Largest magnitude for off-diagonal auto-correlation coefficients in high dimensional framework - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year : 2024

Largest magnitude for off-diagonal auto-correlation coefficients in high dimensional framework

Abstract

This paper studies the coherence of an high-dimensional observations matrix. Specifically, we describe the limiting distribution of the largest magnitude of correlations matrix associated to our data outside a central band which size depends of the sample size. Using the Chen-Stein method, we show the convergence of the normalized coherence towards a Gumbel distribution. We broaden previous results by considering a 3-regime band structure for the off diagonal covariance matrix, where the largest band is composed of asymptotically vanishing coefficients. We provide an hypothesis test on the covariance structure where the alternative shows a clear dichotomy on the vanishing band. Moreover, we provide numerical simulations illustrating the asymptotic behavior of the coherence with Monte-Carlo experiment. We use a splitting strategy computing correlation matrices by blocks in order to avoid the high-dimensional memory issue.
Fichier principal
Vignette du fichier
BoCvZ17_last.pdf (922 Ko) Télécharger le fichier
hist_reduit.png (44.22 Ko) Télécharger le fichier
new_dist_2_1.png (42.63 Ko) Télécharger le fichier
taille_Go.png (22.3 Ko) Télécharger le fichier
zoom_cor.png (246.58 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03375111 , version 1 (12-10-2021)
hal-03375111 , version 2 (20-06-2024)

Identifiers

Cite

Maxime Boucher, Didier Chauveau, Marguerite Zani. Largest magnitude for off-diagonal auto-correlation coefficients in high dimensional framework. 2024. ⟨hal-03375111v2⟩
93 View
110 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More