Integer Ring Sieve for Constructing Compact QC-LDPC Codes with Girths 8, 10, and 12 - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Information Theory Année : 2022

Integer Ring Sieve for Constructing Compact QC-LDPC Codes with Girths 8, 10, and 12

Résumé

This paper proposes a new method of constructing compact fully-connected Quasi-Cyclic Low Density Parity Check (QC-LDPC) codes with girth g = 8, 10, and 12. The originality of the proposed method is to impose constraints on the exponent matrix P to reduce the search space drastically. For a targeted lifting degree of N , the first step of the method is to sieve the integer ring ZN to make a particular subgroup with specific properties to construct the second column of P (the first column being filled with zeros). The remaining columns of P are determined recursively as multiples of the second column by adapting the sequentially multiplied column (SMC) method whereby a controlled greedy search is applied at each step. The codes constructed with the proposed semi-algebraic method show lengths that can be significantly shorter than their best counterparts in the literature.
Fichier principal
Vignette du fichier
Integer_Ring_Sieve.pdf (471.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03375674 , version 1 (13-10-2021)

Identifiants

Citer

Alireza Tasdighi, E. Boutillon. Integer Ring Sieve for Constructing Compact QC-LDPC Codes with Girths 8, 10, and 12. IEEE Transactions on Information Theory, 2022, 68 (1), pp.35-46. ⟨10.1109/TIT.2021.3116655⟩. ⟨hal-03375674⟩
42 Consultations
109 Téléchargements

Altmetric

Partager

More