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Abstract

Given any numeration system, we call carry propagation at a number N

the number of digits that are changed when going from the representation

of N to the one of N + 1, and amortized carry propagation the limit of the

mean of the carry propagations at the first N integers, when N tends to

infinity, if this limit exists.

In the case of the usual base p numeration system, it can be shown that

the limit indeed exists and is equal to p/(p− 1). We recover a similar value

for those numeration systems we consider and for which the limit exists.

We address the problem of the existence of the amortized carry propaga-

tion in non-standard numeration systems of various kinds: abstract numera-

tion systems, rational base numeration systems, greedy numeration systems

and beta-numeration. We tackle the problem with three different types of

techniques: combinatorial, algebraic, and ergodic. For each kind of numer-

ation systems that we consider, the relevant method allows for establishing

sufficient conditions for the existence of the carry propagation and examples

show that these conditions are close to being necessary conditions.

1 Introduction

The carry propagation is a nightmare for schoolchildren and a headache for com-

puter engineers: not only could the addition of two digits produce a carry, but

this carry itself, when added to the next digit on the left1 could give rise to

another carry, and so on, and this may happen arbitrarily many times. Since the

beginnings of computer science, the evaluation of the carry propagation length

has been the subject of many works and it is known that the average carry

propagation length for the addition of two uniformly distributed n-digit binary

numbers is: log2(n) + O(1) (see [13, 20, 28]).

∗IRIF, CNRS/Université de Paris
†Université de Liège, Département de Mathématiques
‡IRIF, CNRS/Université de Paris and LTCI, Telecom, Institut Polytechnique de Paris
§Corresponding author
1We write numbers under MSDF (Most Significant Digit First) convention.
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Many published works address the design of numeration systems in which the

carry does not indeed propagate — through the use of supplementary digits —

which allow the design of circuits where addition is performed ‘in parallel’ for

numbers of large, but fixed, length [2, 14].

We consider here the problem of carry propagation from a more theoretical

perspective and in an seemingly elementary case. We investigate the amortized

carry propagation of the successor function in various numeration systems. The

central case of integer base numeration system is a clear example of the issue.

Let us take an integer p greater than 1 as a base. In the representations of the

succession of the integers — which is exactly what the successor function achieves

— the least digit changes at every step, the penultimate digit changes every p

steps, the ante-penultimate digit changes every p2 steps, and so on. Consequently,

the average carry propagation of the successor function, computed over the firstN

integers, should tend to the quantity:

1 +
1

p
+

1

p2
+

1

p3
+ · · · =

p

p− 1
, (1)

when N tends to infinity. It can be shown that it is indeed the case. Following on

our previous works on various non-standard numeration systems, we investigate

here the questions of evaluating and computing the amortized carry propagation

in those systems. We thus consider several such numeration systems which are

different from the classical integer base numeration systems: the greedy numera-

tion systems and the β-numeration systems (see [17]) which are a specific case of

the former, the rational base numeration systems (introduced in [1]) which are

not greedy numeration systems, and the abstract numeration systems (defined

in [22]) which are a generalization of the classical positional numeration systems.

In [7], we already reported that the approach of abstract numeration systems

of [21], namely the study of a numeration system via the properties of the set of

expansions of the natural integers is appropriate for this problem. Such systems

consist of a totally ordered alphabet A — hence, without loss of generality, an

initial section {0, 1, . . . , p−1} of the non-negative integers N— and a language L

of A∗, ordered by the radix order deduced from the ordering on A. The represen-

tation of an integer n is then the (n+ 1)-th word2 of L in the radix order. This

definition is consistent with every classical standard and non-standard numera-

tion system, that is, the representation of n in such a system is the (n + 1)-th

word (in the radix order) of the set of representations of all integers in the system.

Given a numeration system defined by a language L ordered by radix order,

we denote by cp
L
(i) the carry propagation in the computation from the represen-

tation of i in L to that of i+ 1. The (amortized) carry propagation of L, which

we denote by CPL, is the limit, if it exists, of the mean of the carry propagation

2The ‘+1’ gives room for the representation of 0 by the first word of L.
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at the first N words of L:

CPL = lim
N→∞

1

N

N−1
∑

i=0

cp
L
(i) . (2)

This quantity, introduced by Barcucci, Pinzani and Poneti in [5], is the main

object of study of the present paper whose aim is to investigate cases where the

carry propagation exists or not, and suggests ways to compute it.

A common further hypothesis is to consider prefix-closed and right-extendable

languages, called ‘pce’ languages in the sequel: every left-factor of a word of L

is a word of L and every word of L is a left-factor of a longer word of L. Hence,

L is the branch language of an infinite labeled tree TL and, once again, every

classical standard and non-standard numeration system meets that hypothesis.

We move on to prove two simple properties of the carry propagation of pce

languages. First, CPL does not depend upon the labeling of TL, but only on

its ‘shape’ which is completely defined by the infinite sequence of the degrees

of the nodes visited in a breadth-first traversal of TL, and which we call the

signature of TL (or of L) [25]. For instance, the signature of the language of the

representations of the integers in base p is the constant sequence pω. Next, let

us denote by uL(ℓ) the number of words of L of length ℓ. We call the limit, if it

exists, of the ratio uL(ℓ+ 1)/uL(ℓ) the local growth rate of a language L, and

we denote it by γL. And we show (Corollary 3.16) that if CPL exists, then γL
exists and

CPL =
γL

γL − 1
(3)

holds, which is an obvious generalization of (1). On the other hand, an example

shows that γL may exist while CPL does not (Example 3.17).

By virtue of (3), the computation of CPL is usually not an issue. The problem

lies in proving its existence. We develop three different methods for the proofs of

existence, whose domains of application are pairwise incomparable, that is to say,

we have examples of numeration systems for which the existence of CPL is estab-

lished by one method and not by the other two. These methods: combinatorial,

algebraic, and ergodic, are built upon very different mathematical backgrounds.

We first show by a combinatorial method that languages with an eventually

periodic signature have a carry propagation (Theorem 3.23). It is known that

these languages are essentially the rational base numeration systems, possibly

with non-canonical alphabets of digits [25].

We next consider the rational abstract numeration systems, that is, those

systems which are defined by languages accepted by finite automata.3 Examples

of such systems are the Fibonacci numeration system and, more generally, β-

numeration systems where β is a Parry number [17], and of course many other

3In this context where we deal with both languages and formal power series, we say rational

rather than regular for languages accepted by finite automata.

3



systems which greatly differ from β-numeration. Theorem 4.1 states that if a

rational pce language L has a local growth rate, and if all its quotients also

have a local growth rate, then L therefore has a carry propagation. The proof is

based on a property of rational power series with positive coefficients which is

reminiscent of the Perron-Frobenius Theorem. A tighter sufficient condition may

even be established (Theorem 4.10) but a remarkable fact is that the existence

of the local growth rate is not a sufficient condition for the existence of carry

propagation even for rational pce languages (Example 4.11).

The definition of carry propagation by Equation (2) inevitably brings to mind

the Ergodic Theorem. Finally, we consider the so-called greedy numeration sys-

tems [15] — β-numeration systems, with any β > 1, are one example but they

can be much more general. The language of greedy expansions in such a sys-

tem is embedded into a compact set, and the successor function is extended as

an action, called the odometer, on that compactification. In this setting, the

odometer is just the addition of 1. This gives a dynamical system, introduced

in [19, 4]. Tools from ergodic theory developed only recently (in [3]) allow us to

prove the existence of the carry propagation for greedy systems with exponential

growth (Theorem 5.17), and thus for β-numeration in general. The difficulty is

that the odometer is not continuous in general and the Ergodic Theorem does

not directly apply.

The substential length of the paper is due to the fact that it borrows results

from different chapters of mathematics (in relation with formal language theory)

which we had to present as we wished the paper to be as self-contained as possible.

It is organized as follows.

In Section 2, after reviewing some definitions on words, we present the no-

tion of abstract numeration systems. Section 3 is devoted to the combinatorial

point of view. Here we more precisely define the notion of carry propagation,

present its relationship with the local growth rate, and give, as mentioned above,

a first example of a language with local growth rate which does not have a carry

propagation. We then define the signature of a language and establish the afore-

mentioned quoted result for languages with eventually periodic signature. Note

that neither the algebraic nor the ergodic methods apply to these languages

(except of course for the integer-base numeration systems).

In Section 4, we study the carry propagation of rational abstract numeration

systems by means of algebraic methods. We first recall the definitions of generat-

ing function, of modulus of a language, of languages with dominating eigenvalue

(dev languages), and give the description, due to Berstel, of the ‘leading terms’

of generating functions of rational languages. We are then able to introduce the

notion of languages with almost dominating eigenvalues (adev languages) and

to show that it is a necessary and sufficient condition for a rational language to

have a local growth rate (Theorem 4.9). As already said, it is not a sufficient

4



condition for the existence of the carry propagation. But the counter-example

directly leads to a sufficient condition for a rational language to have a carry

propagation (Theorem 4.10).

Section 5 is devoted to the study of the question of the carry propagation

of a language by means of tools from ergodic theory. Even though it seems to

be quite a natural approach, it requires some elaborate new results and is, so

far, applicable to the family of greedy numeration systems only. We first recall

Birkhoff’s Ergodic Theorem and follow [19] for the description of a framework

in which we can turn a numeration system and its successor function into a dy-

namical system. We then focus on greedy numeration systems that have been

studied by Barat and Grabner [3]. The carry propagation in these systems is not

the uniform limit of its truncated approximations but the properties of greedy

numeration systems allow us to establish that it is regular enough to be in the

scope of the Ergodic Theorem. We end with some examples of β-numeration sys-

tems which are at the crossroads of algebraic and ergodic methods, thus allowing

two different ways for the computation of the carry propagation.

It should be noted that the inspiration for this current work was initiated by

a paper where the amortized algorithmic complexity of the successor function for

some β-numeration systems was studied [5]. Whatever the chosen computation

model, the (amortized) algorithmic complexity, that is, the limit of the mean

of the number of operations necessary to compute the successor of the first N

integers, is greater than the (amortized) carry propagation, hence can be seen

as the sum of two quantities: the carry propagation itself and an overload. The

study of carry propagation leads to quite unexpected and winding developments

that form a subject on its own and that we present here. But this paper is only

the first step in solving the original problem which consists in describing the

complexity of the successor function.

Addressing complexity implies the definition of a computational model and

ours is based on the use of sequential transducers. This explains the particular

attention we pay in this paper to rational abstract numeration systems. The

sequel of this work [8] is in the preparation phase and will hopefully be completed

in a not too distant future.
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2 Preliminary notions

We review more or less classical basic notions on languages that we will use

throughout this work. More specific notions and notation will be introduced at

the point they are needed, even when classical.

2.1 Words on ordered alphabets

In this paper, A denotes a totally ordered finite alphabet, and the order is denoted

by <. Without loss of generality, we can always assume that A consists of

consecutive integers starting with 0 and naturally ordered: A = {0, 1, . . . , r−1} .

The set of all words over A is denoted by A∗. The empty word is denoted by ε.

The length of a word w of A∗ is denoted by |w|. The set of words of length less

than or equal to n is denoted by A6n.

If w = uv, u is a prefix (or a left-factor) of w, strict prefix if v is non-empty,

and v is a suffix (or a right-factor) of w, strict suffix if u is non-empty. The set

of prefixes of w is denoted by Pre(w).

The lexicographic order, denoted by 4, extends the order on A onto A∗ and is

defined as follows. Let v and w be two words in A∗ and u their longest common

prefix. Then, v 4 w if v = w or, if v = uas, w = ubt with a and b in A,

and a < b. The radix order (also called the genealogical order or the short-lex

order), denoted by ⊑, is defined as follows: v ⊑ w if |v| < |w| or |v| = |w|

and v 4 w (that is, for two words of same length, the radix order coincides with

the lexicographic order). In contrast with lexicographic order, radix order is a

well-order, that is, every non-empty subset has a minimal element. For instance,

the set a+b = {anb | n > 0} has no minimal element for the lexicographic order.

2.2 Languages and Abstract Numeration Systems

In all what follows, L denotes a language over A, that is, any subset of A∗. A

language L is said to be prefix-closed if every prefix of a word of L is in L. A

language L is said to be (right) extendable if every word of L is a strict prefix of

another word of L.

Definition 2.1. A language L is called a pce language if it is both prefix-closed

and right extendable.
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Definition 2.2. Every infinite language L over A is totally ordered by the radix

order on A∗. The successor of a word w of L is the least of all words of L

greater than w, a well-defined word since radix order is a well-order, and denoted

by SuccL(w).

Hence SuccL is a map from A∗ into itself, whose domain is L and image

is L \ {w0}, where w0 is the least word in L for the radix order.

Languages over totally ordered alphabets have been called Abstract Numer-

ation Systems (ANS for short) and studied, for instance, in [21] or [22].4 Of

course, such a language L can be totally ordered: w0 is the least word of L, w1

is the least word of L \ {w0}, w2 the least word of L \ {w0, w1}, wi+1 the least

word of L \ {w0, w1, . . . , wi}, and so on:

L = {w0 ⊑ w1 ⊑ w2 ⊑ · · · ⊑ wi ⊑ · · · } .

By definition, wi, the (i+1)-th word of L in that enumeration, is the L-represen-

tation of the integer i and is denoted by 〈i〉L — hence w0 is the representation

of 0. Conversely, we let πL(w) denote the integer represented by the word w

of L: 〈πL(w)〉L = w. In this setting, the successor function behaves as expected,

that is, for every non-negative integer i,

SuccL
(

〈i〉L
)

= 〈i+ 1〉L .

The notion of ANS is consistent with that of positional numeration systems

in the sense that the language of representations of integers in such systems, seen

as an ANS, gives the same representation for every integer.

Example 2.3. The integer base numeration systems. Let p be an integer,

p > 1, taken as a base. We write 〈n〉p for the representation of n in base p

(the p-representation of n). Let Ap = {0, 1, . . . , p−1} be the alphabet of digits

used to write integers in base p and Lp = {ε} ∪ {1, . . . , p−1}A∗
p the set of

p-representations of the integers.5 The consistency claimed above reads:

∀n ∈ N 〈n〉p = 〈n〉Lp
.

Other examples such as rational base numeration systems are presented in

Example 3.20 and greedy numeration systems in Sec. 5.3.1.

4To tell the truth, ANS are supposed to be rational (or regular) languages in these refer-

ences [21, 22]. Although it will be met in most instances in this work, this hypothesis of being

rational is not necessary for the basic definitions in ANS and we indeed also consider ANS which

are not rational.
5For consistency with the whole theory we present here, the integer 0 is represented by ε

even though, in reality, its p-representation is ‘0’.
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2.3 The language tree

A prefix-closed language L of A∗ is the branch language of a labeled tree TL, that

we call the language tree of L.

The nodes of TL are indifferently seen as labeled by the words of L or by the

non-negative integers: the root of TL is associated with ε and with 0 = 〈ε〉L;

a node labeled by w (and by n = 〈w〉L) has as many children as there are

letters a1, a2, . . . , ak in A such that wa1, wa2, . . . , wak are words in L and the

edge between the node w (or n) and the node wai (or m = 〈wai〉L) is labeled

by ai. It follows that the tree TL is naturally an ordered tree in the sense that

the children wa1, wa2, . . . , wak are ordered by a1 < a2 < · · · < ak.

The breadth-first traversal of the ordered tree TL amounts to enumerating the

words of L in the radix order. We come back to this fact in Sec. 3.4.

If L is (right) extendable, then TL has no leaf and every branch of TL is

infinite.

Example 2.4 (Example 2.3 continued). The first nodes of the tree TLp, that we

rather write Tp, are represented in Figure 1(a) for the case p = 3.

Example 2.5. The Fibonacci numeration system. The Fibonacci numera-

tion system is a positional numeration system based on the sequence of Fibonacci

numbers, that is, the linear recurrence sequence (Fn)n>0 where F0 = 1, F1 = 2

and Fn+2 = Fn+1 + Fn for all n > 0. The set of representations of the natural

integers in that system is known to be the set of words of {0, 1}∗ that do not con-

tain two consecutive 1’s, that is, LF = {ε} ∪ 1{0, 1}∗ \ {0, 1}∗11{0, 1}∗ or simply

LF = {ε} ∪ 1{0, 01}∗ . The first nodes of the language tree TF are represented

in Figure 1(b). For a general reference on non-standard numeration systems, see

e.g. [17].

Example 2.6. The Fina numeration system. The sequence of Fibonacci

numbers of even rank is also a linear recurrence sequence, defined by E0 = 1,

E1 = 3 and En+2 = 3En+1−En for all n > 0. The positional numeration system

based on the sequence (En)n>0, which we call Fina, is known to give the integers

representations that are the words of {0, 1, 2}∗ which do not contain factors in

the language 21∗2. The first nodes of the language tree TE of E are represented

in Figure 1(c).

2.4 Automata

We essentially follow the definitions and notation of [17, 32] for automata.

An automaton over A, A = 〈A,Q, I,E, T 〉, is a directed graph with edges

labeled by elements of A. The set of vertices, traditionally called states, is denoted

by Q, I ⊂ Q is the set of initial states, T ⊂ Q is the set of terminal states and

E ⊂ Q×A×Q is the set of labeled edges. If (p, a, q) ∈ E, we write p
a
→ q. The
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automaton is finite if Q is finite. The automaton A is deterministic if E is the

graph of a (partial) function from Q × A to Q, and if there is a unique initial

state. It is trim if every state is accessible and co-accessible.

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

3 4 5 6 7 8

1 2

0
1 2

0
1

2 0
1

2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

(a) T3

8 9 10 11 12

5 6 7

3 4

2

1

0

1

0

0 1

0 1 0

0 1 0 0 1

(b) TF

8 9 10 11 12 13 14 15 16 17 18 19 20

3 4 5 6 7

1 2

0

1 2

0
1

2 0 1

0 1 2 0 1 2 0 1 0 1 2 0 1

(c) TE

Figure 1: First levels of three language trees.

A language L of A∗ is said to be recognizable by a finite automaton or rational

if there exists a finite automaton A such L is equal to the set L(A) of labels of

paths starting in an initial state and ending in a terminal state. The set of

rational languages over the alphabet A is denoted by RatA∗. Note that the

automata defined below implicitly read words from left to right.

1 0

1

0

(a) F

2

0

2

1
1 0, 1

(b) E

Figure 2: Two automata for representation languages.

2.5 A calculus classic

The general following statement will be used several times in the paper.
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Lemma 2.7. Let
(

x(n)
)

n∈N be an increasing sequence of positive numbers

and
(

y(n)
)

n∈N the sequence of the sums of initial segments: y(n) =
∑n
i=0 x(i)

for every n. Then, the following statements are equivalent:

(i) lim
n→∞

x(n+ 1)

x(n)
exists and is equal to γ > 1;

(ii) lim
n→∞

y(n+ 1)

y(n)
exists and is equal to γ > 1;

(iii) lim
n→∞

y(n)

x(n)
exists and is equal to γ

γ−1 .

Proof. Let us recall a classical result [12, Chap. V.4, Prop. 2]. Let (un)n∈N
and (vn)n∈N be two sequences of non-negative numbers. If the series

∑+∞
j=0 vj is

divergent, then un ∼ vn implies that
∑n
j=0 uj ∼

∑n
j=0 vj. This result is sometimes

referred to as Stolz–Cesàro Theorem.

(i) implies (ii): by the ratio test, the series
∑+∞
j=0 x(j) is divergent. Apply the

above result with (un)n∈N = (x(n + 1))n∈N and (vn)n∈N = (γx(n))n∈N . We

obtain that

n
∑

j=0

uj =
n+1
∑

j=1

x(j) = y(n+ 1)− x(0) ∼
n
∑

j=0

vj = γ
n
∑

j=0

x(j) = γy(n)

and the conclusion follows.

(ii) implies (i): from (ii) we have:

lim
n→∞

y(n) + x(n+ 1)

y(n)
= γ

and thus
x(n+ 1)

y(n)
→ γ − 1. Since

x(n+ 1)

x(n)
=
x(n+ 1)

y(n)

y(n)

y(n− 1)

y(n− 1)

x(n)
,

the result follows.

(ii) implies (iii): since y(n) = y(n−1)+x(n) dividing both sides by y(n−1) and

letting n tends to infinity, leads to

γ = 1 + lim
n→∞

x(n)

y(n)

y(n)

y(n− 1)
.

We conclude that
x(n)

y(n)
→

γ − 1

γ
.

(iii) implies (ii): again since y(n) = y(n− 1) + x(n), observe that

lim
n→∞

y(n)

x(n)
=

γ

γ − 1
if and only if lim

n→∞
y(n− 1)

x(n)
=

1

γ − 1
.

Since
y(n)

y(n− 1)
=
y(n)

x(n)

x(n)

y(n− 1)
, the result follows.
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3 The carry propagation of a language:

a combinatorial point of view

We first define the carry propagation of a language L and show that it does not

always exist. Sufficient conditions for its existence, and for its computation are

then investigated in terms, first, of growth rates of the language and, then, of

the notion of signature associated with the language tree of L, by stressing the

fact that what counts for carry propagation is the shape of the tree and not its

labeling.

3.1 First definitions for the carry propagation

We write u∧ v for the longest common left factor of two words u and v of A∗. If
two words u and v of A∗ have the same length, we write ∆(u, v) for the (common)

length of the left quotient of u (or v) by u ∧ v:

∆(u, v) = |u| − |u ∧ v| = |v| − |u ∧ v| .

If u and v do not have the same length, we set

∆(u, v) = max{|u|, |v|} ,

which is the same as ∆(u′, v′) where u′ and v′ are obtained from u and v by

padding the shorter word on the left with a symbol which is not in A and so

that |u′| = |v′|.

Definition 3.1. Let A be an ordered alphabet and L a language of A∗, ordered
by radix order. The carry propagation at a word w of L, and with respect to L,

is the quantity:

cp
L
(w) = ∆(w,SuccL(w)) .

We naturally consider a language over an ordered alphabet as an abstract numer-

ation system and we also write, for every integer i,

cp
L
(i) = cp

L
(〈i〉L) = ∆(〈i〉L, 〈i + 1〉L) .

Example 3.2 (Example 2.5 continued). In the Fibonacci numeration system,

〈9〉F = 10001 and 〈10〉F = 10010, hence cp
F
(9) = 2 . We also have 〈12〉F =

10101 and 〈13〉F = 100000. Thus cp
F
(12) = 6 .

From the definition of the carry propagation at a word, we derive the carry

propagation of a language. We first denote by scpL(N) the sum of the carry

propagations at the first N words of the language L:

scpL(N) =
N−1
∑

i=0

cp
L
(i) . (4)

11



Definition 3.3 ([5]). The carry propagation of a language L ⊆ A∗, which we

denote by CPL, is the amortized carry propagation at the words of the language,

that is, the limit, if it exists, of the mean of the carry propagation at the first N

words of the language:

CPL = lim
N→∞

1

N
scpL(N) .

3.2 The language tree and the carry propagation

We denote by uL(ℓ) (resp. vL(ℓ)) the number of words of L of length ℓ (resp. of

length less than, or equal to, ℓ):

uL(ℓ) = card
(

L ∩Aℓ
)

and vL(ℓ) = card
(

L ∩A6ℓ
)

=
ℓ
∑

i=0

uL(i) .

The set of words of L of each length that are maximal in the radix (or lexico-

graphic) order is denoted by Maxlg(L). We have:

Maxlg(L) =
{

〈vL(ℓ)− 1〉L
∣

∣ ℓ ∈ N
}

and

L ∩Aℓ = {u ∈ L | vL(ℓ− 1) 6 πL(u) < vL(ℓ)} .

The carry propagation CPL is more easily evaluated when the terms cp
L
(i)

of the sum scpL(N) are first aggregated in partial sums corresponding to words

of fixed length. In particular, we can state:

Proposition 3.4. If L is a pce language, then, for every integer ℓ,

∑

w∈L
|w|=ℓ

cp
L
(w) =

vL(ℓ)−1
∑

i=vL(ℓ−1)

cp
L
(i) = vL(ℓ) . (5)

This proposition is indeed an instance of the more precise Theorem 3.6 that

will be used in subsequent proofs and that requires a definition.

Let TL be the language tree of L and w a word of L of length ℓ. Let us denote

by T
(ℓ)
L the part of TL which consists of words of L of length less than, or equal

to, ℓ. And let us see Pre(w), the set of prefixes of w that form the unique path

from w to ε, as a river that flows from w to ε; it determines two subsets of T
(ℓ)
L :

the ‘left bank’ of w, LBL (w), and the ‘right bank’ of w, RBL (w), which consists

respectively of the nodes on the left and on the right of Pre(w) as depicted in

Figure 3. Together, LBL (w), Pre(w) and RBL (w) form a partition of T
(ℓ)
L and

we have:

LBL (w) = {u ∈ L | |u| 6 |w| and u 4 w} \ Pre(w) .

Example 3.5 (Example 2.5 continued). In TF , we have:

LBF (10010) = {1000, 10000, 10001} and

LBF (10100) = LBF (10010) ∪ {100, 1001, 10010} .

12



PSfrag replacements

LBL (w) RBL (w)

ε

w

T
(ℓ)
L

Figure 3: The tree T
(ℓ)
L and the three sets LBL (w), Pre(w) and RBL (w).

The statement we are aiming at gives the sum of the carry propagation at

all words of the same length ℓ as a word u and less than or equal to u in the

lexicographic order. We recall that Maxlg(L) =
{

〈vL(ℓ)− 1〉L
∣

∣ ℓ ∈ N
}

.

Theorem 3.6. Let L be a pce language, u in L of length ℓ and N = πL(u) .

Then, we have:

N
∑

i=vL(ℓ−1)

cp
L
(i) =







card (LBL (SuccL(u))) if u 6∈ Maxlg(L) ,

vL(ℓ) if u ∈ Maxlg(L) .
(6)PSfrag replacements

LBL (u)

εε
w

uu vv

x

y z

Figure 4: Illustrations of the first two cases of the proof of Theorem 3.6.

Proof. The proof works by induction on N . Let u = 〈N〉L and ℓ = |u|. Hence

vL(ℓ− 1) 6 N 6 vL(ℓ)− 1.

(i) We first assume N = vL(ℓ− 1). The word u is the smallest word of L of

length ℓ (in the lexicographic order). Let v = SuccL(u). We first suppose that u

is not in Maxlg(L). Then (as depicted on the left part of Figure 4):

u = xy , v = xz and cp
L
(N) = ∆(u, v) = |y| = |z| .

But, since L is prefix-closed, |y| is exactly the number of nodes in LBL (v).

Now, if u = 〈vL(ℓ − 1)〉L is in Maxlg(L), then there is only one word in L

for every length k, 0 6 k 6 ℓ and we have at the same time cp
L
(u) = ℓ+ 1 and

vL(ℓ) = ℓ+ 1, hence (6) still holds in this case.

(ii) We now assume vL(ℓ − 1) < N < vL(ℓ) − 1. Hence v = SuccL(u) is of

length ℓ and as above there exist x, y and z such that u = xy and v = xz. The

13



same reasoning as above applies (see the right part of Figure 4):

N
∑

i=vL(ℓ−1)

cp
L
(i) =

N−1
∑

i=vL(ℓ−1)

cp
L
(i) + cp

L
(N) =

card (LBL (u)) + cp
L
(u) = card (LBL (u)) + |y| .

But, since L is prefix-closed, |y| is the number of nodes in LBL (v) \ LBL (u).

(iii) Finally, assume N = vL(ℓ) − 1. Then u = 〈N〉L belongs to Maxlg(L).

In this case,

cp
L
(u) = ℓ+ 1 , LBL (u) ∪ Pre(u) = T

(ℓ)
L and

N
∑

i=vL(ℓ−1)

cp
L
(i) = card (LBL (u)) + (ℓ+ 1) = card

(

T
(ℓ)
L

)

= vL(ℓ) .

Proposition 3.4 is the instance of Theorem 3.6 when N = vL(ℓ) − 1 . By

grouping the sum of carry propagations by words of the same length, Theorem 3.6

also yields an evaluation of the sum (4) of the carry propagations at the first N

words of a pce language:

Corollary 3.7. Let L be a pce language, u in L of length ℓ and N = πL(u) .

We then have:

scpL(N) =
ℓ−1
∑

i=0

vL(i) + card (LBL (SuccL(u))) .

Example 3.8 (Example 2.3 continued). Let p be an integer, p > 1, and Lp
the set of p-representations of the integers. In order to lighten the notation, we

write up(ℓ) instead of uLp(ℓ), vp(ℓ) instead of vLp(ℓ), Succp(u) instead of SuccLp(u),

CPp instead of CPLp , etc. As a first application of Theorem 3.6, Proposition 3.9

below allows one to recover the value
p

p− 1
for the carry propagation.

Proposition 3.9. Let p be an integer, p > 1, and Lp the set of p-representations

of the integers. The carry propagation CPp exists and is equal to
p

p− 1
.

Proof. Let N in N and u = 〈N〉p; we have: vp(ℓ− 1) 6 N < vp(ℓ) with ℓ = |u|.

And then, by Corollary 3.7:

scpp(N) =
ℓ−1
∑

i=0

vp(i) + card (LBp (Succp(u))) . (7)

First, and since vp(k) = pk, for every k, then, by Lemma 2.7,

lim
ℓ→∞

1

vp(ℓ− 1)

ℓ−1
∑

i=0

vp(i) =
p

p− 1

14



which can be written as:

ℓ−1
∑

i=0

vp(i) = vp(ℓ− 1)

(

p

p− 1
+ ε(ℓ)

)

with lim
ℓ→∞

ε(ℓ) = 0 . (8)

Second, we turn to the evaluation of card (LBp (Succp(u))). Let v = Succp(u);

we exclude the case where N = vp(ℓ)− 1 and |v| = ℓ+ 1 (which corresponds to

scpp(N) =
∑ℓ
i=0 vp(i)) and we write

N = vp(ℓ− 1) + (M − 1) with 1 6M < up(ℓ) .

We write Tp for the language tree of Lp, T
(ℓ)
p for its truncation to length ℓ. Every

node of Tp, every internal node of T
(ℓ)
p , is of degree p, but the root, which is of

degree p− 1.

Since 〈vp(ℓ− 1)〉p is the smallest word of Lp of length ℓ, v is the (M + 1)-th

word of Lp of length ℓ and card
(

LBp (v) ∩A
ℓ
)

= M . We suppose that ℓ > 1

(which is not a restriction since we want ℓ to tend to infinity). Since every internal

node of T
(ℓ)
p at level ℓ− 1 is of degree p:

card
(

LBp (v) ∩A
ℓ−1
)

=

⌊

M

p

⌋

.

By induction on k, 1 6 k < ℓ− 1, and with the same argument:

card
(

LBp (v) ∩A
ℓ−k
)

=

⌊

M

pk

⌋

.

From the inequalities M
pk

− 1 6

⌊

M
pk

⌋

6
M
pk

, we first get

M +
ℓ−1
∑

k=1

⌊

M

pk

⌋

>M +
ℓ−1
∑

k=1

M

pk
− (ℓ− 1) =M

p

p− 1
− ℓ+ 1−

M

pℓ−1(p− 1)

and since M < pℓ, 1 −M/(pℓ−1(p − 1)) > −1, it leads to the lower and upper

bounds

M
p

p− 1
− (ℓ+ 1) 6 card (LBp (v)) 6M

p

p− 1
.

Together with (8), they yield the bounds

(N +1)
p

p− 1
+vp(ℓ−1)ε(ℓ)− (ℓ+1) 6 scpp(N) 6 (N +1)

p

p − 1
+vp(ℓ−1)ε(ℓ) .

If we divide by N , both the lower and upper bounds tend to p
p−1 when N tends

to infinity, hence 1
N
scpp(N) has a limit, and this limit is p

p−1 .

After Proposition 3.4, it is natural to extract from the sequence of means of

carry propagations up to the first N words of L, those that correspond to the

first vL(ℓ) words of L.
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Definition 3.10. For a language L, we call the limit, if it exists, of the mean

of the carry propagation at the first vL(ℓ) words of L the length-filtered carry

propagation of L, and we denote it by FCPL:

FCPL = lim
ℓ→∞

1

vL(ℓ)
scpL(vL(ℓ)) = lim

ℓ→∞
1

vL(ℓ)

ℓ
∑

i=0

vL(i) . (9)

Remark 3.11. Of course, if CPL exists, then FCPL exists and CPL = FCPL but

the converse does not hold as we shall see with Example 3.17. On the other hand,

an easy way for showing that CPL does not exist is to prove that FCPL does not

exist.

3.3 The local growth rate and the carry propagation

From Proposition 3.4 it also follows that the carry propagation of a language L

is closely related to other growth measures of L. It is the case in particular of

the growth rates.

First, the global growth rate ηL of a language L (called growth rate in [34] for

instance) is classically defined by:

ηL = lim sup
ℓ→∞

ℓ

√

uL(ℓ) .

A language L is said to have exponential growth if ηL > 1 and polynomial growth

if uL(ℓ) 6 P (ℓ) for some polynomial P and all large enough ℓ.

Example 3.12. Languages with polynomial growth. Let L be a pce lan-

guage such that uL(ℓ) = P (ℓ) for some polynomial P of degree d. Then vL(ℓ) is

a polynomial of degree d+1 and by Proposition 3.4, scpL(vL(ℓ)) is a polynomial

of degree d+2. Hence limℓ→∞
1

vL(ℓ)
scpL(vL(ℓ)) = +∞ and FCPL does not exist.

Definition 3.13. We call the limit, if it exists, of the ratio between the number

of words of a language L of length ℓ and the number of words of L of length ℓ+1,

when ℓ tends to infinity, the local growth rate of L, and we denote it by γL:

γL = lim
ℓ→+∞

uL(ℓ+ 1)

uL(ℓ)
.

Remark 3.14. Observe that the quantity ηL always exists since it is defined by

an upper limmit. If the local growth rate γL exists, then γL = ηL.

The definition of length-filtered carry propagation (see Definition 3.10) to-

gether with Proposition 3.4 directly implies the following.

Proposition 3.15. Let L be a pce language with exponential growth. Then,

FCPL exists if and only if γL exists and, in this case, FCPL =
γL

γL − 1
holds.

16



Proof. Using Lemma 2.7, if limℓ→∞
uL(ℓ+1)
uL(ℓ)

= γL, then limℓ→∞
vL(ℓ+1)
vL(ℓ)

= γL.

Using again Lemma 2.7, the latter limit exists if and only if

FCPL = lim
ℓ→∞

1

vL(ℓ)

ℓ
∑

i=0

vL(i) =
γL

γL − 1
.

From Remark 3.11, the following holds, which extends the case of numeration

in base p described in Proposition 3.9.

Corollary 3.16. If the carry propagation CPL exists, then the local growth γL
exists and CPL =

γL
γL − 1

.

However, the existence of γL, and hence of FCPL, does not imply in general

the existence of the carry propagation CPL of a language, as witnessed by the

following example.

Example 3.17. A language with an unbalanced tree. Let A = {a, b, c}.

The pce language H we build will be such that uH(ℓ) = 2ℓ, for every ℓ. We

denote by Hℓ the set H ∩ Aℓ and by H ′
ℓ (resp. H ′′

ℓ ) the first (resp. the last)

2ℓ−1 words of length ℓ in the radix ordered language Hℓ. Set H1 = {a, c}.

For all ℓ > 0, Hℓ+1 = {H ′
ℓ}A ∪ {H ′′

ℓ }b. Thus we get H2 = {aa, ab, ac, cb},

H3 = {aaa, aab, aac, aba, abb, abc, acb, cbb} and it is clear that uH(ℓ) = 2ℓ and

vH(ℓ) = 2ℓ+1 − 1. Hence γH = 2 and FCPH = 2 by Proposition 3.15.

a c

a
b

c
b

a
b

c a
b

c
b b

a b c a b c a b c a b c b b b b

Figure 5: The first 5 levels of TH .

Let, for every ℓ, M(ℓ) = 2ℓ+1 − 1 + 2ℓ and let us evaluate scpH(M(ℓ)).

(i) The contribution to scpH(M(ℓ)) of the words of length less than, or equal

to, ℓ is equal to C =
∑ℓ
i=0 vH(i) =

∑ℓ
i=0(2

i+1 − 1) = 2ℓ+2 − ℓ− 2.

(ii) By construction of H, the elements of H ′
ℓ+1 are the leftmost 2ℓ leaves of a

ternary tree of height k such that 3k > 2ℓ. Since the carry propagation in base 3

is equal to 3/2 (as seen in the proof of Proposition 3.9), the contribution of the

elements of H ′
ℓ+1 to scpH(M(ℓ)) is less than D = 2ℓ × 3/2 = 2ℓ−1 × 3. We have:

1

M(ℓ)
scpH(M(ℓ)) <

C +D

2ℓ+1 + 2ℓ
=

2ℓ+2 − ℓ− 2 + 2ℓ−1 × 3

2ℓ+1 + 2ℓ
.
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Hence

lim
ℓ→∞

1

M(ℓ)
scpH(M(ℓ)) 6

11

6
6= lim

ℓ→∞
1

vH(ℓ)
scpH(vH(ℓ)) = FCPH = 2 .

The quantity 1
N
scpH(N) has no limit when N tends to infinity and CPH does

not exist.

In view of Sec. 4 where we prove that the existence of the local growth rate

of a language and its quotients (see Theorem 4.1) is a sufficient condition for a

rational language to have a carry propagation, let us add that this language H

is easily seen not to be rational. Indeed let m = m(n) be the smallest integer

such that anbma is not in H. Then for every n′ > n, an
′
bma is an element of H,

thus the words an have all distinct sets of right contexts for H.

3.4 The signature and the carry propagation

Theorem 3.6 and its proof make clear that the actual words of a language L, that

is, the labeling of the language tree TL, have no impact on the carry propagation

of L, its existence or its value, but what only counts is the shape of TL or, in one

more precise word, its signature, introduced in [24, 25], and that we now define.

First, we introduce a slightly different look at trees that proves to be techni-

cally fit to the description and study of language trees associated with languages

seen as abstract numeration systems (see Sec. 2.2 and 2.3).

Given a tree, we consider that in addition to all edges, the root is also a child

of itself, that is, bears a loop onto itself.6 We call such a structure an i-tree.7

It is so close to a tree that we pass from one to the other with no further ado.

When a tree is usually denoted by Tx for some index x, the associated i-tree is

denoted by Ix, and conversely.

If the tree Tx is labeled by letters of an ordered alphabet A, we want the loop

on the root of the i-tree Ix to be labeled by a letter less than the labels of all

other edges going out of the root in Tx. Either there exists a letter in A which

meets the condition and it can be chosen as label for the loop, or such a letter

does not exist in A and we enlarge the alphabet A with a new symbol, less than

all letters of A. Figure 6 shows the language tree of the representation language

in the Fibonacci numeration system and the associated i-tree.

The degree of a node in a tree, or in an i-tree, is the number of its children.

The signature sx of a tree Tx is the sequence of the degrees of the nodes of the

associated i-tree Ix in the breadth-first traversal. For instance, the signature

of TF is sF = 21221212 · · · , the signature of Tp for the numeration in base p

is the constant sequence sp = pω for any base p > 1.

6This convention is sometimes taken when implementing tree-like structures (for instance in

the Unix/Linux file system).
7The terminology comes indeed from the terminology for inodes in the Unix/Linux file

system.
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3 4

2

1

0

1

0
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0 1 0

0 1 0 0 1

(a) TF

8 9 10 11 12

5 6 7

3 4

2

1

0
0

1

0

0 1

0 1 0

0 1 0 0 1

(b) IF

Figure 6: Tree and i-tree associated with the Fibonacci numeration system.

Conversely, we call signature any sequence s of non-negative integers:

s = s0 s1 s1 · · · and a signature is valid if the following condition holds:

∀j ∈ N

j
∑

i=0

si > j + 1 .

Infinite trees and valid signatures are then in a 1-to-1 correspondence as expressed

by the following.

Proposition 3.18 ([24]). The signature of an infinite tree is valid and a valid

signature is the signature of a unique (i-)tree (up to the labeling).

By extension, the signature of a (prefix-closed) language L is the signature of

the language tree TL. The language L is extendable (or TL has no finite branch)

if and only if its signature contains no ‘0’. As said above, the carry propagation

of a pce language L is entirely determined by its signature which determines

the ‘shape’ of TL. In view of the next statements, we have to give two further

definitions.

Definition 3.19. Let p and q be two integers with p > q > 1.

(i) We call a q-tuple r of non-negative integers whose sum is p a rhythm of

directing parameter (q, p):

r = (r0, r1, . . . , rq−1) and
q−1
∑

i=0

ri = p .

(ii) A signature s is periodic if there exists a rhythm r such that s = rω .

A signature s is eventually periodic if there exists a rhythm r such that there exist

a finite sequence t of non-negative integers and a rhythm r such that s = trω .

Languages with periodic signatures were considered and characterized in [25]

in the study of rational base numeration systems that we define as follows.
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Example 3.20. The rational base numeration systems. Let p
q
be a rational

number, where p > q > 1 are two co-prime integers.

In [1], it has been shown how to define a numeration system with p
q
as a

base and where nevertheless integers have finite representations. Let N be any

positive integer; let us write N0 = N and, for i > 0, let

qNi = pNi+1 + ai (10)

where ai is the remainder of the division of qNi by p, and thus belongs to the

digit-alphabet Ap = {0, . . . , p−1} . Since Ni+1 is less than Ni, the division (10)

can be repeated only a finite number of times, until eventually Nk+1 = 0 for

some k. This algorithm produces the digits a0, a1, . . . , ak, and:

N =
k
∑

i=0

ai
q

(

p

q

)i

.

We will say that the word ak · · · a0 , computed from N from right to left, that

is to say, least significant digit first, is a p
q
-expansion of N . It is known that

this representation is indeed unique and we denote it by 〈N〉 p

q
. We define the

language L p
q
of A∗

p as the set of p
q
-expansions of the integers:

L p
q
=

{

〈n〉 p
q

∣

∣

∣

∣

n ∈ N

}

and accordingly, we denote by T p
q
the tree of the language L p

q
. When q = 1, we

recover the usual numeration system in base p and L p
q
= Lp; in the following,

q 6= 1. Figure 7 shows the case p = 3 and q = 2.

8 9 10 11

5 6 7

3 4

2

1

0

2

1

0 2

1 0 2

1 0 2 1

Figure 7: The first 6 levels of T 3
2
.

Remark 3.21. This definition is not the one corresponding to β-expansions

with β = p
q
(see Sec. 5.4). In particular, the digits are not the integers less

than p
q
but rather the integers less than p, hence those whose quotient by q is less

than p
q
.
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From the classical theory of formal languages point of view, the language L p

q

is complex and difficult to understand. It can be shown not to meet any kind

of iteration property (and thus not to be rational nor context-free) and such

that any two distinct subtrees of T p
q
are never isomorphic (cf. [1]). On the other

hand, it is easy to verify the following property that expresses a certain kind

of ‘regularity’ (and that has indeed been the motivation for the definition of

signatures).

Proposition 3.22 ([25]). The signature of L p
q
is periodic and its period is a

rhythm of directing parameter (q, p).

Note that having a periodic signature is even a characterization of rational

base numeration systems (possibly using a non-canonical alphabet), according to

[25, Theorem 2]. We now can state the main result of this section.

Theorem 3.23. If a pce language L has an eventually periodic signature with

rhythm of parameter (q, p), then CPL exists and

CPL =
p

p− q
.

Proof. Let s = trω be the signature of TL. Let t = t0t1 · · · tk and
∑k
i=0 ti = P .

In the following, we always choose ℓ larger than ℓ0 such that vL(ℓ0−1) > P andN

larger than vL(ℓ0), that is, we consider nodes and levels of TL where the signature

is in its periodic part.

We first observe that at any given level ℓ, the q leftmost nodes have p children

at level ℓ+1 and moreover for any k such that k q 6 uL(ℓ), the k q leftmost nodes

have kp children at level ℓ+1. Conversely, the p leftmost nodes at level ℓ are the

children of the q leftmost nodes at level ℓ−1 and for any k such that kp 6 uL(ℓ),

the kp leftmost nodes at level ℓ are the children of the k q leftmost nodes at

level ℓ− 1.

The first observation implies that for every ℓ (greater than ℓ0), we have:

p

⌊

uL(ℓ)

q

⌋

6 uL(ℓ+ 1) 6 p

⌊

uL(ℓ)

q

⌋

+ (p− 1) ,

hence
p

q
uL(ℓ)− p 6 uL(ℓ+ 1) 6

p

q
uL(ℓ) + (p− 1) .

And since limℓ→∞ uL(ℓ) = +∞ , it follows that

lim
ℓ→∞

uL(ℓ+ 1)

uL(ℓ)
=
p

q
. (11)

We then take the same notation as in the proof of Proposition 3.9: let N

in N, u = 〈N〉L, and ℓ = |u|; then vL(ℓ− 1) 6 N < vL(ℓ) . As in Corollary 3.7:

scpL(N) =
ℓ−1
∑

i=0

vL(i) + card (LBL (SuccL(u))) . (12)
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From (11) and Lemma 2.7, it follows that limℓ→∞
vL(ℓ+1)
vL(ℓ)

= p
q

and then:

lim
ℓ→∞

1

vL(ℓ− 1)

ℓ−1
∑

i=0

vL(i) =
p

p− q

which can be written as:

ℓ−1
∑

i=0

vL(i) = vL(ℓ− 1)

(

p

p− q
+ ε(ℓ)

)

with lim
ℓ→∞

ε(ℓ) = 0 . (13)

Let v = SuccL(u). The evaluation of card (LBL (v)) goes as follows: the case

whereN = vL(ℓ)−1 and |v| = ℓ+1 (which corresponds to scpL(N) =
∑ℓ
i=0 vL(i))

is excluded; we write N = vL(ℓ− 1) + (M − 1) with 1 6M < uL(ℓ) and:

card
(

LBL (v) ∩A
ℓ
)

=M .

The second observation above implies then the evaluation at level ℓ− 1:

q

p
M − q < q

⌊

M

p

⌋

6 card
(

LBL (v) ∩A
ℓ−1
)

6 q

⌊

M

p

⌋

+ (q − 1) <
q

p
M + q ,

at level ℓ− 2:
(

q

p

)2

M − q
q

p
− q < card

(

LBL (v) ∩A
ℓ−2
)

<

(

q

p

)2

M + q
q

p
+ q ,

and at level ℓ− k:

(

q

p

)k

M − q
k
∑

i=1

(

q

p

)k−i
< card

(

LBL (v) ∩A
ℓ−k
)

<

(

q

p

)k

M + q
k
∑

i=1

(

q

p

)k−i
.

Let us write B =
⋃ℓ
j=ℓ0 A

j and h = ℓ− ℓ0. The summation of the above inequali-

ties from k = 0 to k = h yields the following lower and upper bounds (after some

simplifications):

p

p− q

[

M

(

1−

(

q

p

)h+1
)

− q h

]

< card (LBL (v) ∩B) <
p

p− q
[M + q h] .

Let Q =
∑ℓ0−1
i=0 vL(i). We bound card

(

LBL (v) ∩A
<ℓ0
)

from below by 0 and

from above by Q and we get then:

p

p− q

[

M

(

1−

(

q

p

)h+1
)

− q h

]

< card (LBL (v)) <
p

p− q
[M + q h] +Q .

As in the proof of Proposition 3.9, these inequalities together with (13) yields

(N + 1)
p

p − q
+ vp(ℓ− 1)ε(ℓ) −M

q

p− q

(

q

p

)h

− q h
p

p− q
<

scpp(N) < (N + 1)
p

p − q
+ vp(ℓ− 1)ε(ℓ) +Q+ q h

p

p− q
.

If we divide by N , both the lower and upper bounds tend to p
p−q when N tends

to infinity, hence 1
N
scpp(N) has a limit, and this limit is p

p−q .
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4 The carry propagation of rational languages:

an algebraic point of view

Even in the case of rational (pce) languages, the existence of the local growth is

not sufficient to insure the existence of the carry propagation, but we could say

it is ‘almost’ sufficient. Recall that if L is a language of A∗ and w a word of A∗,

the quotient of L by w is the language w−1L = {v ∈ A∗ | wv ∈ L} and that a

language is rational if and only if it has a finite number of distinct quotients (see

for instance [32], [31] or any book on formal language theory). The aim of this

section is the proof of the following result.

Theorem 4.1. Let L be a rational pce language with local growth rate γL. If

the local growth rate of every quotient of L exists, then the carry propagation CPL

exists and is equal to
γL

γL − 1
.

We prove indeed the existence of carry propagation for rational languages un-

der somewhat more general hypotheses, the statement of which is more technical

and requires some developments (Theorem 4.10). In any case, rationality does

not imply the existence of the local growth rate, as seen with the example below.

Example 4.2. Let K1 = ({a}{a, b, c, d})∗{a, ε} be the rational pce language

of {a, b, c, d}∗ accepted by the automaton A1 in Figure 8.

We have: uK1(0) = 1, uK1(2ℓ+1) = uK1(2ℓ) and uK1(2ℓ+2) = 4 uK1(2ℓ+1),

hence γK1 does not exist.

a

a, b, c, d

Figure 8: The minimal automaton A1 of K1 = ({a}{a, b, c, d})∗{a, ε}.

The proof of Theorem 4.1 and of other results of the same kind goes in

two main steps. We first prove with Theorem 4.9 in Sec. 4.2 that the local

growth rate of a rational language exists if and only if the language has an almost

dominating eigenvalue, as defined in Sec. 4.1. In Sec. 4.3, we prove that if L has an

almost dominating eigenvalue, then the carry propagation of L exists under some

additional hypotheses on the eigenvalues of the quotients of L (Theorem 4.10).

Theorem 4.1 is just a corollary of Theorem 4.10.

In Sec. 5.4 we will see that the hypothesis of Theorem 4.1 are fulfilled in the

case of the so-called Parry beta-numeration (Corollary 5.39).

4.1 Generating functions and dominating eigenvalues

Let L be a language of A∗. The generating function of L, gL(z), is the (formal

power) series in one indeterminate whose ℓ-th coefficient is the number of words
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of L of length ℓ, that is, with our notation:

gL(z) =
∞
∑

ℓ=0

uL(ℓ)z
ℓ .

Let L be a rational language of A∗ and A = 〈A,Q, I,E, T 〉 a deterministic

automaton of ‘dimension’ Q that accepts L: L = L(A). We identify I and T ,

subsets of Q, with their characteristic functions in N, and we write them as

vectors of dimension Q, respectively row- and column-vectors:

∀p ∈ Q Ip =







1 , if p is initial;

0 , otherwise;
Tp =







1 , if p is final;

0 , otherwise.

The adjacency matrix MA of A is the Q×Q-matrix the (p, q)-entry of which

is the number of transitions in A that go from state p to state q (that is, the

entries of MA are in N):

∀p, q ∈ Q (MA)p,q = card ({a ∈ A | (p, a, q) ∈ E}) .

Since A is deterministic (the hypothesis ‘unambiguous’ would indeed be suffi-

cient), the adjacency matrix allows the computation of uL(ℓ), the number of

words of L of length ℓ, as:

∀ℓ ∈ N uL(ℓ) = I · (MA)
ℓ · T .

That is, gL(z) is an N-rational series since the above equation precisely states

that it is realized by the representation 〈 I, µ, T 〉, with µ(z) = MA. The N-

rationality of gL(z) implies a number of properties which eventually allow us to

establish Theorem 4.10 and then Theorem 4.1.

The semiring N is embedded in the field Q (and, further on, in the algebraically

closed field C) and in the remaining of the subsection, we essentially derive an

expression of the coefficients uL(ℓ) from the fact that gL(z) is a Q-rational series

(or even a C-rational series). The very special properties of rational series with

non-negative coefficients come into play in the next subsection. We rely on the

treatise [6] of Berstel–Reutenauer (Sec. 6.1, 6.2, 8.1, and 8.3) for this exposition.

The Cayley–Hamilton Theorem implies that the sequence
(

uL(ℓ)
)

ℓ∈N satisfies

the linear recurrence relation defined by the characteristic polynomial PA ofMA,
the zeroes of which are the eigenvalues of MA. The sequence

(

uL(ℓ)
)

ℓ∈N satisfies

indeed a shortest linear recurrence relation associated with a polynomial PL, the

minimal polynomial of gL(z), which is a divisor of PA. The zeroes of PL are

called the eigenvalues of gL(z) and of L. The multiplicities of these eigenvalues

are those of these zeroes.

Definition 4.3. We call the maximum of the moduli of the eigenvalues of a

rational language L the modulus of L. It is the multiplicative inverse of the

radius of convergence of the series gL(z).
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A rational language L is said to have a dominating eigenvalue, or, for short,

to be dev, if there is, among the eigenvalues of L, a unique eigenvalue of maximal

modulus, which is called the dominating eigenvalue of L.

With the next two examples, we stress the difference between the eigenvalues

of the adjacency matrix of an automaton A that recognizes L and the eigenvalues

of L.

Example 4.4 (Example 4.2 continued). The adjacency matrix of A1 shown in

Figure 8 is MA1 =

(

0 1

4 0

)

, its characteristic polynomial is PA1 = X2 − 4 , the

zeroes of which are 2 and −2. This polynomial is also the minimal polynomial

of the linear recurrence satisfied by the coefficients of gK1
(z):

uK1(0) = 1 , uK1(1) = 1 , uK1(ℓ+ 2) = 4 uK1(ℓ) ,

hence ∀ℓ > 0 uK1(ℓ) =
3

4
2ℓ +

1

4
(−2)ℓ ,

and K1 is thus not dev.

Example 4.5. The adjacency matrix of the automaton A2 in Figure 9 is

MA2 =

(

0 2

2 0

)

, its characteristic polynomial is PA2 = X2 − 4 as above.

But in this case, the minimal polynomial of the linear recurrence satisfied by the

coefficients of gK2
(z), uK2(ℓ) = 2ℓ, is PK2 = X − 2, with 2 as a unique zero

and K2 is dev.

a, b

c, d

Figure 9: The minimal automaton A2 of K2 = ({a, b}{c, d})∗{a, b, ε}.

As stated in [6], the rational function gL(z) may be written, in a unique

way, as:

gL(z) = T (z) +
R(z)

S(z)

where T (z), R(z) and S(z) are polynomials in Q[z], degR < degS and S(0) 6= 0.

It can be shown that PL is the reciprocal polynomial of S: PL(z) = S(1
z
)zdeg S .

It follows that if λ1, λ2,. . . , λt are the zeroes of PL, the coefficients uL(ℓ) of gL(z)

can be written as:

∀ℓ ∈ N uL(ℓ) =
t
∑

j=1

λℓj Pj(ℓ) , (14)

where every Pj is a polynomial (which depends on L even though it does not

appear in the writing) whose degree is equal to the multiplicity of the zero λj
in PL minus 1, and is determined by the first values of the sequence

(

uL(ℓ)
)

ℓ∈N .
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4.2 From local growth rate to dominating eigenvalue

The properties of rational series with positive coefficients allow us to characterize

the generating functions of rational languages with local growth rate. Let us first

recall the theorem due to Berstel on such series.

Theorem 4.6 (Theorem 8.1.1 and Lemma 8.1.2 in [6]).

Let f(z) be an R+-rational function which is not a polynomial and λ the maximum

of the moduli of its eigenvalues. Then:

(a) λ is an eigenvalue of f(z) (hence an eigenvalue in R+).

(b) Every eigenvalue of f(z) of modulus λ is of the form λei θ where ei θ is a

root of unity.

(c) The multiplicity of any eigenvalue of modulus λ is at most that of λ.

We express the consequences of this result (and of Equation (14)) in the fol-

lowing way. Let L be a rational language and gL(z) its generating function, an

R+-rational function. Let λ = λ1, λ2,. . . , λk be the eigenvalues of maximal mod-

ulus λ of gL(z) and d the degree of the polynomial P1 in (14). For j = 2, . . . , k,

we write λj = λei θj ; ei θj is a root of unity, hence θj = 2π/hj where hj is an

integer and let r be the least common multiple of all the hj .

There exist k (possibly complex) numbers δ1, δ2,. . . , δk, with δ1 in R and

different from 0, such that (14) can be given the following asymptotic form:

∀ℓ large enough uL(ℓ) = λℓ ℓd



δ1 +
k
∑

j=2

δj e
i ℓ θj



+ o
(

λℓ ℓd
)

. (15)

(It is understood that δj is not zero if the polynomial Pj in (14) is of degree d, it

is equal to 0 if this polynomial is of degree less than d— and by Theorem 4.6 (c)

no such polynomial has degree greater than d.)

One can say that the description of uL(ℓ) given in (14) is ordered by eigen-

values whereas the description in (15) is ordered by moduli of eigenvalues. Since

for every j = 2, . . . , k and every p in N we have ei p rθj = 1, it follows that

lim
p→∞

uL(pr)

λp r (pr)d
=

k
∑

j=1

δj .

Definition 4.7. Let f(z) be an R+-rational function which is not a polynomial

and λ the maximum of the moduli of its eigenvalues. We say that f(z) has an

almost dominating eigenvalue, or is adev, if the multiplicity of any non-real

eigenvalue of modulus λ is strictly less than that of the eigenvalue λ.

Accordingly, we say that a rational language L is adev if gL(z) is adev.

Using the above notation, L is adev if and only if all the δj , j = 2, . . . , k, but δ1
in (15) are equal to 0, that is, if and only if (15) takes the following form:

∀ℓ large enough uL(ℓ) = λℓ ℓd δ1 + o
(

λℓ ℓd
)

. (16)
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Example 4.8. The rational pce language K3 accepted by the automaton A3

shown in Figure 10 is adev without being dev. The zeroes of the characteristic

polynomial of MA3 are 2 with multiplicity 2 and −2 (with multiplicity 1). The

zeroes of PK3 = (X2 − 4)(2 −X) are the same as we have

∀ℓ ∈ N uL(ℓ) =

(

1

4
ℓ+

7

8

)

2ℓ +
1

8
(−2)ℓ . (17)

On the other hand, the language K1 from Example 4.2, which is not dev, is

not adev either.

a, b

c, d

c
a, b

Figure 10: The minimal automaton A3 of K3 = ({a, b}{c, d})∗{a, b, ε} ∪ c{a, b}∗.

Theorem 4.9. A rational language L is adev if and only if the local growth

rate γL exists. In this case, the modulus of L is equal to γL.

Proof. If L is adev, the asymptotic expression (16) shows that the condition is

sufficient since
uL(ℓ+ 1)

uL(ℓ)
= λ

(

ℓ+ 1

ℓ

)d

(1 + o(1))

implies that

lim
ℓ→∞

uL(ℓ+ 1)

uL(ℓ)
= λ , (18)

which states both that γL exists and is equal to λ.

Conversely, let us suppose that the limit of
uL(ℓ+ 1)

uL(ℓ)
exists and is equal to γL

when ℓ tends to infinity. For the ease of writing, and in view of the use of (15),

let us set:

w(ℓ) = δ1 +
k
∑

j=2

δj e
i ℓ θj .

The function w(ℓ) is periodic of period r, and for every integer s, 0 6 s < r, the

hypothesis, and (15), imply

lim
p→∞

uL(pr + s+ 1)

uL(pr + s)
=

lim
p→∞

(

λ

(

pr + s+ 1

pr + s

)d w(s+ 1)

w(s)
(1 + o(1))

)

= λ
w(s+ 1)

w(s)
= γL .

Hence, there exists an x in R+ such that

∀s ∈ N , 0 6 s < r
w(s+ 1)

w(s)
= x .
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Moreover, since w(0) = w(r) and

w(0)

w(0)
=

w(1)

w(0)

w(2)

w(1)
· · ·

w(0)

w(r − 1)
= xr = 1 ,

it follows that x = 1 , λ = γL and

∀s ∈ N , 0 6 s < r w(s) = w(0) = δ1 = δ1 +
k
∑

j=2

δj e
i s θj .

We conclude that the vector
(

0 δ2 · · · δk
)

is a solution of the Vandermonde

linear system (for the sake of completeness, we set θ1 = 0):



















1 1 · · · 1

ei θ1 ei θ2 · · · ei θk

ei 2 θ1 ei 2 θ2 · · · ei 2 θk

...
...

...

ei (k−1) θ1 ei (k−1) θ2 · · · ei (k−1) θk































ζ1
ζ2
...

ζk













=













0

0
...

0













(19)

hence identically zero: all δj , j = 2, . . . , k, are equal to 0 and L is adev.

4.3 From dominating eigenvalue to the carry propagation

With the notions of modulus and of dominating eigenvalue of a rational language,

we can now state a result that is more general and of which Theorem 4.1 is an

obvious corollary.

Theorem 4.10. Let L be an adev rational pce language and λ its modulus.

If every quotient of L whose modulus is equal to λ is adev, then L has a carry

propagation and CPL =
λ

λ− 1
.

Indeed, previous results show that if a rational pce language L is adev and

of modulus λ, then γL exists and γL = λ and if the carry propagation CPL

exists, then CPL =
λ

λ− 1
. The hypothesis on the quotients of L is necessary as

shown by the following example.

Example 4.11. Let K4 be the language accepted by the automaton A4 shown

in Figure 11. It has first the property of being a dev (and not only an adev)

language, of modulus 2.

On the other hand, K4 = ε∪ aK1 ∪ bK1 ∪ cK
′
1 where K1 is the language of

Example 4.2 and K ′
1 the one accepted by the automaton A′

1 obtained from the

automaton A1 of Figure 8 by changing the initial state. The language K1 is a

quotient of K4: K1 = a−1K4; it has modulus 2 and is not adev.
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We have seen that uK1(ℓ) =
3
4 2

ℓ+ 1
4 (−2)ℓ; similarly uK ′

1
(ℓ) = 3

2 2
ℓ− 1

2 (−2)ℓ.

Hence uK4(0) = 1 and uK4(ℓ + 1) = 2 uK1(ℓ) + uK ′
1
(ℓ) = 3 · 2ℓ . From which

one deduces vK4(0) = 1 and vK4(ℓ+ 1) = 3 · 2ℓ+1 − 2 and

wK4(ℓ+ 1) = 1 +
ℓ
∑

j=0

vK4(j + 1) = 3 · 2ℓ+2 − 2ℓ− 7 .

p q r s

i
a, b

c
a

a, b, c, d a

a, b, c, d

Figure 11: The automaton A4

We show that CPK4 does not exist with the same argument as the one devel-

oped in Example 3.17. We choose a sequence of words uℓ and then a sequence

of numbers N(ℓ) = πK4(uℓ) and show that the ratio scpK4
(N(ℓ))/N(ℓ) does not

have 2 as limit (and even that it has no limit).

We choose the words in b Maxlg(b−1K4) = Maxlg(bK1) . It follows that

N(ℓ+ 2) = vK4(ℓ+ 1) + 2 uK4(ℓ+ 1) and

scpK4
(N(ℓ+ 2)) = wK4(ℓ+ 1) + card

(

LBK4

(

SuccK4

(

〈N(ℓ+ 2)〉K4

)))

= wK4(ℓ+ 1) + 2 vK4(ℓ+ 1) .

We then have:

N(2k + 2) = 2 · 22 k+2 − 2 and N(2k + 3) =
5

2
22 k+3 − 2 ,

scpK4
(N(2k + 2)) ∼

13

3
22 k+2 and scpK4

(N(2k + 3)) ∼
14

3
22 k+3 ,

hence lim
ℓ→+∞

scpL(N(2ℓ))

N(2ℓ)
=

13

6
and lim

ℓ→+∞
scpL(N(2ℓ + 1))

N(2ℓ+ 1)
=

28

15
,

which complete the proof of the non-existence of CPK4 .

The proof of Theorem 4.10 requires a new description of the ‘left bank’ of

a word (recall the definition p.12), a description for which we introduce some

notation. In order to keep these new symbols readable, we simplify some of

those already in use.

For the remaining of the section, the adev rational pce language L is fixed

and kept implicit in most cases: the number of words of L of length ℓ (resp. of

length less than or equal to ℓ) is now denoted by u(ℓ) (resp. by v(ℓ)) and the

minimal polynomial of L is now denoted by P.

Let A = 〈A,Q, q0, δ, T 〉 be a deterministic finite automaton that accepts L

(and which is also kept implicit in what follows). For every q in Q and w in A∗,
we write q · w for the state reached by the computation of A starting in q and
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labeled with w. For every state q in Q, we denote by Lq the language accepted

by the automaton Aq = 〈A,Q, q, δ, T 〉 , that is, Lq = {w ∈ A∗ | q · w ∈ T}

and, for every ℓ in N, by uq(ℓ) the number of words of Lq of length ℓ and

by vq(ℓ) the number of words of Lq of length less than or equal to ℓ (in particular,

u(ℓ) = uq0(ℓ) and v(ℓ) = vq0(ℓ) ).
8

For every q in Q, there exists a word wq of length ℓq such that q0 · wq = q

and then Lq = w−1
q L : Lq is a quotient of L. It then follows

∀q ∈ Q , ∀ℓ ∈ N , ℓ > ℓq u(ℓ+ ℓq) > uq(ℓ) . (20)

If w = a1a2 · · · aℓ+1 is a word of A∗, we denote by w[j] the prefix of length j

of w: w[j] = a1a2 · · · aj ; w[0] = ε and w[ℓ+1] = w. (The formulas to come are

simpler if the length of w is written as ℓ+ 1 rather than ℓ.) Suppose w is in L.

The left bank of w, LBL (w), is, by definition, for each length j, 1 6 j 6 ℓ + 1,

the set of words of L of length j that are less than w[j] in the lexicographic

order. This is a description by horizontal layers. The same set can be given

a decomposition by subtrees of TL. For every j, 0 6 j 6 ℓ, the prefix of w of

length j + 1 is w[j+1] = w[j]aj+1. Then, for every j, 0 6 j 6 ℓ and for every a,

a < aj+1, LBL (w) contains all words of Lq0·w[j]a of length less than, or equal

to, ℓ − j concatenated on the left with w[j]a. Moreover, these subsets form a

partition of LBL (w):

LBL (w) =
ℓ
⋃

j=0





⋃

a<aj+1

w[j]a
(

Lq0·w[j]a ∩A
6ℓ−j

)



 , (21)

where the unions are pairwise disjoint and can then be used for counting the

elements of LBL (w).

Proof of Theorem 4.10. Let λ be the modulus of L. Let N be an integer and

〈N〉L = w = a1a2 · · · aℓ+1 its L-representation (see Sec. 2.2). By definition, N

is equal to the number of words of L that are less than w in the radix order, that

is, in the line9 of the decomposition (21):

N = v(ℓ) +
ℓ
∑

j=0





∑

a<aj+1

uq0·w[j]a(ℓ− j)



 . (22)

On the other hand, Corollary 3.7 and (21) yield the following expression for the

sum of the carry propagations at the first N words of L:

scpL(N) =
ℓ
∑

j=0

v(j) +
ℓ
∑

j=0





∑

a<aj+1

vq0·w[j]a(ℓ− j)



 . (23)

8These definitions hide some technicalities: for q · w to be defined for all q and w, A needs

to be not necessarily trim but possibly endowed with a sink state s; then Ls will be empty

and us(ℓ) equal to 0 for every ℓ.
9This is a reformulation of Lemma 3 in [21].
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By Proposition 3.15 and Theorem 4.9, if the carry propagation

CPL = lim
N→∞

1

N
scpL(N)

of L exists, it must be equal to
λ

λ− 1
. We thus evaluate

lim
N→∞

(

1

N
scpL(N)−

λ

λ− 1

)

and show it exists and is equal to 0, using both (22) and (23). We write:

1

N

(

scpL(N)−
λ

λ− 1
N

)

=
1

N





ℓ
∑

j=0

v(j) −
λ

λ− 1
v(ℓ)





+
1

N





ℓ
∑

j=0





∑

a<aj+1

(

vq0·w[j]a(ℓ− j)−
λ

λ− 1
uq0·w[j]a(ℓ− j)

)







 .

The two parts of the right-hand side of the equation are evaluated separately.

We first note that ℓ tends to infinity with N and recall that, by (18),

lim
ℓ→∞

u(ℓ+ 1)

u(ℓ)
= λ .

Since N > v(ℓ), we have:

1

N

∣

∣

∣

∣

∣

∣

ℓ
∑

j=0

v(j)−
λ

λ− 1
v(ℓ)

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∣

1

v(ℓ)





ℓ
∑

j=0

v(j)



 −
λ

λ− 1

∣

∣

∣

∣

∣

∣

which, by Lemma 2.7, tends to 0 when ℓ tends to infinity.

The second term requires some more work. For the ease of writing, let us set,

for every q in Q and every ℓ in N,

zq(ℓ) =

(

vq(ℓ)−
λ

λ− 1
uq(ℓ)

)

.

The term we have to evaluate reads then

1

N

∣

∣

∣

∣

∣

∣

ℓ
∑

j=0





∑

a<aj+1

(

zq0·w[j]a(ℓ− j)
)





∣

∣

∣

∣

∣

∣

(24)

and is (loosely) bounded by

(card (A)− 1)
1

v(ℓ)

ℓ
∑

j=0





∑

q∈Q
|zq(j)|



 . (25)
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Indeed, the range of every inner sum in (24) is a subset of the alphabet A made of

letters less than a given one, hence every such sum contains at most (card (A)−1)

terms. Moreover, we have replaced every term

zq0·w[j]a(ℓ− j) by the sum
∑

q∈Q
|zq(ℓ− j)| .

This is of course a loose upper bound but it allows us to get rid of the problem of

taking the limit of quantities that are different when N tends to infinity. Finally,

we permute the two summations in (25) and it remains to show that, for every

state q in Q,

lim
ℓ→∞

1

v(ℓ)





ℓ
∑

j=0

|zq(j)|



 = 0 , (26)

and we need to go more into details for that purpose.

For every q in Q, Lq is accepted by Aq, the accessible part of which is a

subautomaton of A. Hence, the sequence
(

uq(ℓ)
)

ℓ∈N satisfies a linear recurrence

relation whose minimal polynomial Pq is, as is P, a factor of PA. However, the

zeroes of Pq are not necessarily a subset of those of P and we base the comparison

between
(

uq(ℓ)
)

ℓ∈N and
(

u(ℓ)
)

ℓ∈N on the asymptotic behaviour.

The series gq(z) =
∑∞
ℓ=0 uq(ℓ)z

ℓ is an N-rational series and, for the same

reasons as above, it has a real eigenvalue of maximal modulus µq and of multi-

plicity dq + 1, and one can write:

∀ℓ large enough uq(ℓ) = µℓq ℓ
dq



δq,1 +
k
∑

j=2

δq,j e
i ℓ θq,j



+ o
(

µℓq ℓ
dq
)

, (27)

where dq, the δq,j ’s and the θq,j’s play the same role as d, the δj ’s and the θj’s

play in Equation (15).

There are two cases: either µq is less than λ, or µq is equal to λ. It cannot be

larger than λ for otherwise uq(ℓ) would not be bounded by u(ℓ) (Equation (20)).

In the first case, the quantity |zq(j)| =

∣

∣

∣

∣

vq(j) −
λ

λ− 1
uq(j)

∣

∣

∣

∣

is of the order of µℓq,

in the second case, of the order of o
(

λℓℓd
)

, hence, in both cases, (26) holds. More

precisely, the computations go as follows. The reader will see that the hypothesis

on the quotient plays its role in the second case only.

Case 1: µq < λ . The case µq = 1 corresponds to sequences uq(ℓ) and thus vq(ℓ)

having a polynomial growth. In which case, (26) directly holds. In the following,

we assume that µq > 1.

The quantity wq(ℓ) = δq,1+
∑k
j=2 δq,j e

i ℓ θq,j is periodic (with some period hq)

and, since the sequence
(

uq(ℓ)
)

ℓ∈N is monotonically increasing, there exist bounds

αq and βq, 0 < αq 6 βq , such that

∀ℓ ∈ N αq 6 wq(ℓ) 6 βq .
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It follows that

∀ℓ ∈ N µℓq ℓ
dq αq + o

(

µℓq ℓ
dq
)

6uq(ℓ) 6 µℓq ℓ
dq βq + o

(

µℓq ℓ
dq
)

,

and

∀ℓ ∈ N
µq

µq − 1
µℓq ℓ

dq αq + o
(

µℓq ℓ
dq
)

6vq(ℓ) 6
µq

µq − 1
µℓq ℓ

dq βq + o
(

µℓq ℓ
dq
)

,

hence

∀ℓ ∈ N µℓq ℓ
dq α′

q+o
(

µℓq ℓ
dq
)

6

∣

∣

∣

∣

vq(ℓ)−
λ

λ− 1
uq(ℓ)

∣

∣

∣

∣

6 µℓq ℓ
dq β′q+o

(

µℓq ℓ
dq
)

,

where

α′
q =

µq
µq − 1

(

αq −
λ

λ− 1
βq

)

and β′q =
µq

µq − 1

(

βq −
λ

λ− 1
αq

)

.

It follows that the quantity

ℓ
∑

j=0

∣

∣

∣

∣

vq(j)−
λ

λ− 1
uq(j)

∣

∣

∣

∣

is also of the order of µℓq and since v(ℓ) is of the order of λℓ, (26) holds.

Case 2: µq = λ . In this case, and since by hypothesis, Lq is adev, every δq,j = 0,

2 6 j 6 k, and it holds:

∀ℓ large enough uq(ℓ) = λℓ ℓdq δq,1 + o
(

λℓ ℓdq
)

.

It follows that

∣

∣

∣

∣

vq(ℓ)−
λ

λ− 1
uq(ℓ)

∣

∣

∣

∣

is a o
(

λℓ ℓdq
)

with dq 6 d and (26) holds

again, which completes the proof.

5 The carry propagation of a language:

an ergodic point of view

The definition of the carry propagation of a language:

CPL = lim
N→∞

1

N

N−1
∑

i=0

cp
L
(i) , (28)

especially if we write it as:

CPL = lim
N→∞

1

N

N−1
∑

i=0

cp
L
(SucciL(ε)) ,

inevitably reminds one of the Ergodic Theorem (that we recall right below).

In this section, we explain how to set the carry propagation problem in terms

relevant to ergodic theory and we study under which conditions and to what

extent the Ergodic Theorem allows us to conclude the existence of the carry

propagation. We begin with a very brief account of ergodic theory; for more

detailed definitions, see [27] for instance.

33



5.1 Birkhoff’s Ergodic Theorem

A dynamical system (K, τ) is a compact set K, equipped with a map τ from K into

itself, called the action of the system. A probability measure µ on K is τ -invariant

if τ is measurable and if µ(τ−1(B)) = µ(B) for every measurable set B. The

dynamical system (K, τ) is said to be ergodic if τ−1(B) = B implies µ(B) = 0

or 1, for every τ -invariant measure µ. It is uniquely ergodic if it admits a unique τ -

invariant measure (if there exists only one τ -invariant measure, then it is ergodic).

The Ergodic Theorem then reads.

Theorem 5.1. Let (K, τ) be a dynamical system, µ a τ -invariant measure on K

and f : K → R a function10 in L1(µ). If (K, τ) is ergodic then, for µ-almost

all s in K,

lim
N→∞

1

N

N−1
∑

i=0

f(τ i(s)) =

∫

KG

fdµ . (29)

Moreover, if (K, τ) is uniquely ergodic and if f and τ are continuous, then (29)

holds for all s in K.

This theorem states indeed two results: it says first that the limit of the left

hand-side of (29) exists, and, second, it gives the value of this limit. What is

really of interest for us is the existence of the limit since, in most cases, if we

know that CPL exists, we already have other means to compute it.

We have thus to explain how to turn the language L into a compact set,

and how to transform the successor function into a map of this compact set

into itself. The hypotheses of the classic formulation of the Ergodic Theorem

are rather restrictive for our case of study. We shall rely on more recent and

technical works [3] which significantly widen the scope of this theorem.

5.2 Turning a numeration system into a dynamical system

Let L ⊆ A∗ be a numeration system, that is, once again, the set of representations

of the natural integers. The purpose is the embedding of L into a compact set,

and extending the successor function into an action on that set. Since we use

the radix order on words in order to map L onto the set of integers or, which

amounts to the same thing, since we use the most significant digit first (MSDF)

convention for the representation of integers (assuming a left-to-right reading),

we build the compact set by considering left infinite words.

Note that the authors from whom we borrow the results rather use the least

significant digit first (LSDF) representation of integers, and right infinite words

to build the same compact set ([19, 3]). Going from one convention to the other

is routine and requires just suppleness of mind (or a mirror).

10That is, f is absolutely (Lebesgue) µ-integrable.
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5.2.1 Compactification of the numeration system

The set of left infinite words over A is denoted by ωA . As we did for the words

of A∗, the left infinite words are indexed from right to left (fortunately): if s is

in ωA , we write s = · · · s2s1s0, and for 0 6 j 6 ℓ 6 +∞, we denote by s[ℓ,j] the

word s[ℓ,j] = sℓsℓ−1 · · · sj.

As assumed since the beginning of this paper, the alphabet A is an alphabet

of digits, starting with 0: A = {0, 1, . . . , r − 1} . In order to embed finite words

into (left) infinite ones, we need the following assumption.

Assumption 5.2. No word of L begins with 0, that is, L ⊆ (A\{0})A∗ .

This assumption is naturally fulfilled by the classical numeration systems

in integer bases, the Fibonacci system, etc. Under this assumption, the map

from A∗ to ωA defined by w 7→ ω0w is a bijection between L and ω0L, that is,

L embeds in ωA and can be identified with ω0L.

The set ωA is classically equipped with the product topology or topology of

simple convergence, that is, the topology induced by the distance between el-

ements defined by d(s, t) = 2− e(s,t) where e(s, t) is the length of the longest

common right-factor of s and t. Under this topology, ωA is a compact set, and so

is any closed subset of ωA .

Definition 5.3. The compactification of L is the closure of ω0L under the

topology of ωA and is denoted by KL:

KL = ω0L =
{

s ∈ ωA
∣

∣

∣ ∀j ∈ N ∃w(j) ∈ 0∗L s[j,0] is a right-factor of w(j)
}

.

The topology on KL is the one induced by the topology on ωA . For every

word w in A∗, we call the set of elements s in KL of which w is a right-factor the

cylinder generated by w, and denote it by [w]:11

[w] =
{

s ∈ KL

∣

∣

∣ s[|w|−1,0] = w
}

= ωAw ∩ KL .

The set of cylinders is a base of open sets of KL. Given any two words u and v

in A∗, with |u| 6 |v|, either [v] ⊆ [u] , a case that holds if and only if u is a

right-factor of v, or [u] ∩ [v] = ∅ .

5.2.2 Definition of the odometer

Let L ⊆ A∗ be a language which satisfies Assumption 5.2. The successor function

SuccL : L → L is naturally transformed into a function SuccL :
ω0L → ω0L by

setting SuccL(
ω0w) = ω0 SuccL(w).

11It should be noted that although the notation [w] does not bear any reference to L, the

set [w] does depend on L.
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Definition 5.4. We call a function from KL into itself that extends SuccL an

odometer on L, and we denote it by τL.

This definition silently implies that the uniqueness of the odometer is not

guaranteed. A particular odometer is chosen in the case where SuccL is contin-

uous:

Definition 5.5. Let L be a language with the property that SuccL :
ω0L → ω0L

is continuous. Then the odometer τL is the unique continuous function from KL

into itself that extends SuccL.

Uniqueness in the above definition follows from the fact that ω0L is dense

in KL. If SuccL is not continuous, one has to find other means to define τL, and

they depend on the cases, and on the authors (see for instance [19], [10]). We

give such a construction, following [19], in Sec. 5.3.2.

5.2.3 Extension of the carry propagation

We extend the map ∆ defined in Sec. 3 on pairs of finite words to pairs of elements

of ωA . Let s and t in ωA ; then:

∆(s, t) =

{

min
{

j ∈ N
∣

∣

∣ s[∞,j] = t[∞,j]

}

if
{

j ∈ N
∣

∣

∣ s[∞,j] = t[∞,j]

}

6= ∅ ,

+∞ otherwise .

Conversely, the definition of ∆ on
(

(A \ {0})A∗)2 can be deduced from the

one on (ωA )2 which is simpler and we have, for u and v in (A\{0})A∗ ,

∆(ω0u, ω0v) = ∆(u, v) .

When the odometer τL will be defined, we shall set, as in Definition 3.1:

∀s ∈ ωA cp
L
(s) = ∆(s, τL(s)) .

Proposition 5.6. If τL is continuous, then cp
L
is continuous at any point where

it takes finite values.

Proof. Indeed, let s in KL with cp
L
(s) < +∞ and (sn)n∈N be a sequence of

elements of KL such that d(s, sn) tends to 0. It means that e(s, sn), the length of

the longest common right factor of s and sn, takes arbitrarily large values. Since

τL is continuous, e(τL(s), τL(sn)) is arbitrarily large as well. Let j > cp
L
(s).

For large enough n, s[j,0] = (sn)[j,0] and similarly τL(s)[j,0] = τL(sn)[j,0]. Thus

cp
L
(s) = cp

L
(sn).

If we write 0 = ω0, CPL, the carry propagation of L, can be written, if the

limit exists, as:

CPL = lim
N→∞

1

N

N−1
∑

i=0

cp
L
(τ i
L
(0)) ,
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which is the transformation of (28) we were aiming at in order to engage with

the use of the Ergodic Theorem.

Example 5.7. Let p be an integer. The completion Kp of ω0Lp is the ring Zp

of the p-adic integers (a non-integral one if p is not a prime).

The ring Zp is a topological group, and the odometer τp is the addition of 1,

and thus a group rotation and a continuous function. By Proposition 5.6 the

carry propagation cp
p
is continuous. The system (Kp, τp) is uniquely ergodic,

see [29] for instance. By applying the (second part of) Ergodic Theorem, we get

an ‘ergodic proof’ of Proposition 3.9.

5.3 The dynamics of greedy numeration systems

In this section, we consider a case where the odometer is not defined by continuity

but rather by a combinatorial property of the representation languages. The

greedy numeration systems have indeed the property that the language of the

representations of the natural integers is closed under right-factors, and this will

allow a meaningful definition of the odometer, even when it is not continuous.

Our study is based on recent results due to Barat and Grabner [3].

5.3.1 Greedy algorithm and greedy numeration systems

Greedy numeration systems (GNS, for short) are a generalization of the integer

base numeration systems. The base is replaced by a basis (also called scale)

which is an infinite sequence of positive integers and which plays the role of the

sequence of the powers of the integer base. The classical example is the Fi-

bonacci numeration system where the basis consists of the sequence of Fibonacci

numbers. These systems have been first defined and studied in full generality

by A. Fraenkel [15] and we have given large accounts on this subject in some

previous works of ours [17, 31].

A basis is a strictly increasing sequence of integers G = (Gℓ)ℓ∈N with G0 = 1.

The greedy G-expansion of a natural integer is the result of a so-called greedy

algorithm — described in this context in [15] — for the definition of which we

take a new notation. Given two integers m and p, we write m÷p and m% p for

the quotient and the remainder of the Euclidean division of m by p respectively.

Definition 5.8. The greedy algorithm goes as follows: given N in N,

(i) let k be defined by the condition Gk 6 N < Gk+1 .

(ii) let xk = N ÷Gk and rk = N %Gk ;

(iii) for every i, from i = k− 1 to i = 0, let xi = ri+1÷Gi and ri = ri+1%Gi .

We then have: N = xkGk + xk−1Gk−1 + · · ·+ x0G0.
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The sequence of digits xk xk−1 · · · x1x0 is called the (greedy) G-expansion

of N and is denoted by 〈N〉G. The set of G-expansions is denoted by LG:

LG =
{

〈N〉G
∣

∣ N ∈ N
}

.

The language LG is characterized by the following:

xk xk−1 · · · x0 ∈ LG ⇐⇒

∀i , 0 6 i 6 k , xiGi + xi−1Gi−1 + · · ·+ x0G0 < Gi+1 . (30)

The G-expansion maps the natural order on N onto the radix order on LG, that

is, N 6 M holds if and only if 〈N〉G ⊑ 〈M〉G holds and LG may also be

considered as an ANS. Equation (30) becomes:

xk xk−1 · · · x0 ∈ LG ⇐⇒ ∀i , 0 6 i 6 k , xixi−1 · · · x0 ⊑ 〈Gi+1−1〉G . (31)

It follows that for every ℓ in N, we have:

Gℓ = vLG
(ℓ) .

For readability, we write gℓ = 〈Gℓ − 1〉G , and it follows from (31) that

Maxlg(LG) = {gℓ | ℓ ∈ N} .

By construction, the language LG satisfies Assumption 5.2 and the lan-

guage 0∗LG is closed under right-factor. Note that LG is not pce in general

(cf. Remark 5.28 below).

If the sequence of the quotients Gℓ+1/Gℓ of successive terms of G is bounded,

with r = lim sup⌈Gℓ+1

Gℓ
⌉ , then all G-expansions are words over the alphabet

AG = {0, 1, . . . , r − 1} . In the following, we silently assume that this condition

holds and that LG is thus a language over the finite alphabet AG. (For instance,

we exclude GNS such as G = (ℓ!)ℓ∈N.)

5.3.2 Ergodicity of greedy numeration systems

Let G be a GNS. We denote the successor function on LG by SuccG (rather

than SuccLG
). The definition of the compactification of LG, which we denote

by KG (rather than KLG
), takes a simpler form since 0∗LG is closed under right-

factor:

KG = ω0LG =
{

s ∈ ωA
∣

∣

∣ ∀j ∈ N s[j,0] ∈ 0∗LG
}

.

The same closure property by right-factor yields the definition of an odometer.

Theorem 5.9 ([3, 19]). Let G be a GNS. For every s in KG, limj→∞ SuccG

(

s[j,0]
)

exists and defines the odometer τG : KG → KG :

∀s ∈ KG τG(s) = lim
j→∞

SuccG

(

s[j,0]
)

.
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The carry propagation at s in KG is defined by cp
G
(s) = ∆(s, τG(s)) as

announced above, and is denoted by cp
G
(s) (rather than cp

LG
(s)). The carry

propagation of LG, which we denote by CPG (rather than CPLG
) is then defined,

when it exists, by (cf. (30)):

CPG = lim
N→∞

1

N

N−1
∑

i=0

cp
G
(τ i
G
(0)) .

Remark 5.10. The language LG is not necessarily a regular language. But when

it is, then

(i) the basis G is a linear recurrent sequence, a result due to Shallit [33];

(ii) the odometer τG is continuous if and only if SuccG is realizable by a finite

right sequential transducer [16]. We come back to this result and the definition

of finite right sequential transducers in the hopefully forthcoming sequel of this

work [8].

The odometer τG may be continuous or not, as shown in Examples 5.40

and 5.41 below. Resorting to the Ergodic Theorem requires some further hy-

pothesis as well as some technical developments.

Definition 5.11. A GNS G is said to be exponential if it is equivalent to a

sequence which is homothetic to a geometric progression, that is, if there exist

two real constants α > 1 and C > 0 such that Gℓ ∼ Cαℓ when ℓ tends to infinity.

Exponential GNS are of interest to us because of the following result.

Theorem 5.12 ([4], Theorem 8). If G is an exponential GNS, then the dynamical

system (KG, τG) is uniquely ergodic.

If G is an exponential GNS, the unique τG-invariant measure on KG is de-

noted by µG. Since τG is not necessarily continuous, and even though the sys-

tem (KG, τG) is uniquely ergodic, we only have the first part of Ergodic Theo-

rem 5.1 at hand. The following definitions and results, again borrowed from [3],

are used in the proof of Theorem 5.17 we are aiming at and which amounts indeed

to the proof that 0 is contained in the set of µG-almost all points for which (29)

holds.

We first have an evaluation of the measure of the cylinders generated by the

maximal words, that holds without the assumption of exponentiality.

Proposition 5.13 ([3], Eq. 4.8). Let G be a GNS and µ a τG-invariant measure.

Then, for every ℓ in N, we have:

µ([gℓ]) 6 1/Gℓ .
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Notation. For every i in N, we denote by δi the Dirac measure at point

〈i〉G = τ i
G
(0) of KG and, for every N in N, by νN the mean of these measures

on the ‘first’ N points of KG:

νN =
1

N

N−1
∑

i=0

δi .

We write χS for the characteristic function of a subset S of KG. We thus have,

for any w ∈ LG:

νN ([w]) =
1

N

N−1
∑

i=0

χ[w]

(

τ i
G
(0)
)

.

The main result of [3] we rely on is the expression of µG in terms of the νN .

Theorem 5.14 ([3], Theorem 2). Let G be a GNS and (KG, τG) the associated

dynamical system. If (KG, τG) is uniquely ergodic with measure µG, then for

every w in LG, we have:

lim
N→∞

νN ([w]) = µG([w]) .

Remark 5.15. The determined reader who refers himself to [3] will hardly rec-

ognize Theorem 5.14 there. Indeed, Theorem 2 in [3] is much more general and

says, roughly, that any invariant measure on KG is a cluster point of sequences

of convex combinations of the νN ’s. If KG is uniquely ergodic, then µG is the

only possible cluster point, and, on the other hand, the limit of the sequence of

the νN ’s is a cluster point.

Remark 5.16. One may say that Theorem 5.14, or the convergence of the νN ’s

toward µG, expresses the property that 0 is a generic point of the system (KG, τG)

in the sense that the measure of any cylinder [w] is obtained as the limit of the

statistics induced by the orbit of 0 under τG, or, to put it in a way that is more

congruent with the Ergodic Theorem, we have:

∀w ∈ A ∗
G

∫

KG

χ[w] dµG = lim
N→∞

1

N

N−1
∑

i=0

χ[w]

(

τ i
G
(0)
)

,

This does not imply that

∀f ∈ L1(µG)

∫

KG

fdµG = lim
N→∞

1

N

N−1
∑

i=0

f(τ i
G
(0)) . (32)

It suffices to take f = χΩ(0) the characteristic function of the orbit of 0: the

left-hand side is 0 since the domain of Ω(0) is denumerable and the mean of the

sum in the right-hand side is uniformly equal to 1, hence has limit 1.

In order to prove Theorem 5.17 below, we have to prove that the func-

tion cp
G

is somehow regular enough to guarantee (32). Equation (32) holds
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for any Riemann-integrable function f . On the other hand, χΩ(0) is typical of

a function that is Lebesgue-integrable but not Riemann-integrable. The func-

tion cp
G

is not Riemann-integrable either, since it is unbounded. It should be

treated as an improper integral.

5.3.3 Carry propagation in greedy numeration systems

We are now in a position to give an ergodic proof of the existence of the carry

propagation for a family of greedy numeration systems.

Theorem 5.17. Let G be a GNS that meets the following two conditions:

(i) (KG, τG) is uniquely ergodic;

(ii)
+∞
∑

k=0

k

Gk
is bounded.

Then, the carry propagation CPG = lim
N→∞

1

N

N−1
∑

i=0

cp
G

(

τ i(0)
)

exists.

As a consequence of Theorem 5.12, and since condition (ii) is obviously sat-

isfied by an exponential GNS, we have:

Corollary 5.18. If G is an exponential GNS, then CPG exists.

Before proving Theorem 5.17 at Sec. 5.3.4, we establish that cp
G

is an in-

tegrable function (Proposition 5.20). To that end and for the sake of further

developments, we first define subsets of KG according to the values taken by cp
G
:

∀k ∈ N Dk =
{

s ∈ KG

∣

∣

∣ cp
G
(s) = k + 1

}

.

The subsets Dk are Boolean combinations of cylinders. Indeed, cp
G
(s) = k + 1

if and only if:

(a) gk is a right-factor of s;

(b) no gm, m > k + 1, is a right-factor of s.

(Remember that for every integer ℓ, gℓ is the maximal word of LG of length ℓ

and gℓ = 〈Gℓ − 1〉G .) If gk is not a right-factor of gm, then [gk] ∩ [gm] = ∅ ,

hence we can write:

∀k ∈ N Dk = [gk] \
⋃

m>k+1

[gm] , (33)

and the Dk are measurable.

One can be more precise and give an expression of theDk that is unambiguous

and that will be used in actual computations. Consider the (strict) ordering

relation ‘being a right-factor’ (on A∗
G): h1 >rf h2 if h2 is a right-factor of h1

(and h1 6= h2). Let

∀k ∈ N T (k) = {gm ∈ Maxlg(LG) | gm >rf gk}
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and

T ′(k) = min T (k) = {gm ∈ T (k) | there exists no gn in T (k) gm >rf gn} .

For the ease of writing, we define:

I(k) =
{

m ∈ N
∣

∣ gm ∈ T ′(k)
}

,

and we have

Dk = [gk] \
⊎

m∈I(k)
[gm] , (34)

where
⊎

is the disjoint union. Finally, let us give some more notation.

• For every k in N, let Mk =
∞
∑

j=k+1

j + 1

Gj
. By hypothesis, lim

k→∞
Mk = 0 .

• We write Fk =
j=k
⋃

j=0

Dj .

• We denote by fk the function that is equal to cp
G

on Fk and to 0 every-

where else.

For every k in N, the function fk is a step function, that is, a linear combi-

nation of characteristic functions of measurable sets, in this case, of the charac-

teristic functions of the Dj, 0 6 j 6 k and of the one of KG \ Fk. As a direct

consequence of Theorem 5.14, we then have:

Proposition 5.19.

∀k ∈ N

∫

KG

fk dµG = lim
N→∞

1

N

N−1
∑

i=0

fk
(

τ i(0)
)

.

From the definition of the Dk’s, we now derive that cp
G

is an integrable

function:

Proposition 5.20. Under the conditions of Theorem 5.17, cp
G

is in L1(µG),

that is,

∫

KG

cp
G
dµG exists.

Proof. Since all terms are positive, we have:

∫

KG

cp
G
dµG = lim

k→∞

k
∑

j=0

(j + 1)µG(Dj) . (35)

From (34) and Proposition 5.13, follows

∀k ∈ N

∞
∑

j=k+1

(j+1)µG(Dj) 6
∞
∑

j=k+1

(j+1)µG([gj ]) 6
∞
∑

j=k+1

j + 1

Gj
=Mk .
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Since

∫

KG

fk dµG =
k
∑

j=0

(j + 1)µG(Dj) we have:

∫

KG

fk dµG 6

∫

KG

cp
G
dµG 6

∫

KG

fk dµG +Mk , (36)

which shows not only that

∫

KG

cp
G
dµG exists but also that

lim
k→∞

∫

KG

fk dµG =

∫

KG

cp
G
dµG .

Of course, we have:

∀k ∈ N , ∀N ∈ N
1

N

N−1
∑

i=0

fk
(

τ i(0)
)

6
1

N

N−1
∑

i=0

cp
G

(

τ i(0)
)

, (37)

but it is not enough that the left-hand side has a limit for the right-hand side to

have also one. We need to find a bounding interval as in (36) in order to insure

that the quantity
1

N

N−1
∑

i=0

cp
G

(

τ i(0)
)

converges when N tends to infinity. And

this is what is done in the next subsection.

5.3.4 Proof of Theorem 5.17

We begin with some more notation. First, for every integer N in N, we write

∂G(N) for the degree, or height, with respect to the basis (or scale) G, that is,

the integer k = ∂G(N) is such that Gk 6 N < Gk+1 . In particular, |〈N〉G| =

∂G(N) + 1 .

Second, for every integer n in N, and for every k > |〈n〉G| = ℓ, we write

〈n〉G,k for 〈n〉G,k = 0k−ℓ〈n〉G , that is, 〈n〉G,k is the unique word in AkG∩0∗〈n〉G.

Finally, in the same way as we write cp
G
(n) for cp

G
(τn(0)), we write fk(n)

for fk (τ
n(0)). The greedy algorithm (Definition 5.8) may then equivalently be

rewritten as follows.

Lemma 5.21. The G-expansions of integers, that is, the greedy algorithm for

the basis G, is described by the following recurrence formula:

(i) 〈0〉G = ε ;

(ii) ∀N ∈ N , if k = ∂G(N) , then 〈N〉G = d 〈r〉G,k
with d = N ÷Gk and r = N %Gk .

Corollary 5.22.

Let N in N and k = ∂G(N). If N < Gk+1−1 , then: cp
G
(N) = cp

G
(N%Gk) .

Proof. Let 〈N〉G = dw ; then 〈N % Gk〉G = w with |w| = k. There are two

possibilities: either cp
G
(N) = k + 1 or cp

G
(N) 6 k . Indeed, the possibility
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that N + 1 = Gk+1 and cp
G
(N) = k + 2 is ruled out by the hypothesis

N < Gk+1 − 1 .

If cp
G
(N) = k+1 , then 〈N+1〉G = (d+1)0k and then 〈N%Gk+1〉G = 10k

and cp
G
(N %Gk) = k + 1 .

If cp
G
(N) 6 k , then 〈N + 1〉G = dw′ and then 〈N % Gk + 1〉G = w′ and

cp
G
(N %Gk) = cp

G
(N) again.

The first step toward Theorem 5.17 is the description of the relationship

between the functions fk−1 and fk for all numbers less than Gk+1, as expressed

by the following.

Proposition 5.23. For every k in N, we have:

∀N ∈ N , 0 < N < Gk+1

N−1
∑

i=0

fk(i) =
N−1
∑

i=0

fk−1(i) +

⌊

N

Gk

⌋

(k + 1) . (38)

Proof. Let k in N and dk be the largest digit that appears at index k (remember

that the rightmost index is 0), that is:

dkGk < Gk+1 6 (dk + 1)Gk .

(An integer base is the case where the equality on the right holds for the same

digit for every k.) Let us consider the integers in the interval [0, Gk+1[ and the

functions fk−1 and fk:

If 0 6 n < Gk − 1 then cp
G
(n) 6 k and fk−1(n) =fk(n)

n = Gk − 1 then cp
G
(n) = k + 1 and fk−1(n) = 0, fk(n) = k + 1

Gk − 1 6 n < 2Gk − 1 then cp
G
(n) 6 k and fk−1(n) =fk(n)

n = 2Gk − 1 then cp
G
(n) = k + 1 and fk−1(n) = 0, fk(n) = k + 1

.........

dkGk − 1 6 n < Gk+1 − 1 then cp
G
(n) 6 k and fk−1(n) =fk(n)

Taking advantage that all summations go to N−1, these 2dk+1 lines of equalities

imply (38).

The aim is to obtain an equation of the same kind as (38) but which holds

for all N in N. Corollary 5.22 leads to the definition of (H,L)-extensions, Propo-

sition 5.23 gives us a hint for the elementary arithmetic Lemma 5.25 that will

pave the way to the solution (Proposition 5.26).

Definition 5.24. Let H and L in N, with H < L. Let α : [0,H[→ N be a

function. Let α′ : [0, L[→ N be the function defined by

∀m ∈ [0, L[ α′(m) = α(m%H) . (39)

We call α′ the (H,L)-extension of α.
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The graph of the (H,L)-extension of α consists then of the repetition of the

graph of α translated by the quantities H, 2H, etc., along the x-axis, until kH,

where kH < L 6 (k + 1)H , the last piece being cut off at the abscissa L.

Lemma 5.25. Let H in N and α, β : [0,H[→ N be two functions with the prop-

erty that there exists a K in N (presumably K < H) and a constant C in N such

that

∀n ∈ ]0,H]
n−1
∑

i=0

β(i) 6

n−1
∑

i=0

α(i) +C

⌊

n

K

⌋

. (40)

Let L in N (L > H), and α′, β′ : [0, L[→ N be the (H,L)-extensions of α and β

respectively. Then we have:

∀m ∈ ]0, L]
m−1
∑

j=0

β′(j) 6

m−1
∑

j=0

α′(j) + C

⌊

m

K

⌋

. (41)

Proof. From (40) follows in particular

H−1
∑

i=0

β(i) 6

H−1
∑

i=0

α(i) + C

⌊

H

K

⌋

.

For m in N, let us write d = m÷H and n = m%H (hence m = dH+n). Then,

using the definition of (H,L)-extension, one writes

m−1
∑

j=0

β′(j) = d

(

H−1
∑

i=0

β(i)

)

+
n−1
∑

i=0

β(i) ,

with the convention that
i=−1
∑

i=0

β(i) = 0 . We then have:

m−1
∑

j=0

β′(j) 6 d

(

H−1
∑

i=0

α(i) + C

⌊

H

K

⌋

)

+
n−1
∑

i=0

α(i) + C

⌊

n

K

⌋

6

m−1
∑

j=0

α′(j) + C

(

d

⌊

H

K

⌋

+

⌊

n

K

⌋)

6

m−1
∑

j=0

α′(j) + C

⌊

m

K

⌋

,

from the obvious inequality d

⌊

H

K

⌋

+

⌊

n

K

⌋

6

⌊

dH + n

K

⌋

.

The key statement for the proof of Theorem 5.17 reads as follows.

Proposition 5.26. Let k be a fixed integer greater than 1. Then, for every N

in N:
N−1
∑

i=0

fk(i) 6

N−1
∑

i=0

fk−1(i) +

⌊

N

Gk

⌋

(k + 1) . (42)
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Proof. Let us establish by induction that for every h, h > k, we have:

∀N ∈ ]0, Gh+1]
N−1
∑

i=0

fk(i) 6

N−1
∑

i=0

fk−1(i) +

⌊

N

Gk

⌋

(k + 1) . (43)

Proposition 5.23 asserts that indeed equality holds in (42) for allN in ]0, Gk+1[.

If N = Gk+1 , the summations in (42) go up to n = Gk+1 − 1 , and then

cp
G
(n) = k + 2 and fk−1(n) = fk(n) = 0 . Hence the equality still holds, but

for the case where Gk+1 = (dk +1)Gk (and then
⌊

N
Gk

⌋

= dk+1) in which case the

inequality holds and (43) is established for h = k.

Let us call α and β the restrictions to [0, Gh+1[ of fk−1 and fk respectively.

Let L = Gh+2 − 1 ; from Corollary 5.22 follows that the (Gh+1, L)-expansions

of α and β are the restrictions to [0, Gh+2 − 1[ of fk−1 and fk respectively.

From Lemma 5.25 we deduce that the inequality (42) holds for every N

in ]0, Gh+2 − 1].

Since cp
G
(Gh+2 − 1) = h + 3 , then fk−1(Gh+2 − 1) = fk(Gh+2 − 1) = 0

and (42) also holds for N = Gh+2, which completes the induction step.

Proof of Theorem 5.17. Let k be a fixed integer. For every N in N, there exists

an h = supn∈[0,N ] cpG(n)−1 such that cp
G
(n) = fh(n) for all n in [0, N [. (Note

that we cannot exchange the quantifiers and state: ‘there exists an h such that

for every N etc.’) We then have

1

N

N−1
∑

i=0

fh
(

τ i(0)
)

=
1

N

N−1
∑

i=0

cp
G

(

τ i(0)
)

.

From (37) and Proposition 5.26 follows

1

N

N−1
∑

i=0

fk
(

τ i(0)
)

6
1

N

N−1
∑

i=0

cp
G

(

τ i(0)
)

6
1

N

N−1
∑

i=0

fk
(

τ i(0)
)

+
j=h
∑

j=k+1

1

N

⌊

N

Gj

⌋

(k + 1) .

Two obvious majorizations give

1

N

N−1
∑

i=0

fk
(

τ i(0)
)

6
1

N

N−1
∑

i=0

cp
G

(

τ i(0)
)

6
1

N

N−1
∑

i=0

fk
(

τ i(0)
)

+Mk+1 ,

which yields, when N tends to infinity, and taking Proposition 5.19 into account:

∀k ∈ N

∫

KG

fk dµG 6 lim
N→∞

1

N

N−1
∑

i=0

cp
G

(

τ i(0)
)

6

∫

KG

fk dµG+Mk+1 .

If we make now k tend to infinity we get both that the limit

lim
N→∞

1

N

N−1
∑

i=0

cp
G

(

τ i(0)
)

exists, and that this limit is

∫

KG

cp
G
dµG .
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In the case where the language LG of the exponential greedy numeration

system G is pce, we can use the results of Sec. 3 and give the value of the carry

propagation. Since Gℓ ∼ Cαℓ implies that the local growth rate of LG is equal

to α, we have, by Corollary 3.16:

Theorem 5.27. If G is an exponential GNS with Gℓ ∼ Cαℓ and if LG is pce,

then CPG exists and

CPG =
α

α− 1
.

The next section deals with a family of greedy numeration systems which

have pce languages, namely β-numeration systems.

Remark 5.28. It is somewhat unsatisfactory to have to put an hypothesis on LG
directly. It would be more natural to have a condition on the basis G itself which

would insure that LG be pce.

A necessary condition for LG to be pce is that the sequence

⌊

Gn+1

Gn

⌋

be

non-increasing. But it is not a sufficient condition, as shown by the sequence

G = 1, 2, 3, 5, 9, 14, 23, . . . : the representation of 8 is 1100 but neither 110

nor 11 are in LG.

Remark 5.29. The above computations also open the way for the computation

of CPG that would be independent from the pce hypothesis. From (34) and (35)

follows:

∫

KG

cp
G
dµG =

∑

k>0

(k+1)µG(Dk) =
∑

k>0

(k+1)



µG([gk])−
∑

m∈I(k)
µG([gm])



 . (44)

Instead of using the measure of Dk for every k, it is more efficient to compute

the sum in (44) ‘layer by layer’ so to speak. If we invert the relation I, that is, if

we write J(m) = {k |m ∈ I(k)}, J(m) is a singleton for every m since gJ(m) is

the longest right-factor of gm in Maxlg(LG). The contribution to the sum of the

‘layer’ [gk] will be (k+1)− (J(k) + 1) = k− J(k). Since g0 = ε and µG([ε]) = 1,

we then have:
∫

KG

cp
G
dµG = 1 +

∑

k>1

(k − J(k)) µG([gk]) . (45)

In [3], a machinery has been developed for computing the measure of the cylin-

ders [gk] which then would allow one to obtain the value of the carry propagation

without the pce hypothesis and the results of Sec. 3. Some examples of the usage

of (45) are given below.

5.4 Beta-numeration

Let β > 1 be a real number. The definition of a GNS associated with β — due

to Bertrand–Mathis [11] — goes in three steps: the definition of the β-expansion
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of real numbers, the one of quasi-greedy β-expansion of 1, and finally the one of

the basis Gβ .

For any real number x, let us denote by {x} the fractional part of x, that

is, {x} = x − ⌊x⌋. In [30], Rényi proposed the following greedy algorithm for

any x ∈ [0, 1]: let r0 = x and, for every i > 1, let xi = ⌊β ri−1⌋ and ri = {β ri−1}.

Then,

x =
+∞
∑

i=1

xi β
−i with ∀i > 1 xi ∈ Aβ = {0, . . . , ⌈β⌉−1} . (46)

The sequence dβ(x) = (xi)i>1 is called the β-expansion of x. Seen as a right

infinite word of Aωβ , it is the greatest in the lexicographic ordering of Aωβ for

which (46) holds. When the expansion ends in infinitely many 0’s, it is said to

be finite (and the 0’s are omitted). If x is greater than 1, the same algorithm is

used for xβ−k such that xβ−k ∈ [0, 1] and then the radix point is placed after

the k-th digit; we thus obtain the β-expansion of x for any x in R+.

Let dβ(1) = (tn)n>1 be the β-expansion of 1. We define the infinite word d∗β(1),
called the quasi-greedy expansion of 1, in the following way. If dβ(1) is in-

finite, then d∗β(1) = dβ(1). If dβ(1) is finite, of the form dβ(1) = t1 · · · tm,

tm 6= 0, then d∗β(1) = (t1 · · · tm−1(tm − 1))ω. It is easy to see that d∗β(1) is a

β-representation of 1, that is, it satisfies (46) for x = 1.

Definition 5.30 ([11]). Let β > 1 be a real number and d∗β(1) = (di)i>1 the

quasi-greedy expansion of 1. The canonical greedy numeration system associated

with β is defined by the basis Gβ = (Gℓ)ℓ∈N inductively defined by:

G0 = 1 and ∀ℓ > 1 Gℓ = d1Gℓ−1 + d2Gℓ−2 + · · ·+ dℓG0 + 1 .

The canonical GNS associated with β is exponential as asserted by the fol-

lowing.

Proposition 5.31 ([11]). Let β > 1 be a real number and Gβ = (Gℓ)ℓ∈N the

canonical GNS associated with β. There exists a real constant K > 0 such that

Gℓ ∼ Kβℓ .

It is easy to verify that Aβ = AGβ
, but, of course, the Gβ-representation of

an integer n is not the same as the β-expansion of n. With a slight abuse, we

nevertheless write Lβ (rather than LGβ
) for the representation language of Gβ .

The language Lβ is characterized by the following.

Proposition 5.32 ([26]). Let β > 1 be a real number and d∗β(1) = (di)i>1 the

quasi-greedy expansion of 1. A word w = wk · · ·w0 is in Lβ if and only if for

every i, 0 6 i 6 k, wi · · ·w0 4 d1 · · · di+1 .

A comprehensive survey on β- and Gβ-numeration systems can be found

in [17]. We now study the carry propagation in these numeration systems.
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We write CPβ rather than CPLβ
. The last two propositions and the results

of Sec. 5.3.4 immediately imply the following.

Corollary 5.33.

Let β > 1 be a real number. Then, the language Lβ is a pce language.

Proof. (i) Lβ is prefix-closed since, by definition of the lexicographic order,

we have d1 · · · dj+1 4 d1 · · · di+1 for every j 6 i.

(ii) Lβ is extendable since if w is in Lβ, then w 0 is in Lβ as well since we

have d1 · · · di+1 0 4 d1 · · · di+1 di+2 .

Corollary 5.34. Let β > 1 be a real number. Then, the carry propagation of

the language Lβ exists and is equal to:

CPβ =
β

β − 1
.

The value of the carry propagation can also be computed directly from (45)

according to the self-overlapping properties of the quasi-greedy expansion of 1

d∗β(1) = (di)i>1. We develop below two examples borrowed from [3].

Example 5.35. This first example is the case where the quasi-greedy expansion

of 1 is such that no left factor d1 · · · dm of d∗β(1) has a right-factor of the form

d1 · · · dk, k < m — this is the case for instance when d1 > dj for every j > 2.

This implies in particular, with the notation of Remark 5.29, that J(k) = 0 for

all k > 1. In [3, Example 5], the measure of cylinders is computed for this case

and expressed by the following:

∀k > 1 µβ([d1 · · · dk]) = (β − 1)β−k−1 . (47)

Since the derivation of the series expansion of

1

β − 1
=
∑

k>1

1

βk
yields

1

(β − 1)2
=
∑

k>1

k

βk+1
,

Equations (47) and (45) together gives:

CPβ = 1 +
∑

k>1

kµβ([d1 · · · dk]) = 1 + (β − 1)
∑

k>1

k

βk+1
=

β

β − 1
.

Example 5.36. The Tribonacci numeration system. Let ψ be the zero

greater than 1 of the polynomial X3 − X2 − X − 1. Then dψ(1) = 111 and

d∗ψ(1) = (110)ω (ψ is what is called below a simple Parry number). It follows

that in this case, J(1) = 0, J(2) = 1 and J(k) = k − 3 for all k > 3.

In [3, Example 2], the measure of cylinders is computed for this case and

given by the following:

µψ([d1]) = 1− ψ−1 and ∀k > 2 µψ([d1 · · · dk]) = ψ−k−1 .
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Equation (45) then becomes:

CPψ = 1 + µψ([d1]) + µψ([d1d2]) + 3
∑

k>3

µψ([d1 · · · dk])

= 1 + (1−
1

ψ
) +

1

ψ3
+ 3

∑

k>3

1

ψk+1
= 2−

1

ψ
+

1

ψ3
+

3

ψ3(ψ − 1)

=
2ψ4 − 3ψ3 + ψ2 + ψ + 2

ψ3(ψ − 1)
=
ψ4 + (ψ − 2)(ψ3 − ψ2 − ψ − 1)

ψ3(ψ − 1)
=

ψ

ψ − 1

since ψ3 − ψ2 − ψ − 1 = 0.

It may seem frustrating that these computations of CPG are conducted pre-

cisely in cases where the result is already known but, on the other hand, it is

interesting to consider these cases where two completely different computation

methods may be conducted (and luckily give the same result). Along the same

line, we finally say a word on numeration systems which are relevant to both

methods of Sec. 4 and that of Sec. 5. The latter put into light, of course, the

continuity, or non-continuity, of the odometer. We begin with some more defini-

tions and results.

Definition 5.37 ([17]). A real number β greater than 1 is called a Parry number

if the β-expansion of 1 is finite or infinite eventually periodic. If the β-expansion

of 1 is finite, then β is called a simple Parry number.

Proposition 5.38. Let β be a Parry number.

(i) [18] The language Lβ is rational.

(ii) [18] The automaton Aβ which recognizes the language 0∗Lβ is strongly

connected.

(iii) [23, Proposition 7.2.21] β is the dominant root of the characteristic poly-

nomial of the adjacency matrix of Aβ.

(iv) [19] The odometer τβ is continuous if and only if β is a simple Parry

number.

It follows from (i)–(iii) that if β is a Parry number, then Lβ and all its

quotients are (rational, pce, and) dev languages with β as local growth rate

and Theorem 4.1 yields an algebraic proof of the following particular case of

Corollary 5.34.

Corollary 5.39. If β is a Parry number, then CPβ exists and CPβ =
β

β − 1
.

If β is a simple Parry number, it follows from (iv) that, conversely, the Er-

godic Theorem directly implies the existence of the carry propagation of Lβ (via

Proposition 5.6).
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Example 5.40 (Example 2.5 continued). The Fibonacci numeration system is

the canonical GNS associated with the golden mean ϕ. Since dϕ(1) = 11, ϕ is

a simple Parry number. The set of greedy expansions of the natural integers is

Lϕ = 1{0, 1}∗ \ {0, 1}∗11{0, 1}∗ ∪ {ε}. The automaton below recognizes 0∗Lϕ.
The compactification of ω0Lϕ is

Kϕ = KLϕ =
{

s = (· · · s2s1s0) ∈
ω{0, 1}

∣

∣

∣ ∀j s[j,0] = sj · · · s0 ≺ (10)ω
}

.

For instance: τϕ(
ω(01) 0(01)n) = ω(01)0102n−1 . On the other hand,

τϕ(
ω(01)) = lim

n→∞Succϕ((01)
n) = lim

n→∞ 102n−1 = ω0 .

This illustrates the fact that the odometer τϕ is continuous.

1

0
0

Example 5.41 (Example 2.6 continued). The Fina numeration system is the

canonical GNS associated with θ = 3+
√
5

2 . Since d∗θ(1) = 21ω, θ is a Parry

number which is not simple. We have:

τθ(
ω1) = lim

n→∞Succθ(1
n) = lim

n→∞ 1n−12 = ω1 2 .

On the other hand, let us consider the sequence (w(n))n = (ω021n)n . We have:

limn→∞(w(n))n = ω1 , and, for each n, τθ

(

w(n)
)

= ω1 0n+1, which tends to ω0,

thus the odometer τθ is not continuous.
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