensification during a search process. However, sophisticated
metaheuristics using climbers also own a diversification mechanism to achieve an appropriate balance
between intensification and diversification during the search. In the climbing process mentioned above,
the diversification mechanism is directly included. Although such a method leads to higher local optima
than traditional climbers, it remains a hill-climbing process. A climber is a restrictive local search which
necessarily induces a high amount of intensification and, in this case, the systematic evaluation of the
whole neighborhood at each step of the search. Besides, the discretized evaluation function used in this
method induces a modification of the landscape to perform the search.

In Tari et al. (2017), we proposed the SW algorithm, which simulates the mechanism induced by artifi-
cial neutrality in a less restrictive local search, without the systematic evaluation of the whole neighbor-
hood and with no landscape modification. In general, a non-strict local search offers more possibilities to
improve solutions than a climber, and a local search performing fewer evaluations at each step induces
more steps and intuitively more diversification for the same computational budget. Indeed, evaluating
only a few neighbors promotes diversification by reducing the possibility of encountering a particularly
good solution at the next step of the search. Using this principle within a non-strict local search can help
manage the balance between intensification and diversification with a single mechanism instead of an
iterated local search that requires two separate mechanisms.

2.3. Partial Neighborhood Local Searches

We call partial neighborhood local search (PLNS) a search strategy which selects at each step a solution
from a random sample of neighbors whose (maximum) size, denoted as λ, is configurable. The PNLS
process is detailed in algorithm 2, and is a specific local search (see algorithm 1). Let us precise that
the λ neighboring solutions are not necessarily evaluated. As considered later in the paper, variants can
generate and evaluate a maximum of λ neighbors at each step of the search.

PNLSs mainly manage the balance between intensification and diversification through the value of λ.
For instance, when λ = 1, the searches correspond to random walks and are then exclusively diversify-
ing, whereas when λ is set to the size ofN , searches are intensifying (best improvement, if the selection
process is based upon fitness values). The neighbor selection strategy also influences the balance between
intensification and diversification.

In the remaining of the paper, we study the impact of different selection strategies for PNLSs. In
particular, we propose the sampled walk algorithm (SW), a simple way to implement PNLS, which uses
the same selection strategy on improving and deteriorating neighbors. We confront SW with IDwalk or



Algorithm 2 Partial Neighborhood Local Search algorithm
1: Choose x0 ∈ X (initialization)
2: x← x0
3: x∗ ← x
4: while stop criterion not reached do
5: Nλ ← subset of λ random solutions of N (x)
6: Select a neighbor x′ ∈ Nλ
7: x← x′

8: if f(x) > f(x∗) then
9: x∗ ← x

10: end if
11: end while
12: return x∗

Table 1
Illustration of the selection process of SW, IDbest and IDany , on a example of a neighborhood of 10 solutions {S1, ..., S10}.
The fitness of the current solution being 100, S1, . . . , S4 are improving and S5, . . . , S10 are deteriorating. Values indicate the
selection probability of each couple (selection method, solution)

Solution S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Fitness 120 112 108 103 98 95 91 88 84 80
SW (λ = 2) 9/45 8/45 7/45 6/45 5/45 4/45 3/45 2/45 1/45 0
IDB (λ = 2) 1/6 1/6 1/6 1/6 5/45 4/45 3/45 2/45 1/45 0
IDA (λ = 2) 1/6 1/6 1/6 1/6 1/18 1/18 1/18 1/18 1/18 1/18
SW (λ = 4) 84/210 56/210 35/210 20/210 10/210 4/210 1/210 0 0 0
IDB (λ = 4) 13/56 13/56 13/56 13/56 10/210 4/210 1/210 0 0 0
IDA (λ = 4) 13/56 13/56 13/56 13/56 1/84 1/84 1/84 1/84 1/84 1/84

the intensification/diversification walk proposed in Neveu et al. (2004), which is declined in two variants:
IDbest and IDany. IDwalk variants can be classified as PNLS algorithms. These three algorithms operate
as follows:

• SW selects the solution with the best fitness from a random sample of λ neighboring solutions, whether
it leads to an improving or deteriorating move.
• IDbest selects the first improving solution encountered. If λ deteriorating neighbors are evaluated

consecutively, then the best one is selected.
• IDany selects the first improving solution encountered. If λ deteriorating neighbors are evaluated

consecutively, then a random neighbor is selected (from the sample of λ neighbors).

Thus, the only difference between SW and IDbest belongs in the pivoting rule applied to improving
neighbors. SW selects the best improving neighbor among λ, while IDbest selects the first encountered
improving neighbor. Considering a fixed value of λ, the intensification rate is then higher for SW than for
IDbest. Let us notice that this study does not focus on specific ways to handle neutrality in landscapes.
Thus, in the move strategies described above, neutral neighbors are assimilated as deteriorating ones.

The difference between IDbest and IDany consists of the rule applied when only deteriorating neigh-
bors are evaluated. When the sample contains no improving neighbor, IDbest selects the best solution



among the λ neighbors (like in the SW process), whereas IDany randomly selects it, which intuitively
induces a higher rate of diversification when no improving solution is found.

Table 1 illustrates an example of a step of the three PNLSs. This example shows the selection probabil-
ities of each of the ten neighbors of a solution for SW, IDbest and IDany. The fitness of the current solution
is 100, and the neighborhood contains 4 improving neighbors (in a maximization context). For instance,
considering SW, S2 is selected when it appears in the sample, but not S1. The selection probabilities of
each solution make it possible to identify the differences between the PNLSs. First, SW promotes more
intensification than IDbest and also IDany, which is the least intensive strategy. Moreover, the selection
probabilities induced by SW perfectly respect the fitness ordering of neighbors.

The remaining part of this paper is dedicated to analyze the behavior of such local searches and to
observe whether considering partial neighborhoods is effective in achieving good-quality solutions.

3. Benchmark Instances, Preliminary Landscapes Analysis

In this study, we used 4 classes of fitness landscapes described by specific fitness function models: NK,
UBQP, FSP, and QAP functions. UBQP, FSP, and QAP are classic discrete optimization problems whose
definitions are recalled below. This section also reports a feature analysis of all landscapes.

3.1. Models

NK Landscapes. NK functions (Kauffman and Weinberger, 1989) are widely used to describe tunable
fitness landscapes to study the influence of ruggedness on the behavior of evolutionary algorithms, espe-
cially local searches. NK landscapes have two parameters: N , which specifies the number of variables,
and K, which determines the level of variable interdependency and directly influences the ruggedness
rate. Setting K to zero leads to an entirely smooth landscape with no variable interdependency, whereas
setting K to N − 1 leads to an entirely rugged (random) landscape.

The fitness function F of NK landscapes to be maximized is defined as follows:

F (x) =
1

N

N∑
i=1

Ci(xi, x1(i), . . . , xK(i)) (1)

xi is the i-th bit of the solution x. Let lj(i) (j ∈ J1,KK) be the number of the j-th bit linked
with bit i: lj(i) ∈ J1, NK \ ({i} ∪

⋃j−1
k=1 lk(i)). Then xj(i) is the corresponding bit value in solution

x. Ci : {0, 1}K+1 → [0, 1) are pseudo-boolean subfunctions which define the contribution value of
each xi and its linked values x1(i), . . . , xK(i). NK landscapes instances are determined by the K-uples
(l1(i), . . . , lK(i)) and a matrix C of fitness contribution which describes the 2K+1 ×N possible contri-
bution values.

The neighborhood relation used in the NK model is the 1-Hamming distance neighborhood, described
by the move operator one-flip. Various parameterizations of NK instances (N ∈ {128, 256, 512, 1024},
K ∈ {1, 2, 4, 6, 8, 10, 12}) are considered in the experiments in order to observe algorithms behavior in
various contexts (size and ruggedness).



UBQP Landscapes. The unconstrained binary quadratic programming problem (UBQP) is an NP-hard
problem (Gary and Johnson, 1979), which can reformulate a vast scope of real-life problems in various
fields. A UBQP instance is composed of a matrix (qij)16i,j6n containing both positive and negative
values. We note xi the i-th element of a solution x ∈ {0, 1}n. The objective function f to be maximized
is described as follows:

f(x) =

n∑
i=1

n∑
j=1

qijxixj (2)

To define UBQP landscapes, we equip the search space with the 1-Hamming distance neighborhood.
Hence, each solution has a neighborhood of size n. Like NK landscapes, UBQP landscapes then have a
hypercube structure. We used the generator proposed in Palubeckis (2004) to generate several instances
of different sizes and density. The density d refers to the rate of non-null values in the matrix (qij).

FSP Landscapes. The flow-shop scheduling problem (FSP) (Taillard, 1993) is a widely studied
scheduling problem. Among the numerous FSP variants, we consider the permutation flow-shop, which
considers the minimization of the total completion time. An instance of FSP is composed by n jobs J1 to
Jn to be scheduled,mmachines where jobs must be scheduled in a specific orderm1 tomm, and a set of
n×m tasks tij where tij represents the processing time of job Ji on machine mj . Let us notice that two
jobs cannot be scheduled simultaneously on a machine. Moreover, on the variant under consideration,
all jobs must be scheduled in the same order on each machine. A solution x ∈ Sn is then represented by
a permutation of jobs. Each task is scheduled to the date sij .

The objective function Cmax, also called minimum completion time or makespan, to be minimized is
described as follows:

Cmax(x) = max
i∈[1,...,n]

{sim + tim} (3)

The search space Sn, of size n!, is the set of permutations of J1, nK. The most efficient neighborhood
operator to tackle this problem by a local search algorithm consists of moving a job to a different position
and is called insert operatorNins. Thus a FSP fitness landscape is defined by the triplet (Sn,Nins, Cmax).
We select 6 representative instances with j ∈ {30, 50} jobs and m ∈ {10, 15, 20} machines (Taillard,
1990).

QAP Landscapes. The quadratic assignment problem (QAP) (Koopmans and Beckmann, 1957) is a
permutation problem considered as one of the most difficult to solve NP-hard problems (Sahni and
Gonzalez, 1976). QAP consists of allocating n units to n locations in function of a distance matrix
(dij)16i,j6n and flow between units matrix (frs)16r,s6n. dij is the distance between locations i and j,
and frs the flow between units r and s. A permutation x ∈ Sn describing the allocations of units to
locations is a solution to this problem. The objective function to be minimized then corresponds to the
sum of distances multiplied by the corresponding flows and is defined as follows:



f(x) =

n∑
i=1

n∑
j=1

dijfxixj
(4)

xi represents the i-th element of the solution x. While FSP and QAP share common search spaces
Sn, here we equip Sn with the swap neighborhood Nswap, since the swap operator (which consists of
exchanging the location of two units) is commonly used for solving QAP with neighborhood-based
metaheuristics (Ramkumar et al., 2009; Benlic and Hao, 2013). Each solution x has a neighborhood
size of

(
n
2

)
. The associated landscape is then defined by (Sn,Nswap, f). We use 8 instances of size

n ∈ [42, 90] from the QAPLIB (Burkard et al., 1997). These instances come from two classes: lipa
and sko. lipa instances are asymmetric instances while sko instances have rectangular distances and
pseudorandom numbers as entries in flow matrices.

In the following, we use these 4 problems (2 pseudo-boolean and 2 permutation ones) to have a more
representative panel of landscapes on which to base our analysis of local search strategies. Note that the
representations of permutations lead to different landscapes for which some characterization indicators
must be redefined. This aspect is discussed in section 5.

3.2. Landscapes analysis

The indicators used for the analysis are presented in section 2.1. Results are reported in table 2, where
the two first columns report ρ(1) and 1-ruggedness estimated with a sample of 100,000 initial solutions.
Starting from these solutions, 100,000 random walks have been performed to estimate the autocorrelation
function. We report the length of walks (in %) where thresholds are reached. Here these thresholds are
set to 0.8 and 0.5. When the thresholds are quickly reached, it indicates a low correlation between fitness
and distance between solution, and thus a landscape more challenging to explore efficiently using local
searches. Similarly, we use thresholds to report k-ruggedness (values 0.1 and 0.25). k-ruggedness values
have been estimated only for binary landscapes since this indicator is defined only in this context and
can not be easily adapted in a permutation context.

The last two columns of the tables report the average distance between local optima and the neutrality
rate. The average distance between local optima is computed from 1000 local optima obtained with a
first improvement hill-climber. dRd corresponds to the average distance between random solutions. The
neutrality rate is estimated using a sample of 100,000 random pairs of neighboring solutions.

The indicator values computed for each class of landscape lead to general observations, which are
used in the next sections to identify relations between algorithms efficiency and landscape properties.

• NK landscapes: Autocorrelation and k-ruggedness functions are strongly correlated with the values
of K. On the less rugged landscapes, the average distance between local optima is low. Indeed, this
distance is much smaller than the average distance between random solutions. Contrary to specific
NK models landscapes (Barnett, 1998; Newman and Engelhardt, 1998), the random NK functions
used here lead to landscapes having no significant neutrality.
• UBQP landscapes: The local ruggedness measure suggests significantly rugged landscapes—one

observes similar values on NK landscapes generated with a higher value of K. However, the ρ(l)
and k-ruggedness values are very high and are comparable to smooth NK landscapes. This property



Table 2
Landscapes indicator values (approximation by sampling). Left: NK; Right: UBQP, FSP, and QAP.

N K ρ(1) 1-rug. ρ(l) k-rug.
dLO(dRd) Neut.≤ 0.8 ≤ 0.5 ≥ 0.1 ≥0.25

128 1 0.9793 0.5% 8.0% 28.3% 15.7% 43.3% 24.5 (64) 0.00%
128 2 0.9745 1.2% 7.0% 22.0% 7.9% 22.9% 44.9 (64) 0.00%
128 4 0.9584 3.1% 4.7% 14.2% 3.1% 10.2% 60.9 (64) 0.00%
128 6 0.9449 5.2% 3.1% 10.2% 2.4% 7.1% 63.5 (64) 0.00%
128 8 0.9290 7.4% 3.1% 7.9% 1.6% 4.7% 63.9 (64) 0.00%
128 10 0.9140 9.6% 2.3% 7.0% 1.6% 3.9% 64.0 (64) 0.00%
128 12 0.8983 11.8% 2.3% 5.5% 0.8% 3.1% 64.0 (64) 0.00%
256 1 0.9899 0.3% 8.6% 27.4% 16.1% 43.9% 50.2 (128) 0.00%
256 2 0.9870 0.6% 6.7% 20.8% 7.5% 22.4% 93.7 (128) 0.00%
256 4 0.9808 1.5% 4.7% 14.5% 3.1% 10.2% 121.4 (128) 0.00%
256 6 0.9718 2.6% 3.5% 10.6% 1.9% 6.7% 126.7 (128) 0.00%
256 8 0.9659 4.1% 2.7% 8.2% 1.2% 4.7% 127.7 (128) 0.00%
256 10 0.9571 5.3% 2.3% 6.7% 1.2% 3.9% 127.0 (128) 0.00%
256 12 0.9488 6.5% 2.0% 5.5% 0.8% 3.1% 128.0 (128) 0.00%
512 1 0.9945 0.1% 8.4% 27.2% 16.7% 45.0% 101.7 (256) 0.00%
512 2 0.9937 0.3% 6.8% 22.1 % 7.0% 22.3% 187.4 (256) 0.00%
512 4 0.9894 0.8% 4.5% 14.2% 2.9% 10.4% 243.3 (256) 0.00%
512 6 0.9853 1.4% 3.3% 10.1% 1.8% 6.4% 253.3 (256) 0.00%
512 8 0.9823 2.1% 2.5% 8.2% 1.2% 4.7% 255.4 (256) 0.00%
512 10 0.9777 2.7% 2.2% 6.5% 0.9% 3.7% 255.8 (256) 0.00%
512 12 0.9747 3.6% 1.8% 5.7% 0.7% 3.1% 260.0 (256) 0.00%
1024 1 0.9977 0.1% 8.5% 27.0% 15.7% 42.7% 200.0 (512) 0.00%
1024 2 0.9970 0.2% 6.8% 22.1% 7.6% 23.6% 366.9 (512) 0.00%
1024 4 0.9951 0.4% 4.4% 14.3% 2.9% 10.1% 486.7 (512) 0.00%
1024 6 0.9929 0.7% 3.1% 10.2% 1.8% 6.5% 507.2 (512) 0.00%
1024 8 0.9912 1.1% 2.5% 7.8% 1.2% 4.8% 510.6 (512) 0.00%
1024 10 0.9897 1.4% 2.2% 6.5% 0.9% 3.7% 511.8 (512) 0.00%
1024 12 0.9870 1.8% 1.8% 5.5% 0.7% 3.1% 511.9 (512) 0.00%

UBQP
ρ(1) 1-rug. ρ(l) k-rug.

dLO(dRd) neut.n d ≤ 0.8 ≤ 0.5 ≥ 0.1 ≥0.25
2048 10 0.9984 0.3% 8.5% 26.4% 5.2% 29.5% 269.7 (1024) 0.038%
2048 25 0.9985 0.7% 8.0% 27.6% 5.0% 27.6% 230.7 (1024) 0.022%
2048 50 0.9987 0.9% 8.5% 26.6% 5.0% 29.2% 238.1 (1024) 0.013%
2048 100 0.9990 1.0% 8.8% 27.7% 4.8% 27.7% 307.2 (1024) 0.011%
4096 10 0.9994 0.2% 8.8% 28.2% 4.7% 28.8% 536.1 (2048) 0.027%
4096 25 0.9992 0.5% 8.5% 26.3% 5.0% 28.9% 512.0 (2048) 0.013%
4096 50 0.9989 0.5% 8.5% 27.2% 4.7% 28.5% 483.5 (2048) 0.010%
4096 100 0.9983 0.7% 8.2% 26.7% 5.7% 30.0% 486.6 (2048) 0.007%

Inst. ρ(1) 1-rug. dLO(dRd) neut.

FS
P

30 10 0.9343 9.99% 20.7(21.6) 12.1%
30 15 0.9181 10.59% 19.0(21.6) 9.1%
30 20 0.9152 11.47% 19.5(21.6) 5.7%
50 10 0.9526 7.63% 37.3(38.7) 13.5%
50 15 0.9504 8.37% 35.8(38.7) 9.0%
50 20 0.9478 9.06% 35.7(38.7) 7.2%

Inst. ρ(1) 1-rug. dLO(dRd) neut.

Q
A

P

lipa70a 0.9430 5.16% 65.0(65.2) 0.7%
lipa80a 0.9508 4.54% 74.9(75.0) 0.6%
lipa90a 0.9549 4.09% 84.8(84.9) 0.6%
sko42 0.9136 9.61% 36.6(37.7) 1.0%
sko49 0.9245 8.78% 43.5(44.5) 0.9%
sko56 0.9339 8.04% 50.1(51.4) 0.7%
sko64 0.9412 7.50% 58.0(59.2) 0.7%
sko72 0.9522 6.90% 65.7(67.1) 0.6%

suggests a high local ruggedness and low global ruggedness. Such landscapes can be viewed as big
valley. The average distance between local optima confirms this tendency. UBQP landscapes also
contain a reduced level of neutrality (less than 0.1%).
• FSP landscapes: FSP landscapes are characterized as highly rugged, and local optima seem to follow

a uniform distribution: the average distance between them is similar to the average distance between
random solutions. FSP landscapes also have a high level of neutrality, inversely correlated with the
number of machines of the instance.
• QAP landscapes: QAP landscapes are also highly rugged, and their local optima seem to be uni-

formly distributed. These landscapes also contain a significant level of neutrality, but less than FSP
landscapes.

4. PNLS parameterization analysis

The experiments presented in this section have three main objectives:

• determine, for each landscape, an adequate parameter value for each considered method,
• study the parameter sensitivity of PNLS (mainly according to λ values),
• identify links between landscape properties and efficient1 λ values.

1We call efficient or appropriate parameter value a value that leads the algorithm to good-quality solutions compared to other
parameterization.



Table 3
Values tested for L (tabu list size in TS) andM (number of perturbations in ILS).

Problem L values tested (TS) M values tested (ILS)
NK {5, 10, 15, 20} {1, 5, 10, 15, 20}
UBQP {5, 10, 15, 20, 30, 40, 50, 60} {1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80}
QAP {8, 12, 16, 20, 24, 28, 32} {1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80}
FSP {4, 6, 8, 10, 12, 14, 16, 18} {1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80}

4.1. Experimental protocol

Let us recall that experiments focus on five algorithms: three PNLS (SW, IDbest, and IDany) and two clas-
sical LS algorithms (ILS and TS). The considered local searches require a single parameter (excluding
the stop criterion), and their mode of operation is based on elementary pivoting rules. In this section,
we first describe the values used for parameterization analysis. Then, we briefly discuss the stopping
criterion and the experimental setup used for the analysis of the results.

Parameter value candidates. We consider ILSF , an ILS that uses the first improvement both as piv-
oting rule and acceptance criterion and performsM random moves when a local optimum is reached.
The first improvement pivoting rule is widely used and leads toward good quality local optima in a
significantly reduced number of evaluations compared to other pivoting rules such as best improvement.

For each problem, we performed a set of experiments, using differentM values. The most effective
parameterizations are given in the next subsection and used later for comparison between algorithms.
The values tested are reported in table 3.
TS uses a list of bits of sizeL and no aspiration mechanism, which ensures a minimal distance between

solutions along the walk. Indeed, as we use a landscape-oriented approach, it implies using a distance-
based list rather than a solution-based list. The pivoting rule used is best improvement, which is the most
commonly used rule within tabu search algorithms. Tested values of L are summarized in table 3. As for
ILSF , the most effective values are used for comparison between algorithms.

Each PNLS tested here requires only one parameter (λ). For each of them, we consider the following
λ values to study their influence on their dynamics.
• Binary landscapes: we consider values of λ ∈ {2k : k ∈ J1, log2 |N |K}. On NK landscapes, we

additionally consider values of λ ∈ {4k′ : k′ ∈ J2
k−1

4 + 1, 2
k−1

4 − 1K}, where k is such that 2k is
the best parameterization observed in the previous step, ie. the parameter leading to the best average
fitness. For example, if λ = 32 leads to the best fitness average, we consider all intermediate values
in steps of 4 between 20 and 60.

• Permutation landscapes: the values of λ used correspond to different ratios of the size of the neigh-
borhood, as follows: λ ∈ { |N |16 ,

|N |
15 , . . . ,

|N |
2 , |N |}.

Ideally, all possible values should be examined, but this would lead to a high number of executions.
Although automatic parameterization approaches exist (for example, irace as off-line configurator
(López-Ibánez et al., 2016)), we chose not to use them in this study. While they are often useful in
leading the search to good quality-solutions without considering the constraints of parameter setting,
this kind of process induces new constraints or components that complexifies the analysis of the results
and would limit our observations. For example, in a context of off-line configuration, the results can vary
according to the configurator under consideration, and it requires to find or generate similar instances to
find a good configuration on the instances to solve. In the context of online configuration, the parameter



value is determined dynamically, and the process could be seen as an additional mechanism for local
searches. It should be remembered that we are seeking to obtain a better understanding of the impact of
components of PNLS, thus is it important to limit their number.

The first part of the experiments reported in the next section is then dedicated to analyzing the impact
of λ values on PNLS efficiency.

Stopping criterion. This criterion is determined by a maximal number of solution evaluations. This
number is set to 100 million in our experiments, a deliberately high budget so that a sufficient conver-
gence can be observed on the different landscapes. We also extract from the information collected during
the runs the best fitness achieved for a reduced budget. In this work, we observe the behavior of the five
algorithms after 1 million and 100 million evaluations.

Experimental setup. For each triplet (landscape, method, λ), 100 runs are performed from the same
initial set of 100 randomly generated solutions to reduce the stochastic bias. We recall that several pa-
rameter values are tested for each method, inducing a too high number of runs to report all results. We
thus only report the best average obtained from 100 runs for each couple (landscape, method) for 1
million and 100 million evaluations.

Doing so allows us to perform a statistical analysis to compare methods. Let S be the number of
times a A method reaches a better local optimum than a B method over 100 confrontations. In the
following, we consider that a method A statistically dominates a method B on a set of 100 runs when
1

2100

∑S
i=0

(
100
S
)
> 0.95, ie. S > 58 w.r.t. a binomial test (with a p-value less than 0.05).

4.2. PNLS Parameter sensitivity analysis

We test several λ parameter values for each PNLS (i.e. SW, IDbest, and IDany). First, we report visualiza-
tion of the parameter sensitivity through figures reporting tradeoffs between algorithm efficiency and λ
values. Then, we summarize and discuss the best λ values determined by our experiments.

4.2.1. Parameter sensitivity analysis
Considering several parameter values allows us to compare local searches more fairly, limiting the risk
that one of them is more efficient because of a better configuration. It also allows observing the evolution
of the capacity of a given local search to reach good-quality solutions according to the setting. This
analysis can help us to determine the degree of sensitivity of methods to the parameterization and to
provide guidelines to design useful automatic parameterization based on landscapes. In the following,
we present and discuss the evolution of the average quality of strategies according to their parameter
setting on NK landscapes.

Figure 2 illustrates the average fitness obtained with respect to the settings of SW, IDbest and IDany
on several NK landscapes throughout executions of 100 million evaluations. The average fitness values
obtained by SW and IDbest evolve similarly. These two PNLSs only differ in the pivoting rule applied
when at least one improving neighbor is encountered. This similarity could explain the proximity of
their dynamics on NK landscapes.

Compared to SW and IDbest, IDany behavior evolves differently depending on the value of λ. When
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Fig. 2. Fitness variation on NK landscapes (N = 256) during executions with different parameter values (λSW , λIDb, λIDa

for SW, IDbest, IDany , respectively).

this value is high, IDany is more effective in finding good-quality solutions. Remember that when IDany
does not find any improving solutions, it randomly selects one of the λ solutions evaluated, which leads
to a greater diversification than the other two PNLSs, and sharply increases the appropriate proportion of
neighbors to evaluate. Indeed, selecting a deteriorating neighbor without maximizing its fitness implies a
significant degradation of the quality of the current solution. After such a movement, the search process
requires a higher intensification rate and, thus, a lower diversification rate.

In general, considering more neighbors in PNLSs increases the likelihood of meeting an improving
neighbor. Indeed, when the search reaches higher solutions in the landscape, this limits the diversification
rates and consequently promotes the search in good areas of the landscape. When epistasis is low, the
range of λ values that lead on average to the best solutions is larger. For the three PNLSs, a positive
correlation exists between the value leading to the best average fitness and the value of K (and therefore
the ruggedness rates).

4.2.2. Summary of best sample sizes for PNLS
The parameter values that lead local search algorithms to the best average fitness on each landscape for 1
and 100 million evaluations are discussed in the following. We note the best parameter value differently
for each method: λSW , λIDb, λIDa,M, and L for SW, IDbest, IDany, ILSF and TS, respectively.

NK landscapes: The table 4 presents the most appropriate λ values found on NK landscapes. The
statistical analysis of the results is not always significant for this experiment. Then, when several λ
values lead to results that are not statistically comparable, the smaller value is reported.

In general, the most effective setting for SW and IDbest is similar on the considered landscapes. For
these two PNLSs, the most appropriate number of neighbors to evaluate (at most) at each step increases
with the ruggedness levels (K). This result suggests that SW and IDbest require a higher level of intensi-



Table 4
Parameter values that leads to bests average fitness over 100 executions for each couple (landscape, method) on NK landscapes:
1 million evaluations (left), and 100 million evaluations (right).
N K λSW λIDb λIDaML N K λSW λIDb λIDaML
128 1 8 8 40 15 15 256 1 16 16 88 15 20
128 2 12 16 72 15 15 256 2 16 16 88 10 15
128 4 16 16 56 5 5 256 4 16 16 72 5 5
128 6 16 20 80 5 5 256 6 24 24 64 5 5
128 8 24 24 64 1 5 256 8 32 32 88 5 5
128 10 32 28 112 1 5 256 10 36 40 112 5 5
128 12 32 36 64 1 5 256 12 48 48 152 1 5
512 1 24 24 128 20 50 1024 1 24 24 128 15 50
512 2 24 24 128 15 50 1024 2 24 24 128 20 50
512 4 24 24 128 15 50 1024 4 24 24 128 20 50
512 6 24 32 128 10 40 1024 6 24 32 128 20 50
512 8 32 40 128 10 20 1024 8 40 40 128 15 40
512 10 48 48 128 5 15 1024 10 48 56 128 15 30
512 12 64 64 256 5 10 1024 12 56 64 256 10 20

N K λSW λIDb λIDaML N K λSW λIDb λIDaML
128 1 8 8 16 5 20 256 1 16 16 96 15 20
128 2 12 16 40 10 20 256 2 24 24 96 5 20
128 4 16 16 40 5 20 256 4 20 20 192 1 20
128 6 16 16 56 1 15 256 6 24 24 184 5 20
128 8 20 20 72 1 15 256 8 32 32 112 1 15
128 10 24 32 120 1 10 256 10 36 40 184 1 15
128 12 28 36 96 1 10 256 12 44 52 184 1 15
512 1 16 16 256 20 50 1024 1 16 16 256 15 50
512 2 16 24 128 5 50 1024 2 24 24 256 5 50
512 4 24 24 128 5 50 1024 4 24 24 256 5 50
512 6 24 32 256 5 30 1024 6 32 32 256 5 50
512 8 40 40 256 5 30 1024 8 40 48 256 5 40
512 10 56 48 256 5 20 1024 10 56 64 256 10 30
512 12 64 64 256 5 15 1024 12 72 80 256 5 20

fication on rugged landscapes. Globally, the most appropriate values of λSW remain almost unchanged
when we consider 1 million or 100 million evaluations. The value slightly increases with the number of
evaluations allowed to the search on large NK landscapes.

The ideal number of neighbors to evaluate (λIDa) for IDany is higher than for the other two PNLSs,
which is consistent with the higher diversification rates it induces.

The values of λIDa are more stable for N ∈ {512, 1024} and generally increase with the epistasis
factor (and therefore ruggedness), indicating a higher need for intensification on such landscapes.

The most appropriate number of perturbationsM applied between the intensifying phases (descents)
of ILSF is higher on smooth landscapes. A more significant number of random moves leads to a higher
level of diversification in the search process. Performing more random moves allows the search to move
away from the last local optima encountered and to be more likely to escape from their basin of attraction,
enabling the search to explore new areas of the landscape. Lastly, adequate M values often decrease
when the number of solution evaluations increases, except on very smooth landscapes (when K = 1).
On such landscapes, a high rate of diversification should be maintained to allow transitions between
huge basins of attraction. For more rugged landscapes, the best value tested is generally the one of
the smallest considered (M = {1, 5}): a few perturbations are sufficient to increase the possibility of
reaching unencountered good-quality optima (the number of local optima being higher, and their basin
of attraction smaller).

Like M values for ILSF , the length of the tabu list that leads to the best average fitness is lower
on rugged landscapes. On smooth landscapes, L increases with N : the most appropriate length of the
tabu list increases with the size of NK landscapes. There are tabu bits whose value cannot change,
which ensures a distance of L between two solutions separated by L steps. A higher value induces
a greater distance between solutions encountered during the search, and thus a greater diversification.
Adequate values of L are generally higher for a budget of 100 million evaluations. As observed with
ILSF parameter values, a higher parameter value seems more appropriate on smooth landscapes.

For UBQP, QAP, and FSP landscapes, the best settings for each method are reported in table 5. Re-
sults are more difficult to interpret since landscapes are of different structures and derived from various
combinatorial problems. We restrict our analysis to PNLS methods to simplify the reading of the paper.



Table 5
Parameter values leading to the best average fitness over 100 executions for each pair (landscape, method) on UBQP, QAP, and
FSP landscapes, for 1 million and 100 million solution evaluations.

Inst. λSW λIDb λIDa M L Inst. λSW λIDb λIDa M L
U

B
Q

P

1
m

.
2048 10 128 128 256 50 60 4096 10 64 128 256 50 60
2048 25 128 128 256 50 60 4096 25 128 128 256 50 60
2048 50 128 128 256 50 60 4096 50 128 128 256 50 60
2048 100 64 128 256 50 60 4096 100 64 128 256 50 60

10
0

m
. 2048 10 128 128 128 50 40 4096 10 128 128 256 50 60

2048 25 128 128 128 50 30 4096 25 128 128 256 50 50
2048 50 128 128 128 50 30 4096 50 128 128 256 50 50
2048 100 128 128 128 50 40 4096 100 128 128 256 50 50

Q
A

P

1
m

.

lipa70a 345 345 1207 5 8 sko49 106 106 1176 5 16
lipa80a 451 526 3106 5 8 sko56 8 118 770 5 24
lipa90a 445 572 4005 5 8 sko64 8 134 672 5 24
sko42 78 86 861 5 20 sko72 2 170 852 5 32

10
0

m
. lipa70a 8 185 1207 5 24 sko49 130 147 1176 5 16

lipa80a 8 243 3160 5 12 sko56 32 128 1540 5 24
lipa90a 16 250 4005 5 24 sko64 8 224 2016 5 24
sko42 78 128 861 5 16 sko72 2 170 2556 5 24

FS
P

1
m

. 30 10 01 58 54 217 1 10 50 10 01 153 153 408 1 18
30 15 01 96 108 435 1 6 50 15 01 153 163 612 1 16
30 20 01 87 108 435 1 6 50 20 01 188 175 1225 1 14

10
0

m
. 30 10 01 145 145 435 1 12 50 10 01 188 153 350 1 16

30 15 01 145 145 435 1 12 50 15 01 272 245 2450 1 12
30 20 01 174 145 435 1 12 50 20 01 408 350 2450 1 12

UBQP landscapes: With a budget of 1 million evaluations, the best PNLS parameter values are gener-
ally stable on most landscapes. Only λSW fluctuates over three landscapes. On other landscapes, SW and
IDbest systematically maximize their performance on similar settings. The optimal settings are similar to
those observed on smooth NK landscapes in terms of optimal neighborhood proportions to consider.

When we consider a budget of 100 million evaluations, the best settings remain stable for each method
on every UBQP landscape.

QAP landscapes: For a budget of 1 million evaluations on lipa landscapes, the sample size of neigh-
bors that allow SW and IDbest to obtain their best average fitness are approximately equivalent. For IDbest,
this size is generally larger, which can be explained by the selection of the first improving encountered
neighbor. This leads to a less intensifying search than SW, which selects the best-encountered neighbor
(with a fixed sample size value). Considering a fixed instance size, the sample of neighbors that leads
SW and IDbest to best results is generally smaller on sko landscapes than on lipa landscapes. The value
which maximizes PNLS performance is probably not only related to the size and ruggedness of the
landscapes.

As on the other landscapes, IDany requires a huge sample of neighbors to obtain its best average fit-
ness. On some landscapes, mainly lipa ones, this sample corresponds to the entire neighborhood of
the current solution, indicating that IDany requires a strong intensification effort to be effective. In such
cases, this PNLS corresponds to an ILS, which applies a random move to escape local optima. The
pivoting rule applied to deteriorating neighbors affects the balance between intensification and diversifi-
cation, so that IDany requires an extended sample size to be effective, which goes away from the intent
of PNLS.

For 100 million evaluations, SW and IDbest require a smaller λ value than for 1 million evaluations



on lipa landscapes. The value of λ for IDbest does not change on lipa landscapes but increases on
sko, indicating a stronger need for intensification to achieve good-quality solutions on these landscapes.
The most appropriate parameterization for IDany does not evolve among lipa landscapes with this
higher number of evaluations. This size increases on larger sko landscapes, indicating a limited need for
diversification to drive the search towards good-quality solutions.

FSP landscapes: With a budget of 1 million evaluations, the values of λSW and λIDb leading to the
best average fitness are close, with λIDb consistently higher. The maximum sample size to be evaluated
is positively correlated with the number of machines, and thus negatively correlated with the neutrality
rates. On landscapes with a significant level of neutrality, a small λ value is sufficient to quickly navigate
on plateaus, each step requiring only a few solution evaluations.

As already observed on other landscapes, IDany requires a larger neighborhood sample than the two
other PNLSs. Likely to IDbest and SW, this value is negatively correlated with the neutrality rate.

The values of λ leading SW and IDbest to the best average fitness are generally higher when considering
100 million evaluations than while considering 1 million. With this large budget, the value of λ is globally
stable according to the different numbers of machines m for instances of size j = 30. When j = 50, the
value λ increases with the number of machines. This different evolution is probably due to the larger size
of the landscapes, which makes the search convergence slower. To achieve better solutions, on average,
with 100 million evaluations, IDany requires a sample size greater or equal to the ones used when the
budget equals 1 million evaluations. As with the other two PNLSs, the sample size is stable when j = 30,
and also when j = 50.

The results of this section show that among the PNLSs, SW and IDbest often require similar settings
to maximize their effectiveness. The appropriate size of the neighborhood sample seems to be positively
correlated with the landscape ruggedness. IDany requires a larger sample size than the other two PNLSs,
which is related to the higher diversification induced by the random selection of deteriorating neighbors.

In general, there are slight variations in the ideal settings for the two studied budgets. The convergence
levels mostly vary according to the landscape properties and especially its size and ruggedness.

5. Empirical comparison of PNLSs

This section is dedicated to providing a comparative study of the three PNLS versions. Results are also
compared with ILSF and TS results. We execute each method using the parameter value determined in
the experiments reported in the previous section. We follow the experimental protocol described in the
previous section.

The tables containing values indicate the best average fitness obtained by the considered methods on
each landscape. For each pair (landscape, method), we report a percentage that corresponds to the devia-
tion of the average fitness obtained by the method from the best average fitness obtained on the landscape.
The dominance between the methods is reported following the color code described in Table 6.

For a landscape and a method A, the colors in the tables indicate the number of methods statistically
dominated by A (shades of red) and the number of methods that dominate A (shades of blue) according
to a binomial test (p-value < 0.05), as described in the previous section. Note that the p-value is defined
for each comparison; therefore, this possibility of error is present for each pair of methods compared.

For each instance, we also report the difference (in %) between each method and the best average
fitness obtained.



Table 6
Legend for tables of results reporting statistical dominance by a binomial test. Red shading indicates the number of times one
method statistically dominates the other methods. Blue shading indicates the number of times a method is statistically dominated
by other methods.

Dominates t
methods

Dominated by
t methods

t 4 3 2 1 0 0 1 2 3 4
color

Table 7
Comparison of three PNLS variants, TS, and ILS on NK landscapes. Statistical dominance between methods and best average
fitness achieved and deviations to this fitness for each method (in %). Left:budget of 1 million evaluations; Right: budget of 100
million evaluations.

instance dominates dominated
N K SW IDB IDA TS ILS SW IDB IDA TS ILS

128 1
128 2
128 4
128 6
128 8
128 10
128 12
256 1
256 2
256 4
256 6
256 8
256 10
256 12
512 1
512 2
512 4
512 6
512 8
512 10
512 12
1024 1
1024 2
1024 4
1024 6
1024 8
1024 10
1024 12

∆ to avgmax
avgmax SW IDB IDA TS ILS

0.7245 0.04 0.06 0.01 1.35 0.00
0.7415 0.00 0.05 0.38 1.20 0.33
0.7922 0.03 0.10 0.00 4.94 0.13
0.7915 0.00 0.12 0.36 4.97 0.62
0.7883 0.00 0.08 0.58 4.05 0.73
0.7796 0.00 0.16 0.56 2.75 0.81
0.7689 0.00 0.27 1.03 2.13 0.90
0.7210 0.00 0.04 0.55 1.28 0.49
0.7430 0.00 0.08 0.68 3.00 0.68
0.7877 0.00 0.14 0.40 4.91 0.49
0.7921 0.05 0.00 0.68 2.33 0.58
0.7819 0.00 0.23 0.47 1.22 0.75
0.7741 0.00 0.33 0.63 0.65 1.07
0.7633 0.00 0.10 0.56 0.57 0.95
0.7044 0.00 0.08 0.59 0.52 0.51
0.7448 0.00 0.05 0.71 1.92 0.64
0.7751 0.00 0.12 0.84 1.31 0.72
0.7825 0.00 0.22 0.75 1.37 0.80
0.7781 0.00 0.36 0.76 1.18 0.86
0.7684 0.00 0.24 0.55 0.82 0.62
0.7581 0.00 0.05 2.89 0.59 0.38
0.7127 0.00 0.12 1.10 1.07 1.09
0.7474 0.00 0.13 1.29 2.70 1.19
0.7749 0.00 0.24 1.28 3.22 1.33
0.7762 0.00 0.23 0.90 2.57 0.04
0.7711 0.00 0.22 0.75 2.15 1.39
0.7625 0.00 0.26 0.55 1.73 0.67
0.7535 0.00 0.15 0.64 1.41 0.93

instance dominates dominated
N K SW IDB IDA TS ILS SW IDB IDA TS ILS

128 1
128 2
128 4
128 6
128 8
128 10
128 12
256 1
256 2
256 4
256 6
256 8
256 10
256 12
512 1
512 2
512 4
512 6
512 8
512 10
512 12
1024 1
1024 2
1024 4
1024 6
1024 8
1024 10
1024 12

∆ to avgmax
avgmax SW IDB IDA TS ILS

0.7245 0.00 0.00 0.00 1.10 0.00
0.7424 0.00 0.00 0.04 0.74 0.02
0.7959 0.00 0.00 0.00 0.08 0.00
0.8004 0.00 0.01 0.11 0.67 0.08
0.8021 0.00 0.06 0.45 1.22 0.51
0.7936 0.00 0.16 0.49 1.36 0.53
0.7819 0.00 0.03 0.44 1.15 0.55
0.7220 0.01 0.00 0.29 1.41 0.27
0.7444 0.04 0.00 0.24 2.61 0.25
0.7933 0.00 0.00 0.92 1.39 0.18
0.8045 0.14 0.00 1.52 0.31 0.47
0.7961 0.12 0.00 0.57 0.83 0.66
0.7862 0.00 0.02 2.49 1.05 0.60
0.7754 0.02 0.00 2.56 1.25 0.57
0.7078 0.00 0.03 0.57 1.00 0.54
0.7509 0.00 0.00 0.77 2.57 0.74
0.7860 0.00 0.04 0.75 0.19 0.69
0.7989 0.00 0.06 0.57 0.30 0.61
0.7939 0.00 0.05 0.56 1.13 0.67
0.7829 0.00 0.05 0.49 0.86 0.62
0.7720 0.00 0.01 0.49 0.80 0.64
0.7163 0.00 0.03 1.11 1.56 1.05
0.7522 0.00 0.01 1.26 3.30 1.26
0.7878 0.00 0.07 0.99 2.84 1.03
0.7949 0.00 0.07 0.70 0.63 0.74
0.7901 0.00 0.17 0.54 0.65 0.65
0.7793 0.00 0.09 0.46 0.68 0.52
0.7694 0.00 0.06 0.39 0.53 0.49

5.1. NK landscapes

We present the statistical dominance relations between the local search variants and their average fitness
on NK landscapes in the table 7. Considering 1 million evaluations, SW obtains the best average fitness
on these landscapes and dominates other local searches in most cases. Although IDbest is close to SW in
its behavior and ability to find good-quality solutions, it is regularly dominated by the latter.

The ability of SW and IDbest to achieve good solutions on average is closer when considering a budget
of 100 million evaluations. In some cases, SW is dominated by IDbest or at least IDbest leads to better
solutions on average, especially on the smallest landscapes. SW and IDbest have an overall similar behav-
ior, although it seems they converge toward solutions of similar quality after 100 million evaluations, SW
reaches good solutions faster (on average). Another aspect tends to confirm this thought: as the size of
landscapes increases, SW becomes rarely dominated by IDbest, and on the largest landscapes, IDbest is
systematically dominated by SW. Lastly, there is no clear correlation between the comparative efficiency
of SW and IDbest, and the ruggedness of landscapes.
IDany is particularly efficient on two landscapes of small size (N = 128). On other landscapes,

it is systematically dominated by the other PNLSs. Nevertheless, IDany regularly dominates at least
TS or ILSF . A higher budget does not significantly increase its effectiveness compared to other local
searches. IDany is the least efficient variant among the PNLSs, which must be due to the excessive



Table 8
Comparison of three PNLS variants, TS and ILS with a budget of 1 and 100 million evaluations on UBQP landscapes.

UBQP SW IDB IDA TS ILS SW IDB IDA TS ILS
1

m
.

2048 10
2048 25
2048 50
2048 100
4096 10
4096 25
4096 50
4096 100

10
0

m
.

2048 10
2048 25
2048 50
2048 100
4096 10
4096 25
4096 50
4096 100

avgmax SW IDB IDA TS ILSF
1002458.6 0.06 0.03 0.21 24.30 0.00
1638960.1 0.05 0.00 0.14 24.59 0.00
2394696.1 0.05 0.03 0.18 24.37 0.00
3090605.8 0.07 0.00 0.21 24.11 0.02
2799531.5 0.05 0.00 0.15 72.81 0.07
4580315.7 0.24 0.00 0.12 71.54 0.03
6510686.5 0.21 0.00 0.11 71.39 0.08
9064548.5 0.05 0.00 0.13 71.76 0.06
1004293.5 0.03 0.02 0.05 0.00 0.00
1641192.6 0.02 0.02 0.05 0.00 0.00
2398443.3 0.03 0.03 0.05 0.00 0.01
3099318.7 0.04 0.03 0.07 0.00 0.02
2808263.7 0.07 0.03 0.05 0.00 0.02
4595741.7 0.06 0.06 0.05 0.00 0.05
6527995.0 0.06 0.05 0.06 0.00 0.04
9093039.3 0.07 0.07 0.07 0.00 0.06

diversification induced by the strategy while selecting deteriorating neighbors (i.e., randomly). On NK
landscapes, its convergence seems particularly slow and could be a consequence of a poor intensification
around areas of interest of the landscapes. Indeed, in such areas, the neighborhood only contains a few
improving neighbors, and IDany would tend to perform random moves too frequently, escaping from
these promising areas. Nevertheless, this allows IDany to be effective in so-called easier instances.
TS is the least effective local search on most landscapes, even if it dominates ILSF on a few land-

scapes. It is also the only local search tested that does not systematically lead to the best encountered
local optimum on the easiest landscape. ILSF tends to be more efficient on smooth landscapes than
on rugged landscapes where it is dominated many times. For instance, ILSF is the most efficient local
search on the easiest NK landscape in our sample (N = 128, K = 1), where it systematically reaches
the best local optimum encountered, which is not the case for PNLS variants. On most landscapes, ILSF
often statistically dominates TS but rarely the three PNLS variants.

5.2. UBQP landscapes

Table 8 provides the statistical dominance between the methods as well as the average fitness obtained
on UBQP landscapes. For a budget of 1 million evaluations, ILSF globally leads to the best solutions on
landscapes of size n = 2048. On larger landscapes (n = 4096), the most effective method is IDbest. At
least one of these two aforementioned local searches systematically dominates SW. On these landscapes,
with extreme density values, the ability of SW and ILSF to achieve good-quality solutions is equivalent.
On the other two same-size landscapes, SW is less effective and statistically dominated by IDany.

Considering PNLS variants, IDbest tends to outperform SW which tends to outperforms IDany. TS
is particularly ineffective in achieving good-quality solutions when considering a budget of 1 million
evaluations. However, for 100 million evaluations, TS is the most efficient on the largest landscapes. Let
us notice that in our study, considered UBQP landscapes are significantly larger than NK landscapes. The
low quality of the solutions returned by TS after 1 million evaluations is probably due to the small budget
compared to the size of the landscapes. Indeed TS is the local search that evaluates the most significant
number of neighbors at each step, as it never randomly determines the sample of the neighborhood to
be evaluated. As a result, TS perform fewer steps than other local searches for the same budget and
converges more slowly towards good-quality solutions.



Table 9
Comparison of three PNLS variants, TS and ILS with a budget of 1 and 100 million evaluations on FSP landscapes.

FSP SW IDB IDA TS ILS SW IDB IDA TS ILS

1
m

.

30 10
30 15
30 20
50 10
50 15
50 20

10
0

m
.

30 10
30 15
30 20
50 10
50 15
50 20

avgmin SW IDB IDA TS ILS
1994.6 0.00 0.01 0.14 0.28 0.31
2419.6 0.04 0.00 0.34 0.43 0.07
2750.3 0.05 0.00 0.35 0.50 0.37
3033.7 0.29 0.24 0.00 0.96 0.27
3400.1 0.02 0.00 0.16 0.84 0.51
3903.9 0.01 0.00 0.26 0.68 0.52
1985.4 0.00 0.01 0.05 0.28 0.23
2400.1 0.00 0.00 0.21 0.67 0.21
2742.9 0.00 0.00 0.15 0.39 0.15
3025.0 0.19 0.18 0.00 0.19 0.03
3357.2 0.00 0.03 0.57 0.53 1.02
3879.5 0.11 0.00 0.20 0.30 0.48

Remember that the ruggedness indicators applied to UBQP landscapes indicate a locally rugged but
globally smooth structure. This generally smooth structure tends to make them easier to solve than NK
landscapes of equivalent size. On these landscapes, PNLSs are efficient in quickly finding good solutions
thanks to their high number of steps. However, the results for a higher budget indicate that these PNLSs
are less suitable than TS to intensify the search in relevant areas of these landscapes. TS is probably
efficient on UBQP landscapes because their low level of diversification allows the search to stay near the
main area of interest.

5.3. FSP landscapes

We present the statistical dominance between the proposed local searches and their average fitness on
FSP landscapes in the table 9. SW and IDbest are never statistically comparable with each other. Even
their average fitness values do not bring information on the possible superiority of one of these methods.
These two methods are never statistically outperformed, except on the largest landscape with the highest
rate of neutrality (j = 50, m = 10). On this landscape, IDany is the most efficient method, although it
is the least effective PNLS variant on the other FSP landscapes. SW and IDbest systematically dominate
ILSF , except on the landscapes with the highest rate of neutrality (m = 10) where the algorithms are
statistically equivalent. This tendency could result from the significant rate of neutrality that prevents
strict descents of ILSF from reaching good-quality solutions. The high level of neutrality could explain
whyM = 1 is always the best parameterization. Using a single random move as perturbation helps the
ILS to efficiently explore plateaus. Although they are generally dominated by IDbest and SW, ILSF and
IDany regularly dominate TS, which leads to the worst solutions on these landscapes.

Anyhow, the primary information is the global superiority of SW and IDbest variants over the other
studied local searches. On these landscapes containing plateaus, PNLSs are probably less constrained
by neutrality, which would partially explain their higher efficiency. Unlike ILSF , if a non-strict local
optimum is reached, a neutral neighbor can be selected with PNLS variants. This case probably occurs
more regularly for SW and IDbest than for IDany due to their deteriorating neighbor selection strategy.
This observation would contribute in part to the improved capacity of SW and IDbest to achieve good-
quality solutions on FSP landscapes.

5.4. QAP landscapes

Table 10 reports the statistical dominance between the local searches proposed and their average fitness
attained over QAP landscapes. On lipa landscapes, SW and IDbest statistically mostly dominate the other



Table 10
Comparison of three PNLS variants, TS and ILS with a budget of 1 and 100 million evaluations on QAP landscapes.

QAP SW IDB IDA TS ILS SW IDB IDA TS ILS

1
m

.

lipa70a
lipa80a
lipa90a
sko42
sko49
sko56
sko64
sko72

10
0

m
.

lipa70a
lipa80a
lipa90a
sko42
sko49
sko56
sko64
sko72

avgmin SW IDB IDA TS ILS
170906.5 0.00 0.00 0.08 0.04 0.09
254767.7 0.00 0.02 0.05 0.03 0.07
362688.1 0.02 0.00 0.06 0.05 0.07
15856.6 0.08 0.00 0.00 0.33 0.18
23459.5 0.07 0.00 0.05 0.36 0.16
34616.6 0.17 0.13 0.00 0.51 0.07
48730.8 0.15 0.08 0.00 0.61 0.01
66614.0 0.14 0.10 0.00 0.77 0.02

169755.0 0.00 0.00 0.12 0.15 0.73
253429.6 0.02 0.00 0.50 0.33 0.57
361253.4 0.06 0.00 0.38 0.28 0.43
15812.1 0.06 0.02 0.00 0.04 0.45
23391.5 0.01 0.00 0.07 0.03 0.42
34474.2 0.09 0.08 0.00 0.13 0.36
48516.9 0.05 0.05 0.00 0.08 0.28
66337.5 0.06 0.04 0.00 0.10 0.24

strategies. The average fitness values attained by IDbest slightly outperform those obtained by SW. Also,
TS dominates IDany, which sometimes dominates ILSF .

On sko landscapes, IDany reaches better solutions than other variants. On the smallest sko landscapes,
the efficiency of IDbest and IDany is similar. On the largest sko landscapes, ILSF is the second most
effective search (outperformed by IDany). Finally, TS is the least efficient on landscapes sko.

We observe that the relative efficiency of PNLS variants on QAP landscapes dramatically depends on
the type of considered instance. Nevertheless, results of PNLS variants often outperform TS and ILSF
on most of the instances considered.

PNLSs are consistently more efficient than ILSF and TS on NK, QAP, and FSP landscapes for the
two tested budgets. On UBQP landscapes, PNLSs are competitive with a low budget since the partial
neighborhood allows them to reach good-quality solutions quickly. With a larger budget, TS performs
better, partially because of its higher level of intensification. Among the proposed PNLSs, SW and IDbest
often have equivalent efficiency. The selection strategy of deteriorating neighbors of IDany induces a
strong diversification that regularly prevents it from converging sufficiently toward good-quality solu-
tions. Nevertheless, this strategy is suitable for some landscapes.

6. Conclusion

In this article, we studied partial neighborhood local search (PNLS) algorithms. In particular, we pro-
posed the sample walk (SW) and compared it to the intensification/diversification walk (IDwalk), which
is declined in two variants IDbest and IDany. These PNLSs were compared with two widely used local
searches, the tabu search (TS) and the iterated local search (ILS). We aimed to observe the differences
in the ability of PNLSs to achieve good local optima compared to TS and ILS, as well as the differences
induced by the variation of the pivoting rules on the search capacity to reach good-quality solutions.

To achieve this objective, we conducted an extensive empirical analysis of PNLSs. In particular, we
considered: (1) large instances taken from four combinatorial optimization problems: NK landscapes,
UBQP, FSP, and QAP; (2) a parameterization analysis; (3) two computational budgets. Furthermore, all
results were analyzed in the light of indicators characterizing the structure of fitness landscapes.

A significant part of the experiments was dedicated to the parameterization of PNLSs. Apart from
the stopping criterion, PNLSs require to set a single parameter that directly affects the balance between



intensification and diversification of the search. We tested several parameter values to determine the right
balance with respect to landscape characteristics. Generally, SW and IDbest require a similar parameter-
ization to be efficient. The PNLS parameterizations that lead to the best solutions, on average, evolve
slightly according to the budget and the ruggedness. Moreover, there is a broad range of values for which
the PNLSs are effective, suggesting that such algorithms are easy to configure automatically.

These experiments also highlighted the values that lead PNLS toward the best solutions on each land-
scape for both computational budgets, allowing us to compare more efficiently the different local search
algorithms. Comparisons with different budgets show that considering a random sample of the neigh-
borhood often allows PNLSs to quickly reach good-quality solutions compared to ILS and TS. SW and
IDbest often lead to solutions close in quality, even if one can observe some variations of efficiency on a
few landscapes.

We can point out several research directions following this work. Improving our knowledge about the
landscape structure would probably allow us to understand the unexplained differences in the behavior of
PNLSs. That is notably the case for permutation-based landscapes, where simple indicators are not suf-
ficient to highlight the differences in landscape structure fully. A way of better characterizing landscapes
could be by using network structures, such as local optima networks (Ochoa et al., 2014), to emphasize
the characteristics that can prevent local search algorithms from reaching better solutions.

Since PNLSs are efficient for different computational budget, it would be informative to assess their
ability to reach good-quality solutions in an any-time optimization context (Zilberstein, 1996).
SW regularly leads to good-quality solutions and is a particularly simple local search for which many

improvement possibilities exist. Integrating SW as a component of more sophisticated metaheuristics
could quickly lead to diversified solutions of rather good quality. In general, a combination with exact
methods could lead to much more effective intensification in the right areas of the landscapes.
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