The carry propagation of the successor function - Archive ouverte HAL
Article Dans Une Revue Advances in Applied Mathematics Année : 2020

The carry propagation of the successor function

Résumé

Given any numeration system, we call carry propagation at a number N the number of digits that are changed when going from the representation of N to the one of N+1, and amortized carry propagation the limit of the mean of the carry propagations at the first N integers, when N tends to infinity, if this limit exists. In the case of the usual base p numeration system, it can be shown that the limit indeed exists and is equal to P / (P - 1). We recover a similar value for those numeration systems we consider and for which the limit exists. We address the problem of the existence of the amortized carry propagation in non-standard numeration systems of various kinds: abstract numeration systems, rational base numeration systems, greedy numeration systems and beta-numeration. We tackle the problem with three different types of techniques: combinatorial, algebraic, and ergodic. For each kind of numeration systems that we consider, the relevant method allows for establishing sufficient conditions for the existence of the carry propagation and examples show that these conditions are close to being necessary conditions.
Fichier principal
Vignette du fichier
1907.01464.pdf (516.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03379583 , version 1 (27-10-2021)

Identifiants

Citer

Valerie Berthe, Christiane Frougny, Michel Rigo, Jacques Sakarovitch. The carry propagation of the successor function. Advances in Applied Mathematics, 2020, 120, pp.102062. ⟨10.1016/j.aam.2020.102062⟩. ⟨hal-03379583⟩
62 Consultations
82 Téléchargements

Altmetric

Partager

More