
HAL Id: hal-03375674
https://hal.science/hal-03375674

Submitted on 13 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integer Ring Sieve for Constructing Compact QC-LDPC
Codes with Girths 8, 10, and 12

Alireza Tasdighi, E. Boutillon

To cite this version:
Alireza Tasdighi, E. Boutillon. Integer Ring Sieve for Constructing Compact QC-LDPC Codes
with Girths 8, 10, and 12. IEEE Transactions on Information Theory, 2022, 68 (1), pp.35-46.
�10.1109/TIT.2021.3116655�. �hal-03375674�

https://hal.science/hal-03375674
https://hal.archives-ouvertes.fr

1

Integer Ring Sieve for Constructing Compact
QC-LDPC Codes with Girths 8, 10, and 12

Alireza Tasdighi and Emmanuel Boutillon Senior Member, IEEE
Université Bretagne-Sud,

Lab-STICC, UMR 6285, CNRS – Lorient, France
ar.tasdighi@gmail.com, emmanuel.boutillon@univ-ubs.fr

Abstract—This paper proposes a new method of constructing
compact fully-connected Quasi-Cyclic Low Density Parity Check
(QC-LDPC) codes with girth g = 8, 10, and 12. The originality
of the proposed method is to impose constraints on the exponent
matrix P to reduce the search space drastically. For a targeted
lifting degree of N , the first step of the method is to sieve
the integer ring ZN to make a particular sub-group with
specific properties to construct the second column of P (the first
column being filled with zeros). The remaining columns of P
are determined recursively as multiples of the second column
by adapting the sequentially multiplied column (SMC) method
whereby a controlled greedy search is applied at each step.
The codes constructed with the proposed semi-algebraic method
show lengths that can be significantly shorter than their best
counterparts in the literature.

Index Terms—QC-LDPC Code Construction, Girth, Multi-
plicative Group, Cyclic Subgroup, Greedy Search Method.

I. INTRODUCTION

It has been more than two decades since the rediscovery of
low-density parity-check (LDPC) codes as a class of modern
channel coding [1]. Quasi-cyclic (QC) LDPC codes, a special
class of LDPC codes, enable efficient parallel hardware im-
plementation and have been adopted in many communication
standards. Examples include the WIFI standard [2], digital
video broadcasting (DVB) standard [3], CCSDS standards [4],
and more recently, the 5G standard [5]. The Performance of
an LDPC iterative decoder is significantly impacted by the
minimum size of a cycle of the Tanner graph (the so-called
girth). Maximizing the girth for a given code size and code
rate, or reciprocally, finding the minimum code size for a
given code rate and girth size, has proved challenging for
the past two decades [6]–[20]. This paper is focused on the
construction of a QC-LDPC matrix constructed from a fully
connected exponent matrix. QC-LDPC codes can be used on
their own for applications requiring a very low Frame Error
Rate (e.g. memory storage). They can also be combined with
a masking technique to build good irregular QC-LDPC codes
[21]–[23]. In addition, it has recently been shown that by
using some spreading techniques, a class of SC-QC-LDPC
convolutional codes with very low syndrome memory could
be constructed based on QC-LDPC codes constructed from a
fully-connected exponent matrix [18], [24]–[27]. Specifically,

[25] asserts that given a fixed girth and degree distribution,
the smaller the lifting degree of QC-LDPC codes, the smaller
the size of the syndrome memory of SC-QC-LDPCC codes
and this results in better performance of such code under
windowed decoding. This study focuses solely on constructing
short length QC-LDPC codes with girth g = 8, 10, and 12.
However, we keep in mind that SC-QC-LDPCC codes are
potential candidates for beyond 5G applications, and good QC-
LDPC codes are the basis of good SC-QC-LDPC codes.

QC-LDPC codes can be divided into two major classes: 1)
random-like codes constructed by means of a computer search
under efficient algorithms, and 2) structured codes constructed
using algebraic tools [28]. Individually, these methods all
have drawbacks. Search-based methods (even heuristic or
exhaustive ones) require high search complexity but may
find codes with shorter length than the ones obtained with
algebraic methods. In contrast, algebraic methods determine
the code explicitly (e.g. array code [28] of girth 6) but to date,
algebraic methods are known to construct small-girth codes
only, not high-girth codes. Defining algebraic properties that
are perfectly matched with high-girth conditions resulting in
the explicit construction of short-length codes is one of the
main shortcomings of algebraic methods. In this paper, we try
to combine the two methods in order to construct large-girth
QC-LDPC codes with a short length in considerably lower
search complexity. We take the search-based sequentially mul-
tiplied column (SMC) construction method [26] as our search
algorithm and modify it by introducing an algebraic property
for the second column of the exponent matrix of the code. The
second column with the asserted algebraic property is found by
an Integer Ring Sieve (IRS) method in a way that eventually
leads to reducing the search space. As a result, a semi-
algebraic fast search-based method of constructing high-girth
QC-LDPC codes is proposed, and many constructed codes of
girth g = 8, 10, and 12 with different rates and degrees are
reported. Most of the constructed codes have lengths shorter
than (by up to 35%), or equal to, their counterparts in the
literature. The paper also proposes matrices with sizes not yet
reported in the literature.

The rest of the paper is organized as follows: Section II
presents earlier results regarding SMC construction-based QC-
LDPC codes. Section III presents the proposed IRS construc-
tion method. Numerical results are provided in Section IV.

ar.tasdighi@gmail.com,
emmanuel.boutillon@univ-ubs.fr

2

II. PRELIMINARIES

In this section, we review the construction of Quasi-Cyclic
LDPC codes. Next we discuss the conditions that result in
QC-LDPC codes with good topological properties.

A. QC-LDPC block codes

Let us consider a fully-connected QC-LDPC block code in
which the parity-check matrix is an m × n array of N × N
circulant permutation matrices (CPMs), I(pij), 0 ≤ i ≤ m−1,
0 ≤ j ≤ n−1, where N is the lifting degree of the code. I(pij)
is obtained from the identity matrix through a cyclic shift of
its rows by pij positions, with 0 ≤ pij ≤ N − 1. The code
length is L = nN , the column degree of the parity-check
matrix is presented by m and the row degree of the parity-
check matrix is presented by n1. The resulting rate of the code
is r ≥ 1−m/n. The m×n matrix P having the integer values
pij as its entries is referred to as the exponent matrix of the
code.

Definition 2.1: A cycle C2k of length 2k in the expo-
nent matrix P is defined as an ordered set of 2k positions
{(ms, ns)}s=0,1,...,2k−1 in the matrix P satisfying the fol-
lowing three conditions: 1) ms = ms+1;ns 6= ns+1 when
s is even, 2) ms 6= ms+1;ns = ns+1 when s is odd,
3) additions in the indexes are done modulo 2k, i.e. when
s = 2k−1, ns+1 = n2k = n0. For example, the length-6 cycle
C6 = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 0)} is represented
in Fig. 1.c.

Definition 2.2: For a given exponent matrix P, we define θP
as a function that associates to a cycle C2k the integer θP(C2k)
as

θP(C2k) =

2k−1∑
s=0

(−1)spmsns . (1)

According to [6], a necessary and sufficient condition for the
existence of a cycle of length 2k in the Tanner graph of
the QC-LDPC block code is the existence of a cycle C2k in
P satisfying θP(C2k) = 0 mod N . Thus, a necessary and
sufficient condition to ensure a QC-LDPC code of girth g is
that all cycles C2k, 2k < g of the exponent matrix P satisfy

θP(C2k) 6= 0 mod N. (2)

We define an inevitable cycle of length 2k to be a cycle Ci2k
so that θP(Ci2k) = 0 regardless of what the values of pijs are.

1In the case that the QC-LDPC code is not fully-connected, m and n are
often noted by dv and dc in the literature, respectively.

In [6] it is shown that fully-connected CPM-based QC-LDPC
codes always contain inevitable cycles of length 12, and thus
their girth cannot be larger than 12.

B. Code design using sequentially multiplied columns

Searching for an exponent matrix Pm×n of a given girth
g = 2k and a lifting degree N is a complex task. First,
the raw number of exponent matrices is exponential in m
and n (Nmn exactly); second, the number of cycles C2k of
length 2k = g − 2 (and thus, the number of equations (2) to
satisfy), increases in the order of O(mknk). In fact, a cycle of
length 2k can involve up to k columns and k rows. Solutions
with reduced complexity were proposed in [14] and [16],
but the corresponding design methods result in girth g = 8.
For constructing short codes with higher girths (i.e. g = 10,
12), many methods have been developed. To the best of the
authors’ knowledge, the results in [26] for QC-LDPC codes
with girth g = 10, 12 found by applying the SMC construction
technique are the shortest ones in the literature. Let us recall
the basic assumptions of the design method proposed in [26].
The design of the parity-check matrix of a QC-LDPC block
code with lifting degree N starts from an exponent matrix
with the following form (SMC assumption):

Pm×n =
[
~0 ~P1 γ2 ⊗ ~P1 γ3 ⊗ ~P1 . . . γn−1 ⊗ ~P1

]
,

(3)
with m, n, ∈ N, m < n, and ~0 and ~P1 being m × 1 column
vectors with entries in {0, 1, · · · , N − 1}. The vector ~0 is
filled with all zero entries, while the entries of the vector ~P1

are chosen as follows: the first entry is zero, the second entry
is one, and the other entries are chosen in {2, 3, · · · , N − 1}.
Then, the subsequent vectors have the form γj ⊗ ~P1 (j =
2, 3, · · · , n − 1), where ⊗ denotes multiplication modulo N
of each term of ~P1 with γj ∈ {2, 3, · · · , N − 1}, γj < γj+1.

To achieve this result, the authors of [26] established a
recursive greedy search algorithm (see algorithm 1 in [26]) to
determine, for a large enough lifting factor N , the exponent
matrix PSMC

m×n that satisfies (2) for all cycles of girth lower than
g. This search algorithm is supposed to find n−2 (resp., m−2)
non-zero and distinct elements to be placed in the second row
(resp., column) of PSMC

m×n . These elements vary from 1 to
N − 1, and, in the worst case, the overall possibilities are
equal to

(
N−1
n−2

)(
N−1
m−2

)
. For high-rate and high-girth codes, the

lifting degree is much bigger than m and n (i.e. m,n� N),
and the whole search space is of order O

(
(N − 1)

m+n−4
)

.
It has to be noted that for a desired girth g, each realization
of the matrix PSMC

m×n requires checking all the constraints of
type (2) with k < g/2.

In the next section, an improved construction method is
proposed.

3

III. INTEGER RING SIEVE TO FIND PERMISSIBLE
ELEMENTS FOR THE VECTOR ~P1

This section is divided into four parts. In Part A, we propose
the definition of strictly equivalent relations between cycles of
a fully connected exponent matrix P based on (2). Next, we
give a theorem for counting the number of strictly equivalent
classes of length 2k (k = 2, 3, 4, 5) in P. In Part B, we show
that a careful selection of the second column of matrix Pm×n
(i.e. ~P1) can create a new type of equivalence relation called
“Integer-Ring (IR) equivalence”. When combining strict equiv-
alence and IR-equivalence together, the number of equivalent
classes is divided by a factor close to 3 for m = 3 and close
to m − 1 for m ≥ 4. In Part C, we show results regarding
the existence of integer rings with a property defined in Part
B. Our greedy search algorithm is explained in Part D with
a pseudocode. Complexity analyses to highlight the important
role of our sieving method in reducing the search space are
also provided in this final part.

A. Equivalent relations between the set of cycles

Definition 3.1 (strictly equivalent cycle): Two cycles C and
C′ of an exponent matrix P are said to be strictly equivalent if
and only if θ(C) = 0⇔ θP(C′) = 0 regardless of the value of
P. This relation of equivalence defines equivalent classes. By
convention, if two cycles of different lengths are equivalent,
only the cycle with the smallest length will be considered.

Fig. 1 gives several examples of strictly equivalent cycles
in an exponent matrix P.

Definition 3.2 (number of equivalent classes): The number
of classes of cycles of length 2k on an m × n exponent
matrix is denoted as #Cm,n2k . Cycles in each class are strictly
equivalent.

Definition 3.3 (Cycle’s tracking matrix of order 2k): The
cycle’s tracking matrix of order 2k is a square matrix T C2k

of size k (k = 2, 3, · · ·) where its (i, j)th component counts
the number of classes (for the strictly equivalent relation) of
length 2k that involve all rows and columns of a matrix of
size i× j.

The matrices T C4 , T C6 , T C8 and T C10 are respectively

T C4 =

[
0 0
0 1

]
, T C6 =

[
0 0 0
0 0 0
0 0 6

]

T C8 =

0 0 0 0
0 1 3 3
0 3 18 36
0 3 36 72

 , T C10 =


0 0 0 0 0
0 0 0 0 0
0 0 60 180 180
0 0 180 900 1440
0 0 180 1440 1440

 .

It has to be noted that T C2k is symmetrical (i.e. T C2k =(
T C2k

)T
) as the number of non-equivalent cycles involved in

a i× j matrix is equal to the number of such cycles involved
in a matrix of size j × i. Note that the matrices TC4 to TC10

have been obtained using a computer program.

In an exponent matrix Pm×n of size (m × n), the total
number #Cm,n2k of non-equivalent cycles of girth 2k can
be computed as the number of distinct sub-matrices (i, j)
compatible with a cycle of length 2k (i.e. 2 ≤ i ≤ k and
2 ≤ j ≤ k) multiplied by T C2k(i, j), this results in

#Cm,n2k =

min{k,m}∑
i=2

min{k,n}∑
j=2

T C2k(i, j)

(
m

i

)(
n

j

)
, (4)

where
(
n
r

)
represent the binomial coefficient n!

r!(n−r)! . Table I
gives the values of #Cm,n2k for k = 2, 3, 4, 5, 2 ≤ m ≤ 5 and
2 ≤ n ≤ 10. The total number of strictly equivalent cycles of
length lower than g of an m × n exponent matrix Pm×n is
thus given as

#Pm×n(g) =

g/2−1∑
k=2

#Cm,n2k . (5)

For example, if g = 12, m = 3 and n = 10, then satisfying
that a given exponent matrix P3,10 of size (3, 10) generates a
girth 12 QC-LDPC code with a given lifting degree N implies
checking a total of #P3,10(12) = 135+720+12960+90360 =
104175 equations. To reduce the number of non-equivalent
classes, some constraint can be added to the exponent matrix.

B. Integer Ring-based construction of ~P1

Let us recall the usual notations used in integer ring theory
[29]. The greatest common divisor of a and b is noted
gcd (a, b). The ring of integers modulo N is denoted by
ZN . The multiplicative group of integers modulo N (set
of values of ZN coprime with N) is denoted by Z×N . An
element a ∈ Z×N generates a finite cyclic subgroup 〈a〉 =
{1, a, a2, a3, · · · , aON (a)−1}, with ON (a) the smallest non-
null integer satisfying aON (a) = 1 mod N . The value ON (a)
is called the order of a in Z×N .

In this part, we try to pick the non-zero elements of ~P1

(see (3)) from a specific cyclic subgroup of Z×N . Depending
on the value of m, we propose to allocate some or all of
the elements in this subgroup to pj1 (1 ≤ j ≤ m − 1).
The main reason behind such allocation is to add to the
strictly equivalent cycles a new type of equivalent cycles that
are called “Integer Ring equivalent” (IR-equivalent) cycles.
Reducing the number of equivalent cycles (i.e. the number of
equations that should be satisfied) has several positive side
effects. First, it directly accelerates the research algorithm
since the number of constraints to be checked is reduced.
Second, it reduces the search space: because of the a priori
selection of the ~P1 column coefficients, only the determination

4

�
�

�
�

: �
��

� �
��

� �
��

� �
��

 ≅ �
��

� �
��

� �
��

� �
��

��� ���

��� ���

b)

��� ��� ���

��� ��� ���

��� ��� ���

�
�

�
�

: �
��

� �
��

� �
��

� �
��

� �
��

� �
��

 ≅ �
��

� �
��

� �
��

� �
��

� �
��

� �
��

c)

��� ���

��� ���

�
�

�
�

� :

2
�
��

� �
��

� �
��

� �
��

�

e)

a)

���� �

���

���

⋮

���	�
�

���

���

⋮

� �	� �

⋯

⋯

⋱

⋯

����	�

����	�

⋮

���	�
��	�

���

���

���

���

���

���

���

���

d)

�
�

�
�

	 : �
��

� �
��

� �
��

� �
��

� �
��

� �
�

� �
�

� �
��

 ≅ �
��

� �
�

� �
�

� �
��

� �
��

� �
��

� �
��

� �
��

��� ���

��� ���

��� ���

�
�

�
�

� :

�
��

� �
��

� �
��

� �
��

� �
��

� �
��

� �
��

� �
��

f)

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

�
�

�
��

:

�
��

� �
�

� �
�

� �
��

� �
��

� �
��

� �
��

� �
��

� �
��

� �
��

g)

Fig. 1. Sample paths for cycles of length from 4 to 10 involved in an exponent matrix P: a) exponent matrix of size m× n. b) paths of length 4 of strictly
equivalent cycles. c) paths of length 6 of strictly equivalent cycles. d) paths of length 8 of strictly equivalent cycles. e) path of a length 8 cycle non-strictly
equivalent to (d). f) another path of a length 8 cycle non-strictly equivalent to the paths (d) and (e). g) path of a length 10 cycle.

TABLE I
NUMBER OF STRICTLY EQUIVALENT CLASSES OF LENGTH 2k CYCLES (k = 2, 3, 4, 5) THAT ARE INVOLVED IN MATRIX Pm×n , WHEN, 2 ≤ m ≤ 5 AND

2 ≤ n ≤ 10.

− m = 2 m = 3 m = 4 m = 5

− #C2,n4 #C2,n6 #C2,n8 #C2,n10 #C3,n4 #C3,n6 #C3,n8 #C3,n10 #C4,n4 #C4,n6 #C4,n8 #C4,n10 #C5,n4 #C5,n6 #C5,n8 #C5,n10

n = 2 1 0 1 0 3 0 6 0 6 0 21 0 10 0 55 0
n = 3 3 0 6 0 9 6 45 60 18 24 189 420 30 60 555 1680
n = 4 6 0 21 0 18 24 189 420 36 96 864 3300 60 240 2640 14460
n = 5 10 0 55 0 30 60 555 1680 60 240 2640 14460 100 600 8200 65940
n = 6 15 0 120 0 45 120 1305 4980 90 480 6345 45660 150 1200 19875 212340
n = 7 21 0 231 0 63 210 2646 12180 126 840 13041 116760 210 2100 41055 548940
n = 8 28 0 406 0 84 336 4830 26040 168 1344 24024 257880 280 3360 75880 1220520
n = 9 36 0 666 0 108 504 8154 50400 216 2016 40824 511560 360 5040 1292402431800
n = 10 45 0 1035 0 135 720 12960 90360 270 2880 65205 934920 450 7200 2067754457880

of the elements γj (j = 2, 3, · · · , n−1) is required. Third, and
above all, it increases the likelihood of finding a solution. The
question is open whether, for a given girth and exponent matrix
size, the smallest lifting factor can be obtained only with
IRS exponent matrices. Note that, by serendipity, the authors
forgot to kill an unconstrained search based on the method
proposed in [19] to generate an (m,n) = (3, 7) exponent
matrix with a lifting degree N = 133. After five months of
silent computation, a solution was found, which involved an
exponent matrix with the IRS structure (see Appendix I).

Definition 3.4: A type-I IRS QC-LDPC matrix is a ma-
trix obtained from the full SMC exponent matrix Pa,I of
size m × n with vector column ~P1 defined as ~P1 =
(0, 1, a, a2, . . . , am−1)T , with a an element of Z×N of order
ON (a) = m and N representing the lifting degree.

Definition 3.5: A type-II IRS QC-LDPC matrix is a matrix
obtained from the full SMC exponent matrix Pa,II of size
(3, n) with vector column ~P1 defined as ~P1 = (0, 1, a)T , with

a an element of Z×N satisfying a(1− a) = 1 mod N and N
representing the lifting degree.

The element (i, j) of the type-I IRS exponent matrix Pa,I

is defined as
Pa,I(i, j) = u(i)ai−1γj . (6)

with u(i) = 0 if i = 0, 1 otherwise. Note that the elements of
a type-II IRS exponent matrix Pa,II have also the same form
as (6).

Let π be a permutation on the number of rows
(0, 1, . . . ,m − 1) of an exponent matrix Pm×n. The
permutation π is defined in the sequel by the vector
(π(0), π(1), . . . , π(m − 1)). From the permutation π, π(C2k)
is defined as the function that is associated to a cy-
cle C2k = {(ms, ns)}s=0,1,...,2k−1 of Pm×n the cycle
of same length π(C2k) of Pm×n defined as π(C2k) =
{(π(ms), ns)}s=0,1,...,2k−1.

5

Note that, in the general case, cycles C2k and π(C2k) are
not strictly equivalent.

Definition 3.6: Let πI,1 be the permutation over the ordered
vector (0, 1, . . . ,m − 1) defined as πI,1 = (0, 2, 3, . . . ,m −
1, 1) and πI,l the rotation obtained by applying the permu-
tation πI,1 l times. Thus, for l = 1, 2, . . . ,m − 1, we have
πI,l(0) = 0 and πI,l(i) = ((i+ l) mod m) + ((i+ l)÷m).
Note that (i + l) ÷ m, the Euclidean division of (i + l)
by m takes the value 0 when (i + l) < m, and 1 when
m ≤ i+ l < 2m.

Theorem 3.7: Let Pa,Im×n be a type-I IRS exponent matrix.
Then, for all cycles C2k of length 2k of Pa,Im×n, θPa,I (C2k) = 0
if and only if θPa,I (πI,l(C2k)) = 0, l = 1, 2, . . .m− 1.

Proof: Let C2k be a cycle of length 2k of Pa,Im×n.
According to (1) and (6),

θPa,I (C2k) =

2k−1∑
s=0

(−1)su(ms)a
ms−1γns

. (7)

Since ON (a) = m in Z×N , then am = 1 and a and N are co-
prime. Since a and N are co-prime, θPa,I (C2k) = 0 mod N
if and only if alθa,IP (C2k) = 0 mod N for l = 1, 2, . . . ,m−1.
The equation alθPa,I (C2k) = 0 mod N gives

2k−1∑
s=0

(−1)su(ms)a
ms−1+lγns

= 0 mod N. (8)

Since am = 1, u(ms)a
ms+l−1 = u(πI,l(ms))a

πI,l(ms)−1,
thus (8) is equivalent to θPa,I (C2k) = 0.

Example 3.8: Suppose that P4×9 is the exponent matrix in
Fig. 2 (a), and C2k (k = 4, 5) are the cycles with the paths
depicted in Fig. 2.a. According to theorem 3.7, there are two
other IR-equivalent cycles to C2k, πI,1(C2k) given in Fig. 2.b
and πI,2(C2k) given in Fig. 2.c.

Thus, when a type-I IRS exponent matrix is used, the IR-
equivalence between cycles reduces almost by a factor of m−1
the number of equivalence classes. The reduction is not exactly
m−1 because in some rare specific cases, πI,l(C8) can also be
strictly equivalent to C8. For example, for (m,n) = (5, 2), the
length-8 cycle C8 = {(0, 0), (0, 1), (2, 1), (2, 0), (0, 0), (0, 1),
(4, 1), (4, 0)} gives with the permutation πI,2 = (0, 3, 4, 1, 2)
the cycle πI,2(C8) = {(0, 0), (0, 1), (4, 1), (4, 0), (0, 0), (0, 1),
(2, 1), (2, 0)}, which is strictly equivalent to C8 (just a 4
position shift).

Lemma 3.9: If a ∈ Z×N , satisfies a(1 − a) = 1 mod N ,
then a3 = −1 mod N . Moreover, for N > 3, ON (a) = 6.

Proof: a(1 − a) = 1 mod N implies a2 − a + 1 = 0
mod N , thus (1 + a)(a2 − a + 1) = 0 mod N , and finally,
(a3 + 1) = 0 mod N . Since a3 = −1 mod N , we can
deduce that ON (a) 6= 3 and a6 = 1. The case a2 = 1 mod N

gives a = 2 and N = 3. Thus, if N > 3, we have ON (a) = 6.

Definition 3.10: Let us define πII,1 and πII,2 the permuta-
tions πII,1 = (1, 2, 0) and πII,2 = πII,1 ◦ πII,1 = (2, 0, 1).

Theorem 3.11: Let Pa,II be a type-II IRS exponent matrix.
Then, for all cycle C2k of length 2k of Pa,II , for l = 1, 2,
θPa,II (C2k) = 0 if and only if θPa,II (πII,l(C2k)) = 0.

Proof: Let C2k be a cycle of length 2k of Pa,II . Since
ON (a) = 6 mod N , then according to the definition of a
type-II exponent matrix, a(1−a) = 1 mod N and a2 = a−1.
Thus, θPa,II (C2k) = 0 mod N if and only if aθPa,II (C2k) =
0 mod N and if and only if a2θPa,II (C2k) = 0 mod N .
According to the definition of a cycle, ns = ns+1 when s
odd. This property is equivalent to ns = ns−1 when s even,
thus it is possible to write θPa,II (C2k) = 0 mod N as

k−1∑
s=0

pm2sn2s
− pm2s−1n2s

= 0 mod N. (9)

Thus, using (6), θPa,II (C2k) = 0 mod N can be expressed
as

k−1∑
s=0

(u(m2s)a
m2s−1 − u(m2s−1)am2s−1−1))γn2s =

0 mod N.

(10)

By taking λ(m2s,m2s−1) = u(m2s)a
m2s−1 −

u(m2s−1)am2s−1−1, (10) gives

k−1∑
s=0

λ(m2s,m2s−1)γn2s
= 0 mod N. (11)

Since m2s 6= m2s−1 and m = 3, the only six possi-
ble couples (m2s,m2s−1) are (0, 1), (0, 2), (1, 2), (1, 0),
(2, 0) and (2, 1). Table II shows that aλ(m2s,m2s−1) =
−λ(πII,1(m2s), π

II,1(m2s−1)) for all possible couples
(m2s,m2s−1). Finally, since πII,2 = πII,1 ◦ πII,1,
θPa,II (πII,2(C2k)) = (−a)2θPa,II (C2k) and thus:

θPa,II (πII,2(C2k)) = 0⇐⇒ θPa,II (C2k) = 0.

Example 3.12: Let P3×9 be the exponent matrix of Fig. 3.
Fig. 3.a shows examples of cycles of length 4, 6, and 8. Fig.
3.b and 3.c show the corresponding IR-equivalent cycles using
πII,1 and πII,2, respectively.

Thus, when a type-I or type-II IRS-SMS exponent matrix
is used, a new type of equivalence between cycles appears.
This equivalence relation will be called IR-equivalence, to
distinguish it from the strictly equivalent class, but its effect
is identical: it reduces the number of equivalence classes by
a factor close to m − 1 for type-I IRS matrix and close to
3 for type-II IRS matrix. This reduction of the number of
equivalence classes translates directly into a reduction of the

6

� �

0

0

0

0

0

1

�

��

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

���� ��	

0

0

0

0

0

1

�

��

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

���� ��	

c)a)

0

0

0

0

0

1

�

��

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

����

0

��
���

���� ��	

�
�

�
��

�
�

��
�

�: 0 � �
�

	
��
�

�
��
�

	 �
�

� 1 	
� � 0

�
�

��
��

�: 0 � 0 	 �
�

� �
�

	
�
�

�
�
	

	
��
	

�
��
�

	
�
�

�
�

�,���
�

�
�,���
��

�

�,���
�

�
�,���
��

�

b)

Fig. 2. Samples of cycles with different length in P4×9: a) primary underlined paths for cycles C8 and C10. b) isomorphic paths to the paths in part (a)
derived from transformation πI,1(C). c) isomorphic paths to the paths in part (a) derived from transformation πI,2(C)

TABLE II
COMPUTATION OF aλ(m2s,m2s−1) FOR ALL POSSIBLE COUPLES.

(m2s,m2s−1) λ(m2s,m2s−1) aλ(m2s,m2s−1) πII,1((m2s,m2s−1)) λ(πII,1(m2s,m2s−1))
(0, 1) −1 −a (2,0) a
(0, 2) −a −a2 = 1− a (2,1) a− 1
(1, 2) 1− a a− a2 = 1 (0,1) −1
(1, 0) 1 a (0,2) −a
(2, 0) a −a2 = −1 + a (1,2) 1− a
(2, 1) a− 1 a− a2 = −1 (1,0) 1

� �

0

0

0

0

1

�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

��	

0

0

0

0

1

�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

��	

�

�

��

�

�: 0 � 0 � 	

�

� 1

�

�

��

�

�: 0 � 0 � 	

�

� 	

�

� ��	

�

� �	

�

�

�

�

��

�

�: 0 � 0 � 	

�

� 	

�

� 0� 0 � ��	

�

� �	

�

�

0

0

0

0

1

�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

0

�
�

��
�

��	

�

		,�

��

�

�

�

		,�

��

�

�

�

		,�

��

�

�

�

		,�

��

�

� �

		,�

��

�

� �

		,�

��

�

�

a)

b)

c)

�

�

�

�

�

�

Fig. 3. Example of cycles of length 4, 6, and 8 and IR-equivalent cycles

number of constraints on the exponent matrix. Note that when
m = 3, it is more efficient to search type-II IRS exponent
matrices than type-I IRS exponent matrices. In fact, with
a type-II IRS exponent matrix, the number of equations is
reduced by a factor of 3 whereas is reduced by only a factor
m− 1 = 2 for a type-I IRS exponent matrix.

C. IRS technique as an a priori step of greedy search algo-
rithm

Theorems 3.7 and 3.11 show that there might exist a proper
cyclic subgroup 〈a〉 of Z×N from which we can pick non-zero
components of ~P1 as ~P1 =

[
0, 1, a, a2, · · · am−2

]T
. When a

exists, ~P1 is directly defined, and the number of non-equivalent
cycles is reduced by at least a factor close to 3. The search
algorithm will then take the sub-matrix [~0 ~P1] as a base and
try to find proper values of γjs so that Pm×n meets the girth
condition. Nevertheless, for a given N value, there is not
always an a value satisfying the condition of theorems 3.7

7

and/or 3.11. Moreover, even if an a value exists, the resulting
two column type-I or type-II exponent matrix [~0 ~P1] is always
of girth 8 but not necessarily of girth 10 or 12. The question
is thus which portion of Ns remains after the sieved process
for a given girth g and a given column weight m.

Proposition 3.13: For N > 3, all type-II IRS QC-LDPC
matrices with an exponent matrix Pa,II3×2 of size 3 × 2 are of
girth 12.

Proof: First, the girth is lower than, or equal to, 12
according to [30]. According to (4), there are in Pa,II3×2 three
cycles of length 4, no cycle of length 6, six cycles of length 8
and no cycle of length 10. Owing to Theorem 3.11, the number
of cycles to be checked is reduced to one cycle of length 4
and two cycles of length 8. Those cycles can be respectively
the cycles C4, Cb8 and Cc8 depicted in parts (b), (e), and (f) of
Fig. 1, respectively. Thus,

θP(C4) = 1 mod N
θP(Cb8) = 2 mod N
θP(Cc8) = 2− a mod N

If N > 3, θP(C4) and θP(Ca8) are not equal to zero modulo N .
The third cycle requires more attention. In fact, θP(Cb8) = 0
mod N implies a = 2. When a = 2, a(1 − a) = 1 mod N
gives −3 = 0 mod N and thus N = 3. Since N > 3,
θP(Cb8) 6= 0 mod N.

For type-I IRS QC-LDPC code, the girth of the QC-LDPC
code generated from exponent matrix Pa,Im×2, m > 3 is not
always girth 12. For example, Pa=73,I

4×2 , N = 216 gives a QC-
LDPC matrix of girth 8 only, while Pa=5,I

4×2 , N = 215 gives a
QC-LDPC matrix of girth 12. Nevertheless, finding a proper
N and, accordingly, the existence of a suitable cyclic subgroup
that results in ~P1 is not time-consuming. Given a fixed m, it
will take few milliseconds for MATLAB software to check if
Z×N is a proper candidate or not.

Proposition 3.14: Let N ≥ 6, a, b be two different elements
of Z×N of order m − 1 with 〈a〉 = 〈b〉 = S. Owing to
row/column permutations, the Tanner graph constructed from
type-I exponent matrix Pa,Im×2 is equivalent to the Tanner graph
constructed from type-I exponent matrix Pb,Im×2.

Proof: Since 〈a〉 = 〈b〉 = S, the set of elements of the
second column of Pa,Im×2, i.e. the set {0, 1, a, a2, . . . , am−2} is
equal to the set of element of the second column Pb,Im×2, i.e. the
set {0, 1, b, b2, . . . , bm−1}. Thus, an appropriate permutation
of rows allows the transformation of Pa,Im×2 into Pb,Im×2 (the
coefficients of the first column are all zero, and thus not
affected by any permutation).

Proposition 3.15: Let N ≥ 6, a, b be two different elements
of Z×N that satisfy a(1 − a) = 1 mod N , b ∗ (1 − b) = 1
mod N and 〈a〉 = 〈b〉 = S. The Tanner graph of the
constructed matrix Pa,IIm×2 with the second column [0, 1, a] is

equivalent, due to a row permutation, to the Tanner graph of
the matrix Pb,IIm×2 with the second column [0, 1, b]

T .

Proof: The integers a and b verify a (1− a) = 1 =
b (1− b), moreover, ON (a) = ON (b) = 6 (Lemma 3.9).
Since a necessary and sufficient condition for non-identity
element z = xy (〈x〉 = S, y ∈ N) to be a generator of S
is gcd (y,O(S)) = 1, it is easy to see that a and b = a5 are
the only generators of S. Since, gcd(a5, N) = 1, according to
[15], a5Pa,II3×2 and Pa,II3×2 are equivalent exponent matrices due
to row/column permutations. The second column of a5Pa,II3×2
is
[
0, a5, 1

]T
= [0, b, 1]

T . Swapping the second and the third
rows of a5Pa,II3×2 gives Pb,II3×2, thus, the two exponent matrices
are equivalent.

In short, the search algorithm needs to test one generator
per each permissible cyclic subgroup S to find the exponent
matrix Pm×n of code with girth g (g = 8, 10, 12).

The final point is “there might be more than one permissible
cyclic subgroup of Z×N that meet the conditions to construct
type-I or type-II exponent matrices, but not all of them
would necessarily result in the matrix Pm×n with girth g
(g = 8, 10, 12)”. For example, Z×N=301 has two permissible
cyclic subgroups S1 = 〈80〉 and S2 = 〈136〉 of order 6 where
their generators satisfy the property a(1 − a) = 1 mod 301.
The search algorithm in Section IV can find an exponent
matrix Pa=80,II

3×10 with girth 10 but not with Pa=136,II
3×10 .

Fig. 4 shows a 2D representation of integers between 1 and
104 sieved by type-I property for m = 4. The black pixels
correspond to values of N with no admissible a value, and
the red pixels represent N values with at least one admissible
a value but no girth 12 type-I [~0, ~P1] exponent matrix. Finally,
the white pixels indicate N values with at least one girth
12 type-I [~0, ~P1] exponent matrix. It may be noted that, on
average, 60% of integers between 1 and 104 can give a girth
12 type-I [~0, ~P1] exponent matrix. We observe that the white
pixels are uniformly spread between 1 and 104. For N values
corresponding to a white pixel, the number of distinct order
3 subgroups of Z×N varies from 2 to 13. The same uniform
dispersion is observed also for type-II QC-LDPC codes and
type-I QC-LDPC codes with m = 5 and m = 6. The
proportion of values able to give a girth 12 two columns IRS
exponent matrix are 51.9 %, 24.2%, and 13.4% for type-I
m = 5, type-I m = 6 and type-II m = 3, respectively.

D. Controlled greedy search algorithm

In this section, we present a modified controlled
greedy search algorithm that uses the SMC technique
[26]. Let Γk = {0, 1, γ2, γ3, . . . , γk−1} be a
set of size k of elements of ZN . The property
ρg(Γk, ~P1, N) is true if and only if the exponent matrix[
~0 ~P1 γ2 ⊗ ~P1 γ3 ⊗ ~P1 . . . γk−1 ⊗ ~P1

]
gives a

8

10 20 30 40 50 60 70 80 90 100

 1

10

20

30

40

50

60

70

80

90

100

 1
0
0

Fig. 4. 2D representation on a 100× 100 grid of the first 104 integers. Integers N having no subgroup of Z×
N of order 4 are represented by black pixels.

If no type-I exponent matrix of size (4,2) exists, the integer is represented by a red pixel; it is white otherwise. The first top left pixel corresponds to N = 1,
and its left neighbor corresponds to N = 2. The last pixel of the first line corresponds to N = 100. The last bottom right pixel corresponds to N = 104.

matrix with a girth greater than or equal to g when expanded
by a factor of N . We call Φg(Γk, ~P1, N) the ordered set
of coefficients of ZN so that a vector Γk+1 of size k + 1
constructed by the concatenation of Γk and any coefficient of
Φg(Γk, ~P1, N) also gives an exponent matrix of girth g. In a
more formal way

β ∈ Φg(Γk, ~P1, N) ⇐⇒ ρg(Γk ∪ {β}, ~P1, N) is true. (12)

The search for a solution of degree (m,n) for a given lifting
degree N is conducted in two steps. The first step involves
the enumeration of a single element per class of the a values
satisfying the condition of Theorem 3.7. This step is described
in Algorithm 1 part I for m > 3. To do so, the set of values
A is initialized as A = {2, 3, . . . , N − 1}. The values of A
are extracted one by one. The second step starts each time an
extracted value a fulfills the condition of Theorem 3.7. The
function search is launched to try to find a solution Γn. In
case of success, the algorithm successfully stops. Otherwise,
the elements of 〈a〉 are suppressed from the search space A.
The process continues until no values remain in A, and the
search is unsuccessful. Note that for m = 3, the condition
ON (a) = m−1 of line 5 should be replaced by the condition
(a(1− a) = 1 mod N), and line 7 should be replaced by the
instruction A = A \ {ak}k=1,2,3,4,5.

The search function is described in Algorithm 1, part II. It

is a recursive function that tries to increase recursively the size
of Γ until it reaches a size of n. The arguments of the search
function are Γ, S, N , n, ~P1, and a vector G of size n that
controls the processing effort. Let us describe the processing
during the first call of the function in line 9. The arguments
of this first call are Γ1 = {0} and S (defined in line 8),
as the set of values compatible with Γ1 (see (12)). Lines 14
and 15 set up the greedy search. For i = 1, 2, . . . , |S|, the
number s(i) of triplets Γ3 = {0,S(i), µ}, µ ∈ S satisfying
the condition ρ(Γ3, ~P1, N) is computed (note that s(i) < |S|).
The s(i) are thus sorted in decreasing order (line 16), and the
first G(|Γ|) = G(1) elements of S (line 17) associated with
the highest values of vector s are tested. For each tested value,
a vector Γk of size 2 is generated (line 18). The tested value
is suppressed from the set S (line 19), and then the subset Sk
of S of values compatible with Γk is created (line 20). If the
size of Sk plus the size of Γk is greater than or equal to n,
or, if it is still possible to generate a Γ vector of length n,
then the search function is called again with a Γ set of size 2.
The process is recursively reiterated until a length n Γ vector
is found or until no new possibility remains to be explored.
The complexity of the search is controlled by a vector G of
size n. The kth value G(k) of G indicates that only the most
“promising” G(k) branches will be explored inside each depth
k recursive call of the search function. Note that when all the
values of G are equal to N the search algorithm is exhaustive.

9

Algorithm 1 Controlled greedy search algorithm for m ≥ 3

Input: Parameters n, m, N of the code, targeted girth g,
vector G of size n to control the greedy search effort.
Output: Eventually, a set of coefficients Γn of size n if
success, an empty set otherwise.

Part I: primary step

1: A ← {2, 3, . . . , N − 1}, Γn = ∅, Γ1 = {0}
2: while A 6= ∅ and Γn = ∅ do
3: Extract an element a of A.
4: A ← A \ {a}
5: if ON (a) = m− 1 then
6: ~P1 ←

(
0, 1, a, a2, . . . , am−2

)T
7: A ← A \ {ak}k=2,3,...,m−2
8: S ← Φg(Γ1, ~P1, N)

9: Γn ← search (Γ1,S, N, n, ~P1, G)
Part II: search function

10: Γn ← search (Γ,S, N, n, ~P1, G)
11: Γn ← Γ
12: if |Γn| = n then Return Γn
13: else
14: for i = 1 to |S| do
15: s(i) ← |S ∩ Φg(Γ ∪ S(i), ~P1, N)| (note: s is a

vector).
16: I ← sort index (s) (note: s(I(1)) ≥ s(I(2)) ≥ . . . ≥

s(I(|S|))).
17: for j = 1 to min (|S|, G(|Γ|)) do
18: if |Γn| = n then Return Γn
19: else
20: Γk ← Γ ∪ {S(I(j))}
21: S ← S \ {S(I(j))}
22: Sk ← S ∩ Φg(Γk, ~P1, N)
23: if |Γk|+ |Sk| ≥ n then
24: Γn ← search (Γk,Sk, N, n, ~P1, G)
25: else
26: Return ∅

It can be done in a limited time (less than a few days) only for
low values of n. For a large n, the first values of G are set to 1
or 2 to reduce the search space to a reasonable size. Note that
|X| represents the cardinal of the set X . We observe that when
taking random coefficients in the exponent matrix P, θP(C)
(see (1)) takes random values between 0 and N −1. Thus, the
probability that θP(C) 6= 0 mod N is (1− 1/N). Assuming
that all the cycles are independent (which, of course, is not
the case) then, under this groundless hypothesis, the expected
number E0(m,n, g) of girth g m× n exponent matrices will
be given by the size of the space multiplied by the probability
that all the cycles satisfy (2), i.e.

E0(m,n, g) = Nm·n(1− 1/N)#Pm×n(g). (13)

Using the IRS method, the search space is greatly reduced, but,
the number of Fossorier’s equation that should be fulfilled is
reduced by a factor close to max(3,m− 1). The expectation

of finding a solution is thus

E1(m,n, g) = Nn−2(1− 1/N)
#Pm×n(g)
max(3,m−1) (14)

For g = 10, m = 3, n = 10, and N = 301, the ratio E0/E1

is of order 5 × 10−46, which shows that finding a girth g
code is 1046 times likely to happen if one uses IRS instead
of a normal search, on average. Although the argument is not
solid, it helps explain why most of the best IRS matrices found
have a smaller size than the already published fully-connected
exponent matrices.

Although the IRS construction method reduces the search
space by a factor Nm−2 compared to the SMC technique
alone, the search space is still in O(Nn−2). However, the
numerical results presented in the next section demonstrate
the efficiency of the proposed IRS construction method.

IV. NUMERICAL RESULTS

Table III shows, for several sets of parameters (m,n, g), the
minimum lifting degree Nmin found to allow constructing a
type-I and type-II IRS QC-LDPC matrix (the description of
the found IRS matrices is shown in Appendix I). In Table III,
the best state-of-the-art minimum N value is also provided
with the associated reference.

A first conclusion of this study is that the state-of-the-
art lower bound on the lifting degree required to obtain a
girth-10 expanded matrix [33] is a little over-estimated when
m > 3 and n > 3. In fact, we found a counter example
for (m,n) = (4, 7). The lower bound is supposed to be
L(m,n) = 2

(
m
2

)(
n
2

)
+ 1, which gives, L(4, 7) = 253 whereas

we found a girth-10 4 × 7 expanded matrix with a lifting
degree of N = 247 (see Appendix I). A corrected lower bound
derived from the Double Difference matrix defined in [33] is
derived in Appendix II. The corrected lower bound Lc(m,n)
is given as

Lc(m,n) = 2

(
m

2

)(
n

2

)
− 2

(
m− 2

2

)(
n− 2

2

)
+ 1. (15)

Note that Lc(4, 7) = 237, which is compatible with the found
value N = 247.

A second conclusion is that we were always able to find an
equal or better (sometimes, significantly better) solution than
that of the state of the art for girth 10 and girth 12 matrices.
For girth 8, no matrices of variable node degree m < 6 better
than the state-of-the-art have been found. Hence, the result are
not reported. For m = 6, except for n ∈ {7, 8, 9, 10}, better
solutions have been found. Finally, future search simulation
may help us find smaller lifting degree. Updated values will
be reported online in [34].

10

TABLE III
MINIMUM FOUND LIFTING DEGREE OF IRS EXPONENT MATRICES FOR GIRTH g = 8, 10 AND 12. Ng

min IS THE SMALLEST FOUND LIFTING DEGREE OF
THE EXPONENT MATRIX WITH GIRTH g. THE LIFTING DEGREE OF THE SHORTEST EXISTING CODES IS GIVEN WITH AN EXPONENT THAT INDICATES THE

CORRESPONDING REFERENCE. EXPONENTS a,b,c,d,e,f,g,h REFER TO [11], [15], [18], [19], [31], [32], [7], [16] RESPECTIVELY.

Pa,II
3×4 Pa,II

3×5 Pa,II
3×6 Pa,II

3×7 Pa,II
3×8 Pa,II

3×9 Pa,II
3×10 Pa,II

3×11 Pa,II
3×12 Pa,II

3×13 Pa,II
3×14 Pa,II

3×15 Pa,II
3×16 Pa,II

3×17

Ng=10
min

37 61 91 133 181 241 301 373 463 571 727 877 1039 1231
37a,b 61a,b 91b 139c,d 181c 241c 313c 397c 523c - - - - -

Ng=12
min

73 151 271 427 619 921 1303 2011 2883 3769 4953 6321 - -
73a,b 151c 271c 457c 691c 991c 1447c 2161c 4730a 5851e - - - -
Pa,II

3×18 Pa,II
3×19 Pa,II

3×20 Pa,II
3×21 Pa,II

3×22 Pa,II
3×23 Pa,II

3×24 Pa,II
3×25 Pa,II

3×26 Pa,II
3×27 Pa,II

3×28 Pa,II
3×29 Pa,II

3,30 Pa,II
3,31

Ng=10
min

1453 1723 2089 2197 2689 3049 3331 3577 - - - - - -
- - - - - 5659f - 4801f - - - - - -

Pa,I
4×4 Pa,I

4×5 Pa,I
4×6 Pa,I

4×7 Pa,I
4×8 Pa,I

4×9 Pa,I
4×10 Pa,I

4×11 Pa,I
4×12 Pa,I

4×13 Pa,I
4×14 Pa,I

4×15 Pa,I
4×16 Pa,I

4×17

Ng=10
min

73 133 199 247 403 541 703 883 1123 1429 1933 2389 2881 3397
- 139c 241c 307c 409c 577c 787c 1039c 1381c - - - - -

Ng=12
min

254 571 1087 2203 4489 8966 - - - - - - - -
- 607c 1201c 2371c 6607g 12071g - - - - - - - -

Pa,I
5×4 Pa,I

5×5 Pa,I
5×6 Pa,I

5×7 Pa,I
5×8 Pa,I

5×9 Pa,I
5×10 Pa,I

5×11 Pa,I
5×12 Pa,I

5×13 Pa,I
5×14 Pa,I

5×15 Pa,I
5×16 Pa,I

5×17

Ng=10
min

175 205 511 763 1067 1417 1903 2431 3445 4849 5933 - - -
- - - 1471f - 1621f - 2861f - 5981f - - -

Pa,I
6×4 Pa,I

6×5 Pa,I
6×6 Pa,I

6×7 Pa,I
6×8 Pa,I

6×9 Pa,I
6×10 Pa,I

6×11 Pa,I
6×12 Pa,I

6×13 Pa,I
6×14 Pa,I

6×15 Pa,I
6×16 Pa,I

6×17

Ng=8
min

41 61 101 101 121 151 181 181 181 241 281 331 341 401
- - - 70h 95h 125h 150h 182h 218h 254h 296h 337h 380h 429h

Ng=10
min 251 421 571 971 1331 1891 2621 3421 4261 5611 7171 - - -

Pa,I
6×18 Pa,I

6×19 Pa,I
6×20 Pa,I

6×21 Pa,I
6×22 Pa,I

6×23 Pa,I
6×24 Pa,I

6×25 Pa,I
6×26 Pa,I

6×27 Pa,I
6×28 Pa,I

6×29 Pa,I
6,30 Pa,I

6,31

Ng=8
min

451 521 571 601 661 751 781 881 941 941 1051 1111 1111 -
478g 530g 584g - 2113f 967f - 1951f 2029f - 3529f 4003f - -

V. CONCLUSION

A new construction method of fully-connected QC-LDPC
codes of girth g = 8, 10, and 12 has been presented. This
method is called Integer Ring Sieve. For a lifting factor of
size N , the IRS construction requires that the second column
of the exponent matrix takes its values in an integer ring of
Z×N with a specific property. The constraint on the second
column has several beneficial effects: it reduces the search
space, it reduces the number of constraints to be checked, and
ultimately, for most of the exponent matrix size (m,n) with a
girth objective of 8, 10, or 12, it gives a smaller lifting factor
than the ones already reported in the literature. The table of
best-found IRS QC-LDPC codes is also given in the paper.
Finally, the IRS method allows us to find a counter-example
showing that the lower bound proposed in [33] is a little over-
estimated. A corrected lower bound has been given.

ACKNOWLEDGMENT

This project has been partly funded by the Brittany Region
in the frame of the call “Campagne d’Activité Postdoctorale
2017”. The authors would like to thank the anonymous re-
viewers and the associated editor, M. Andrew Thangaraj, for
their insightful comments that helped to improve the paper.

APPENDIX I

In this appendix, an abstract list of the parameters of our
constructed codes is provided. The parameters of each code are
embedded in braces as {N,Pa,Tm×n, [0, 1, γ2, γ3, · · · , γn−1]},
with T indicating the type of IR exponent matrix, i.e. Pa,I or
Pa,II .

Case m = 3, girth 10: {N = 37, P27,II
3×4 , [0, 1, 3, 24]}; {N =

61, P14,II
3×5 , [0, 1, 3, 21, 55]}; {N = 91, P17,II

3×6 , [0, 1, 3, 7, 25, 38]};
{N = 133, P12,II

3×7 , [0, 1, 3, 32, 38, 42, 116]}; {N = 181, P133,II
3×8 ,

[0, 1, 3, 69, 120, 129, 141, 156]}; {N = 241, P16,II
3×9 , [0, 1, 3,

13, 88, 114, 182, 217, 223]}; {N = 301, P80,II
3×10 , [0, 1, 3, 7, 33,

73, 117, 140, 208, 226]}; {N = 373, P285,II
3×11 , [0, 1, 3, 35, 50, 73,

95, 170, 180, 221, 235]}; {N = 463, P442,II
3×12 , [0, 1, 3, 9, 29, 116,

148, 219, 260, 329, 388, 418]}; {N = 571, P462,II
3×13 , [0, 1, 3, 9, 91,

120, 140, 217, 375, 398, 511, 516, 561]}; {N = 727, P446,II
3×14 , [0,

1, 3, 7, 12, 35, 105, 192, 213, 352, 442, 472, 653, 714]}; {N =
877, P595,II

3×15 , [0, 1, 3, 7, 12, 22, 47, 114, 247, 390, 423, 431, 639,
692, 755]}; {N = 1039, P899,II

3×16 , [0, 1, 3, 7, 12, 20, 36, 183, 396,
462, 674, 716, 798, 823, 967, 982]}; {N = 1231, P1105,II

3×17 , [0, 1, 3,
7, 12, 20, 34, 106, 132, 374, 402, 450, 519, 737, 1010, 1061, 1071]};
{N = 1453, P760,II

3×18 , [0, 1, 3, 7, 12, 20, 30, 46, 132, 184, 239, 320,
418, 867, 951, 1015, 1100, 1382]}; {N = 1723, P1682,II

3×19 , [0, 1,
3, 7, 12, 20, 30, 46, 67, 99, 248, 605, 693, 793, 831, 975, 1105,
1271, 1381]}; {N = 2089, P1263,II

3×20 , [0, 1, 3, 7, 12, 20, 30, 45,
61, 85, 107, 249, 510, 602, 970, 1022, 1297, 1481, 1635, 1987]};
{N = 2197, P1161,II

3×21 , [0, 1, 122, 125, 251, 303, 413, 493, 811, 846,
867, 877, 1262, 1416, 1438, 1533, 1739, 1794, 2083, 2109, 2191]};
{N = 2689, P2298,II

3×22 , [0, 1, 17, 39, 66, 196, 432, 466, 522, 524,
1109, 1217, 1257, 1343, 1596, 1788, 1998, 2255, 2346, 2504, 2524,
2618]}; {N = 3049, P2517,II

3×23 , [0, 1, 89, 267, 414, 586, 612, 639,
710, 726, 1002, 1373, 1424, 1504, 1573, 1821, 1971, 2077, 2145,
2338, 2445, 2646, 2886]}; {N = 3331,P1868,II

3×24 , [0, 1, 31, 242, 399,

11

404, 407, 557, 716, 916, 1209, 1623, 1843, 1878, 1941, 1998, 2013,
2229, 2318, 2436, 2618, 2676, 3139, 3231]}; {N = 3577, P1452,II

3×25 ,
[0, 1, 7, 91, 164, 571, 580, 674, 677, 1033, 1070, 1346, 1657, 2443,
2651, 2700, 2772, 2895, 2916, 2931, 3049, 3144, 3204, 3467, 3523]};

Case m = 3, girth 12: {N = 73, P9,II
3×4 , [0, 1, 3, 13]}; {N =

151, P119,II
3×5 , [0, 1, 3, 108, 139]}; {N = 271, P29,II

3×6 , [0, 1, 3, 7,
67, 144]}; {N = 427, P136,II

3×7 , [0, 1, 3, 18, 209, 300, 388]}; {N =

619,P367,II
3×8 , [0, 1, 3, 216, 312, 318, 462, 529]}; {N = 921,P632,II

3×9 ,
[0, 1, 3, 117, 226, 232, 384, 441, 595]}; {N = 1303, P1208,II

3×10 , [0, 1,
5, 14, 89, 349, 383, 562, 1130, 1152]}; {N = 2011, P1806,II

3×11 , [0, 1,
3, 10, 30, 122, 454, 654, 937, 1095, 1699]}; {N = 2883, P2444,II

3×12 ,
[0, 1, 11, 442, 522, 902, 965, 1145, 1857, 2091, 2632, 2775]}; {N =
3769, P3306,II

3×13 , [0, 1, 19, 154, 1257, 1539, 1636, 2519, 2564, 2855,
3099, 3111, 3250]}; {N = 4953, P1544,II

3×14 , [0, 1, 108, 457, 486,
1252, 1331, 1546, 2558, 3839, 4262, 4308, 4746, 4911]}; {N =
6321, P2273,II

3×15 , [0, 1, 827, 1613, 1637, 2135, 3891, 4051, 4082,
4342, 4380, 4694, 5171, 5328, 5905]};

Case m = 4, girth 10: {N = 73, P8,I
4×4, [0, 1, 34, 47]}; {N =

133, P11,I
4×5 , [0, 1, 5, 21, 54]}; {N = 199, P92,I

4×6 , [0, 1, 3, 104, 147,
161]}; {N = 247, P68,I

4×7 , [0, 1, 83, 206, 209, 215, 220]}; {N =

403, P87,I
4×8 , [0, 1, 3, 7, 111, 159, 233, 303]}; {N = 541, P129,I

4×9 , [0,
1, 3, 99, 264, 314, 353, 401, 423]}; {N = 703, P26,I

4×10, [0, 1, 9, 123,
353, 443, 498, 501, 609, 663]}; {N = 883, P545,I

4×11 , [0, 1, 16, 210,
471, 589, 652, 776, 780, 824, 877]}; {N = 1123, P1089,I

4×12 , [0, 1, 56,
144, 330, 695, 733, 829, 848, 987, 994, 1112]}; {N = 1429, P764,I

4×13 ,
[0, 1, 73, 217, 263, 269, 461, 805, 918, 1020, 1253, 1297, 1396]};
{N = 1933, P1341,I

4×14 , [0, 1, 13, 297, 299, 370, 445, 576, 871, 985,
1277, 1376, 1735, 1886]}; {N = 2389, P1699,I

4×15 , [0, 1, 28, 63, 203,
450, 506, 1413, 1455, 1471, 1478, 1544, 1640, 2008, 2040]}; {N =
2881, P2315,I

4×16 , [0, 1, 464, 786, 831, 931, 1032, 1090, 1111, 1326,
1929, 2136, 2164, 2177, 2239, 2275]}; {N = 3397, P2788,I

4×17 , [0,
1, 3, 23, 154, 606, 647, 861, 1432, 1496, 1636, 1922, 2455, 2699,
2786, 3215, 3300]};

Case m = 4, girth 12: {N = 254, P107,I
4×4 , [0, 1, 25, 46]}; {N =

571, P461,I
4×5 , [0, 1, 17, 184, 482]}; {N = 1087, P829,I

4×6 , [0, 1, 4,
142, 1018, 1055]}; {N = 2203, P1917,I

4×7 , [0, 1, 4, 130, 443, 1082,
1397]}; {N = 4489, P3789,I

4×8 , [0, 1, 942, 1062, 1312, 1547, 2202,
3692]}; {N = 8966, P3977,I

4×9 , [0, 1, 11, 17, 1158, 2049, 3754, 4987,
6942]};

Case m = 5, girth 10: {N = 175, P118,I
5×4 , [0, 1, 6, 165]}; {N =

205, P9,I
5×5, [0, 1, 4, 52, 193]}; {N = 511, P265,I

5×6 , [0, 1, 3, 114,
244, 354]}; {N = 763, P251,I

5×7 , [0, 1, 3, 72, 81, 117, 720]}; {N =

1067, P604,I
5×8 , [0, 1, 3, 8, 32, 46, 812, 1050]}; {N = 1417, P142,I

5×9 ,
[0, 1, 3, 225, 386, 912, 972, 1294, 1337]}; {N = 1903,P439,I

5×10 , [0, 1,
395, 464, 500, 988, 1139, 1350, 1686, 1877]}; {N = 2431, P395,I

5×11 ,
[0, 1, 493, 510, 698, 832, 1091, 1370, 1433, 1867, 1979]}; {N =
3445, P818,I

5×12 , [0, 1, 10, 200, 281, 461, 583, 1364, 1408, 1641, 2178,
2492]}; {N = 4849, P3626,I

5×13 , [0, 1, 136, 218, 392, 732, 1048, 1244,
2143, 2642, 3476, 3522, 4024]}; {N = 5933, P5099,I

5×14 , [0, 1, 484,
1320, 1457, 1738, 2287, 2691, 3651, 3696, 3891, 4065, 4715, 5375]};

Case m = 6, girth 8: {N = 41, P10,I
6×4 , [0, 1, 2, 3]}; {N =

61, P9,I
6×5, [0, 1, 2, 12, 13]}; {N = 101, P36,I

6×6 , [0, 1, 2, 3, 4,
5]}; {N = 101, P36,I

6×7 , [0, 1, 2, 3, 4, 26, 79]}; {N = 121, P3,I
6×8,

[0, 1, 2, 7, 12, 24, 64, 116]}; {N = 151, P8,I
6×9, [0, 1, 2, 3, 4, 5,

6, 49, 108]}; {N = 181, P42,I
6×10, [0, 1, 2, 3, 10, 11, 21, 25, 101,

173]}; {N = 181, P42,I
6×11, [0, 1, 2, 3, 10, 35, 41, 51, 77, 132, 173]};

{N = 181, P42,I
6×12, [0, 1, 3, 10, 35, 38, 52, 86, 89, 105, 147, 156]};

{N = 241, P87,I
6×13, [0, 1, 2, 4, 5, 16, 31, 104, 106, 125, 175, 208,

212]}; {N = 281, P86,I
6×14, [0, 1, 13, 14, 18, 116, 117, 122, 146, 149,

173, 178, 179, 277]}; {N = 331, P64,I
6×15, [0, 1, 2, 20, 34, 61, 88,

100, 108, 116, 123, 158, 186, 201, 216]}; {N = 341, P47,I
6×16, [0, 1,

12, 44, 83, 84, 98, 101, 115, 116, 155, 187, 198, 199, 222, 318]};
{N = 401, P39,I

6×17, [0, 1, 15, 27, 31, 36, 51, 54, 58, 65, 76, 90,
105, 111, 112, 113, 145]}; {N = 451, P16,I

6×18, [0, 1, 9, 109, 117,
133, 152, 157, 158, 159, 192, 207, 255, 263, 292, 314, 330, 401]};
{N = 521, P25,I

6×19, [0, 1, 2, 99, 100, 101, 196, 201, 234, 297, 298,
299, 320, 409, 421, 434, 462, 470, 475]}; {N = 571, P106,I

6×20 , [0,
1, 37, 103, 205, 225, 252, 262, 273, 274, 275, 296, 299, 317, 349,
368, 424, 509, 547, 570]}; {N = 601, P32,I

6×21, [0, 1, 27, 50, 69,
136, 137, 138, 144, 238, 279, 325, 412, 463, 488, 495, 502, 531,
589, 596, 600]}; {N = 661, P197,I

6×22 , [0, 1, 10, 24, 56, 57, 58, 59,
82, 113, 117, 152, 176, 251, 331, 360, 412, 474, 565, 590, 603,
605]}; {N = 751, P80,I

6×23, [0, 1, 11, 45, 51, 124, 210, 211, 212,
318, 342, 355, 407, 420, 421, 542, 550, 551, 579, 612, 621, 629,
750]}; {N = 781, P5,I

6×24, [0, 1, 2, 29, 150, 151, 152, 154, 210,
216, 223, 235, 255, 268, 300, 358, 364, 369, 379, 483, 502, 517,
598, 630]}; {N = 881, P268,I

6×25 , [0, 1, 2, 106, 204, 226, 319, 326,
327, 328, 363, 366, 391, 416, 430, 537, 548, 554, 555, 556, 645, 656,
657, 678, 735]}; {N = 941, P349,I

6×26 , [0, 1, 40, 59, 80, 202, 227, 228,
229, 255, 347, 419, 453, 457, 466, 484, 488, 491, 531, 684, 712, 713,
714, 715, 847, 940]}; {N = 941, P349,I

6×27 , [0, 1, 3, 53, 96, 202, 227,
228, 229, 243, 260, 321, 340, 381, 419, 453, 457, 460, 484, 630, 644,
707, 712, 713, 714, 715, 940]}; {N = 1051, P307,I

6×28 , [0, 1, 3, 72, 73,
74, 75, 114, 116, 134, 136, 218, 222, 248, 251, 371, 447, 493, 614,
655, 696, 737, 770, 887, 977, 979, 981, 985]}; {N = 1111, P339,I

6×29 ,
[0, 1, 25, 90, 100, 156, 182, 191, 203, 211, 302, 303, 312, 351, 381,
406, 529, 619, 628, 685, 731, 755, 762, 763, 799, 810, 833, 851,
1088]}; {N = 1111, P339,I

6×30 , [0, 1, 25, 90, 100, 156, 182, 191, 203,
211, 302, 303, 312, 351, 381, 406, 529, 619, 628, 685, 731, 755,
762, 763, 799, 810, 833, 851, 1088, 1107]};

Case m = 6, girth 10: {N = 142, P5,I
6×3, [0, 1, 48]}; {N =

251, P20,I
6×4 , [0, 1, 4, 79]}; {N = 421, P252,I

6×5 , [0, 1, 4, 94, 387]};
{N = 571, P106,I

6×6 , [0, 1, 45, 154, 272, 382]}; {N = 971, P803,I
6×7 ,

[0, 1, 6, 585, 608, 725, 872]}; {N = 1331, P1170,I
6×8 , [0, 1, 8, 45,

145, 674, 970, 1292]}; {N = 1891, P95,I
6×9 , [0, 1, 124, 394, 534,

1025, 1076, 1224, 1236]}; {N = 2621, P1295,I
6×10 , [0, 1, 29, 375, 392,

446, 846, 1643, 2014, 2048]}; {N = 3421, P36,I
6×11, [0, 1, 203, 1000,

1247, 1478, 1645, 1660, 2245, 2466, 2526]}; {N = 4261, P398,I
6×12 ,

[0, 1, 723, 1697, 2055, 2405, 2533, 2574, 2737, 3334, 3398, 3879]};
{N = 5611, P783,I

6×13 , [0, 1, 202, 421, 2209, 3070, 3556, 3616, 3726,
3869, 4068, 4261, 4537]}; {N = 7171, P238,I

6×14 , [0, 1, 248, 703, 735,
936, 1304, 2618, 3613, 4332, 4353, 4848, 5360, 6771]};

APPENDIX II

In this appendix, we give first a toy counter-example show-
ing that condition (ii) of Theorem 1 of [33] is not a necessary
condition to prevent girth-8 cycles, and thus, that the derived
lower bound is over-estimated. Next, we proposed an updated
accurate lower bound.

12

Let us consider the following exponent matrix P4×4 with
an expansion factor N , where ∞ denotes the zero matrix.

P4×4 =


0 0 ∞ ∞
0 a ∞ ∞
∞ ∞ 0 0
∞ ∞ 0 b

 (16)

The corresponding
(
4
2

)
×
(
4
2

)
= 6 × 6 double difference DD

matrix defined in [33] is given as

DD =


(a,N − a) (∞,∞) . . . (∞,∞) (∞,∞)

(∞,∞) (∞,∞) . . . (∞,∞) (∞,∞)
(∞,∞) (∞,∞) . . . (∞,∞) (∞,∞)
(∞,∞) (∞,∞) . . . (∞,∞) (∞,∞)
(∞,∞) (∞,∞) . . . (∞,∞) (∞,∞)
(∞,∞) (∞,∞) . . . (∞,∞) (b,N − b)


(17)

In [33], the lower bound is derived from the claim that all
the finite values of the L(m,n) = 2

(
m
2

)(
n
2

)
elements of DD

should be distinct. In the toy counter-example, the double
difference matrix DD of P4×4 contains 4 finite values, which
gives a lower bound equals to 4+1 = 5. Nevertheless, setting
a = 1, b = 1 and N = 3 gives a matrix of girth 12, which
is in contradiction with the fact that the lower bound is equal
to N = 5. The trick is that two elements of the matrix DD
corresponding to two length-4 cycles that share neither lines
nor columns can be equal without generating a length-8 cycle
in the expanded matrix.

From this observation, it is possible to update the lower
bound for a fully connected exponent matrix Pm×n. Let DD
be the double difference matrix associated to Pm×n [33]. The
couple DD(1, 1) is equal to DD(1, 1) = (θP(C04),−θP(C04)
mod N) with C04 defined as the cycle that goes through
the first two lines and the first two rows of Pm×n, i.e.,
θP(C04) = p1,1−p1,2+p2,2−p2,1 mod N (see Fig. 1.b). Any
length-4 cycles generated from two columns with an index
ranging from 3 to n and two lines with an index ranging from
3 to m are constructed as completely disjoint from the cycle
C04 . Thus, there are exactly E(m,n) =

(
n−2
2

)(
m−2
2

)
other

length-4 cycles in Pm×n that share neither row nor column
with C04 . Those E(m,n) length-4 cycles are associated with
E(m,n) positions in the DD matrix, and consequently with
2E(m,n) values that can be equal either to θP(C04) or to
−θP(C04) mod N without generating a length-8 cycle. The
lower bound for a fully connected QC-LDPC code is thus
corrected as Lc(m,n) = L(m,n)− 2E(m,n) + 1 i.e.

Lc(m,n) = 2

(
n

2

)(
m

2

)
− 2

(
n− 2

2

)(
m− 2

2

)
+ 1. (18)

REFERENCES

[1] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp.
399–431, Mar. 1999.

[2] “IEEE Draft Standard for Air Interface for Broadband Wireless Access
Systems,” IEEE P802.16/D4, September 2017 (Revision of IEEE Std
802.16-2012), pp. 1–2764, Sept. 2017.

[3] ETSI, “Digital Video Broadcasting (DVB),” European Telecommunica-
tions Standards Institute, Sophia Antipolis, France, pp. 1–78, Apr. 2009.

[4] CCSDS, “Short Blocklength LDPC codes for TC synchronization and
channel coding,” CCSDS 231.1-O-1, 2015.

[5] ”3GPP, The Mobile Broadband Standard”. [Online]. Available:
https://www.3gpp.org/ftp/tsg ran/WG1 RL1/

[6] M. P. C. Fossorier, “Quasi cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Transactions on Information
Theory, vol. 50, no. 8, pp. 1788–1793, Aug. 2004.

[7] M. E. O’Sullivan, “Algebraic construction of sparse matrices with large
girth,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp.
718–727, Feb. 2006.

[8] Yige Wang, J. S. Yedidia, and S. C. Draper, “Construction of high-girth
QC-LDPC codes,” in 2008 5th International Symposium on Turbo Codes
and Related Topics, Sep. 2008, pp. 180–185.

[9] R. Asvadi, A. H. Banihashemi, and M. Ahmadian-Attari, “Lowering the
Error Floor of LDPC Codes Using Cyclic Liftings,” IEEE Transactions
on Information Theory, vol. 57, no. 4, pp. 2213–2224, Apr. 2011.

[10] D. V. Nguyen, S. K. Chilappagari, M. W. Marcellin, and B. Vasic, “On
the Construction of Structured LDPC Codes Free of Small Trapping
Sets,” IEEE Transactions on Information Theory, vol. 58, no. 4, pp.
2280–2302, Apr. 2012.

[11] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, and R. V.
Satyukov, “Searching for Voltage Graph-Based LDPC Tailbiting Codes
With Large Girth,” IEEE Transactions on Information Theory, vol. 58,
no. 4, pp. 2265–2279, Apr. 2012.

[12] J. Wang, L. Dolecek, and R. D. Wesel, “The Cycle Consistency
Matrix Approach to Absorbing Sets in Separable Circulant-Based LDPC
Codes,” IEEE Transactions on Information Theory, vol. 59, no. 4, pp.
2293–2314, Apr. 2013.

[13] M. Diouf, D. Declercq, S. Ouya, and B. Vasic, “A PEG-like LDPC
code design avoiding short trapping sets,” in 2015 IEEE International
Symposium on Information Theory (ISIT), Jun. 2015, pp. 1079–1083.

[14] M. Gholami and Z. Gholami, “An explicit method to generate some QC-
LDPC codes with girth 8,” Iranian Journal of Science and Transactions
A: Science, vol. 40, no. 2, pp. 145–149, Jun. 2016.

[15] A. Tasdighi, A. H. Banihashemi, and M. Sadeghi, “Efficient Search of
Girth-Optimal QC-LDPC Codes,” IEEE Transactions on Information
Theory, vol. 62, no. 4, pp. 1552–1564, Apr. 2016.

[16] ——, “Symmetrical Constructions for Regular Girth-8 QC-LDPC
Codes,” IEEE Transactions on Communications, vol. 65, no. 1, pp. 14–
22, Jan. 2017.

[17] X. Tao, Y. Li, Y. Liu, and Z. Hu, “On the Construction of LDPC
Codes Free of Small Trapping Sets by Controlling Cycles,” IEEE
Communications Letters, vol. 22, no. 1, pp. 9–12, Jan. 2018.

[18] M. Battaglioni, A. Tasdighi, M. Baldi, M. H. Tadayon, and F. Chiaraluce,
“Compact QC-LDPC Block and SC-LDPC Convolutional Codes for
Low-Latency Communications,” in 2018 IEEE 29th Annual Interna-
tional Symposium on Personal, Indoor and Mobile Radio Communi-
cations (PIMRC), Sep. 2018, pp. 1–5.

[19] A. Derrien, E. Boutillon, and A. Cerqueus, “Additive, Structural, and
Multiplicative Transformations for the Construction of Quasi-Cyclic
LDPC Matrices,” IEEE Transactions on Communications, vol. 67, no. 4,
pp. 2647–2659, Apr. 2019.

[20] S. Naseri and A. H. Banihashemi, “Construction of Girth-8 QC-LDPC
Codes Free of Small Trapping Sets,” IEEE Communications Letters,
vol. 23, no. 11, pp. 1904–1908, Nov. 2019.

[21] J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar, “Construc-
tion of regular and irregular ldpc codes: Geometry decomposition and
masking,” IEEE Transactions on Information Theory, vol. 53, no. 1, pp.
121–134, 2007.

[22] Y. Liu and Y. Li, “Design of masking matrix for QC-LDPC codes,” in
2013 IEEE Information Theory Workshop (ITW), 2013, pp. 1–5.

[23] G. Han, Y. L. Guan, and L. Kong, “Construction of Irregular QC-LDPC
Codes via Masking with ACE Optimization,” IEEE Communications
Letters, vol. 18, no. 2, pp. 348–351, 2014.

[24] A. Jimenez Felstrom and K. S. Zigangirov, “Time-varying periodic
convolutional codes with low-density parity-check matrix,” IEEE Trans-
actions on Information Theory, vol. 45, no. 6, pp. 2181–2191, Sep. 1999.

[25] M. Battaglioni, A. Tasdighi, G. Cancellieri, F. Chiaraluce, and M. Baldi,
“Design and Analysis of Time-Invariant SC-LDPC Convolutional Codes
With Small Constraint Length,” IEEE Transactions on Communications,
vol. 66, no. 3, pp. 918–931, Mar. 2018.

https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/

13

[26] M. H. Tadayon, A. Tasdighi, M. Battaglioni, M. Baldi, and F. Chiaraluce,
“Efficient Search of Compact QC-LDPC and SC-LDPC Convolutional
Codes With Large Girth,” IEEE Communications Letters, vol. 22, no. 6,
pp. 1156–1159, Jun. 2018.

[27] M. Battaglioni, F. Chiaraluce, M. Baldi, and M. Lentmaier, “Girth
Analysis and Design of Periodically Time-Varying SC-LDPC Codes,”
IEEE Transactions on Information Theory, vol. 67, no. 4, pp. 2217–
2235, 2021.

[28] J. Li, S. Lin, K. Abdel-Ghaffar, D. J. Costello Jr, and W. E. Ryan, LDPC
code designs, constructions, and unification. Cambridge University
Press, 2016.

[29] H. Riesel, Prime numbers and computer methods for factorization.
Springer Science & Business Media, 2012, vol. 126.

[30] R. Tanner, “A recursive approach to low complexity codes,” IEEE
Transactions on information theory, vol. 27, no. 5, pp. 533–547, Sept.
1981.

[31] H. Xu, H. Li, D. Feng, B. Zhang, and H. Zhu, “On the Girth of Tanner
(3,13) Quasi-Cyclic LDPC Codes,” IEEE Access, vol. 7, pp. 5153–5179,
2018.

[32] H. Xu, H. Li, B. Bai, M. Zhu, and B. Zhang, “Tanner (J,L) Quasi-
Cyclic LDPC Codes: Girth Analysis and Derived Codes,” IEEE Access,
vol. 7, pp. 944–957, 2019.

[33] F. Amirzade and M. Sadeghi, “Lower Bounds on the Lifting Degree
of QC-LDPC Codes by Difference Matrices,” IEEE Access, vol. 6, pp.
23 688–23 700, 2018.

[34] E. Boutillon. Low Density Parity Check code. 31/01/2021. [Online].
Available: http://www-labsticc.univ-ubs.fr/∼boutillon/ldpc/ldpc.htm

Alireza Tasdighi received the M.A.Sc. Degree in applied mathematics from
Sharif University of Technology, Tehran, Iran in 2011. In 2011-2012, he
was instructor at the Department of Basic Sciences, Persian Golf University,
Bushehr, Iran. From 2012 to 2016, he pursued his Ph.D. in information/coding
theory at Amirkabir University of Technology, Tehran, Iran. As a part of his
Ph.D. program, Alireza joined a channel coding research group at Department
of System and Computer Engineering, Carleton University, Ottawa, Canada.
From 2017 to 2018, Alireza has been a faculty member of the IASBS
university (Zanjan, Iran). In 2019, he was a posdoct researcher at LAB-STICC,
Université Bretagne Sud (Lorient, France). Since, 2020, he is a postdoc re-
searcher at the MEE Department at IMT Atlantique (Brest, France). Alireza’s
interests include graph theory, number theory, linear algebra, protograph based
QC-LDPC codes, Non-Binary QC-LDPC codes, remote sensing and machine
learning.

Emmanuel Boutillon received the Engineering Diploma in 1990 and its Ph.D.
degree in 1995, both from the Telecom Paris Tech, Paris. From 1995 to 2000,
he was an assistant professor in Telecom Paris Tech. In 1998, he spent a
sabbatical year at the University of Toronto, Ontario, Canada. In 2000, he
moved to the Université Bretagne Sud (Lorient, France) as a professor. He
headed the LESTER lab from 2005 up to the end of 2007. He was then head of
CACS department (lab-STICC) until 2016. In 2011, he had a sabbatical year
at INICTEL-UNI, Lima (Peru). His research interests are on the interactions
between algorithm and architecture in the field of wireless communications
and high speed signal processing. In particular, he works on binary and non-
binary decoders.

http://www-labsticc.univ-ubs.fr/~boutillon/ldpc/ldpc.htm

	Introduction
	Preliminaries
	QC-LDPC block codes
	Code design using sequentially multiplied columns

	Integer Ring Sieve to find permissible elements for the vector 1
	Equivalent relations between the set of cycles
	Integer Ring-based construction of 1
	IRS technique as an a priori step of greedy search algorithm
	Controlled greedy search algorithm

	Numerical Results
	Conclusion
	References
	Biographies
	Alireza Tasdighi
	Emmanuel Boutillon

