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Largest magnitude for off-diagonal auto-correlation coefficients
in high dimensional framework

Maxime Boucher ∗ †, Didier Chauveau ∗, Marguerite Zani ∗‡

Abstract :
This paper studies the τ -coherence of a (n× p)-observation matrix in a Gaussian framework where both n and
p are large and p >> n. The τ -coherence is defined as the largest magnitude, outside a band of size τ = τ(n), of
the empirical correlation coefficients associated to the observations. Using the Chen-Stein method we show the
convergence of the normalized coherence towards a Gumbel distribution. We broaden previous results by consid-
ering a 3-regime band structure for the correlation matrix, where the largest band is composed of asymptotically
vanishing coefficients. We provide an hypothesis test on the correlation structure where the alternative shows a
clear dichotomy on the vanishing band. Moreover, we provide numerical simulations illustrating the asymptotic
behaviour of the coherence with Monte-Carlo experiment. We use a splitting strategy computing correlation
matrices by blocks in order to avoid the high-dimensional memory issue.

Key words : Chen-Stein method, coherence, Gaussian high-dimensional matrices, Banded correlation.

1 Introduction

Random matrix theory has known a great amount of breakthroughs for these last decades.
Developments have been made in theoretical fields as well as in various applied domains such
as high-energy physics (e.g. [For10] on log–gases), electric engineering (signal and imaging, see
[Don06, CT05, CRT06b, CRT06a] ), statistics (see [Joh01, Joh08, BG16]). Earlier works on
random matrices were focused on spectral analysis of eigenvalues and eigenvectors (see [Wig58]
or [Meh04, BS10], see also [BC12] and references therein). For a reference on random matrix
theory, see [BS10, Meh04, AGZ10].

In high dimensional statistics in particular, random matrices are widely used : high dimen-
sional regression, hypothesis testing for high dimension parameters, inference for large covariance
matrices. See e.g. [BS96, CT07, BJYZ09, CWX10a, CZZ10, BRT09]. In these contexts where
the dimension p can be of the same or even higher magnitude than the sample size n, one faces
new statistical challenges and classical methods no longer apply (see e.g. [Don00, JT09, EK18]).
Empirical covariance or auto–correlation matrices are valuable to understand the dependences
of the data set. In this paper we focus on the coherence, i.e. the supremum of the off-diagonal
terms of (auto)correlation matrices. We consider the case where both n and p are increasing,
p being much larger than n. We allow p to depend on n, this dependence is denoted by pn.
Hence in the sequel we will write indifferently p or pn. In our model the correlation matrix has
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a 3-regime bandwise structure. Indeed the correlation matrix is composed of three contiguous
off-diagonal bands with respectively constant, decreasing to 0 and null coefficients. Model and
motivation are detailed below.

Autocorrelation matrices and coherence

Let t
(
X1, X2, . . . , Xp

)
be a p – dimensional Gaussian random vector with mean t(µ1, · · · , µp)

in Rp and covariance matrix Σ ∈ Rp×Rp. We consider a random sample {t
(
X1
i , X

2
i , . . . , X

p
i

)
}i=1,...,n

issued from
(
X1, X2, . . . , Xp

)
, arranged in a (n, p)-matrix Xn. We denote by Xkn the kth column

of Xn. The classical empirical Pearson’s correlation coefficient writes:

ρkj =

n∑
i=1

(
Xk
i − Xkn

)(
Xj
i − Xjn

)
√

n∑
i=1

(
Xk
i − Xkn

)2
√

n∑
i=1

(
Xj
i − Xjn

)2
(1)

where Xkn is the empirical mean of the kth column Xkn:

Xkn =
1

n

n∑
i=1

Xk
i .

Definition 1.1. With the notations above, we can define the largest magnitude of the off–
diagonal terms of the correlation matrix :

Ln = max
1≤k<j≤p

|ρkj | . (2)

In signal processing Ln is defined as the coherence and used as an indicator of the sparsity of
a matrix, appearing in the Mutual Incoherence Property (MIP). For details on this approach, see
Donoho and Huo [DH01], Fuchs [Fuc04], Cai, Wang and Xu [CWX10b], and references therein.

Major theoretical results concerning coherence are due to Jiang et al. In [Jia04] he first
adressed this problem and showed strong consistency of Ln and limit distribution of L2

n in the
case where n and p are of the same order. Moments assumptions in [Jia04] and dimension for p
were substantially improved by a series of papers: Li and Rosalsky [LR06], Zhou [Zho07], Liu,
Lin and Shao [LLS08], Li, Liu and Rosalsky [LLR10], Li, Qi and Rosalsky [LQR12], [CJ11a]. In
[CJ12] the authors consider the limiting distribution of the coherence in a spherical case. See
also [CZ16] for studies on the differential correlation matrices in high dimensions.

In [CJ11a] (see also the supplement [CJ11b]) they consider more specifically the sub-exponential
regime log pn = o(nα) for some 0 < α ≤ 1/3. They introduce the so–called τ–coherence aimed
to test whether the covariance has a given bandwidth τ > 1, and τ = 1 would be a special case.
The τ–coherence is defined below.

Definition 1.2. For any integer τ ≥ 1, the τ–coherence is:

Ln,τ = max
|k−j|>τ

|ρkj | (3)
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In [CJ11a] strong laws and convergence of distributions of Ln,τ are given as well. Recently,
Shao and Zhou [SZ14] studied coherence and τ -coherence relaxing the Gaussian hypothesis,
improving assumptions on the moments of the entries and on the dimension p.

As pointed out by [CJ11a], interest in τ -coherence can be relied to econometrics models,
see [And91, LB95]. Moreover, recent works related to high dimensional problems adress this
bandwise structure question (e.g. in [BL08b, BL08a, WD14]).

Problem adressed and Motivation
In these contexts of longitudinal data Xk and Xj being independent or less correlated as

|k − j| increases, we consider a correlation matrix R = (Rkj)16k,j6p defined as follows:

Rkj =


rkj if 0 < |k − j| < τ ,
εn if τ ≤ |k − j| ≤ τ +K ,
0 if τ +K < |k − j| .

(4)

The off diagonal has a first band of size τ with τ = o(ptn) for any t > 0. Furthermore the set
of large coefficients rkj is small (see further Hypothesis 3 in Theorem 2.1). The second band is
much larger (acting like a transitional regime) and coefficients εn are decreasing to 0. This band
has size K = O (pνn). Here ν ∈]0, c] and c is an explicit constant depending on the coefficients
rkj and on the speed of convergence of εn to 0. Let us notice here that the rate of convergence
to 0 of this transitional band εn can be matched to the threshold in [BL08a]. Finally, when
|k − j| > τ +K the correlation coefficients Rkj are assumed to be 0.

This model is motivated by a more realistic approach of the covariance structure. We try
to find a transition from a banded structure 1/(rjk)/0 to a model 1/(rjk)/(εn)/0 where the
correlation coefficients εn are spread on a larger bandwidth than the rjk. This study allows us to
exhibit a test where the asymptotic power is 1 when the convergence of εn to zero goes below a
certain speed. In this framework, we study the asymptotic behaviour of Ln,τ . Our work strongly
relies on the Chen-Stein method which is a Poisson approximation of weakly dependent events.
For references on this method, see [AGG89], [Pec12] and references therein.
To conclude the bibliographical review we cite Mikosh et al [HMY21] which recently used the
point process convergence of some i.i.d. random walks to show the limiting Gumbel distribution
highlighted in the different papers mentioned above. Moreover, a recent work of Fan and Jiang
[FJ19] explores the transitional behaviour of the coherence when the variables go from equi-
correlated to non correlated.

Our paper is organized as follows: Section 2 presents the main convergence results while
Section 3 is devoted to the statistical test on the structure of the correlation. Section 4 gives
some simulation results for our model. Section 5 presents some discussion and perpectives.
Section 6 is devoted to the proof of the main result. Finally, an Appendix gather some technical
results and proofs of technical lemmas.

The usual notations un = o(vn) and un = O(vn) stand for un negligible with respect to vn
and un of the same order of vn respectively and asymptoticaly when n→∞. Moreover, without
loss of generality, we can assume that t(µ1, · · · , µp) = 0Rp
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2 Main result

Before stating our main result, we precise our assumptions. In particular we fix the number
of "big" correlations coefficients : we assume that the correlation matrix has few off-diagonal
coefficients having values close to 1 or −1. For this purpose, we define the following set:

Definition 2.1. For any δ ∈]0, 1[ we define by

Γp,δ = {k ∈ [[1; p]] : |rkj | > 1− δ for some j ∈ [[1; p]] and k 6= j},

Assumption 1. Let n be an integer, p = pn a sequence such that pn −→
n→+∞

+∞. Let (εn)n∈N∗

be a sequence of real number in ]− 1, 1[. Let us assume the following conditions :

Hyp 1 : log(pn) = o(n
1
3 ) as n→ +∞

Hyp 2 : τ = τ(n) = o(ptn) as n→ +∞ for any t > 0.

Hyp 3 : ∃δ ∈]0, 1[ such that |Γp,δ| = o(pn) where | · | denotes the cardinality of the set.

Hyp 4 : εn ∼ γ
√

log(pn)
n as n→ +∞, γ ∈]− 2 +

√
2, 2−

√
2[

Hyp 5 : K = K(n) = O (pνn) where ν ∈]0, c(γ, δ)[ and c(γ, δ) = min
(

1
3(1

2γ
2 − 2|γ|+ 1), δ

2(2−δ)2
36

)
.

Theorem 2.1. Under Assumptions (1) we have

nL2
n,τ − 4 log(pn) + log(log(pn))

L−→
n→+∞

Z (5)

where Z has the cdf F (y) = e
− 1√

8π
e−

y
2
for all y ∈ R.

A direct corollary is the convergence, in probability, of the τ -coherence :

Corollaire 2.1. Under the framework of Theorem 2.1, we have

Ln,τ
P−→

n→+∞
0 (6)

and
n

log(p)
L2
n,τ

P−→
n→+∞

4 (7)

Remark 1. We can sharpen the above results as follows: under Hypothesis 1 to 3 of Assumption 1
and with

εn ∼
√

log(pn)

nh
with h ≥ 1

K = K(n) = O (pνn) ν ∈]0,
δ2(2− δ)2

36
[

asymptotics (5),(6), (7) still hold.

Now we focus on the case where some coefficient (εn) are decreasing to 0 with a faster speed.
We have the following proposition.
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Theorem 2.2. We assume a bandwise structure as in 4, and that there exists (j, k) in {|j−k| ≥

τ} such that (Xj , Xk) is a bivariate normal distribution N2(0, (
1 εn
εn 1

)) where

εn ∼
√

log(pn)

nh
with 0 < h < 1

Then
n

log(p)
L2
n,τ

P−→
n→+∞

+∞ (8)

From the convergence above, we can derive a statistical test on the structure of correlation
matrices.

3 Application on testing the covariance structure

Let us consider a random sample of size n from a Np(µ,Σ) distribution, arranged in a n × p
matrix. We want to test the covariance structure of Σ. As already mentionned in [CJ11a] it can
be of significant interest to test whether Σ is banded, i.e. to know if the longitudinal data, say
Xk and Xj , are uncorrelated if |k − j| is beyond a certain value. Hence we build our test as
follows: for a given integer τ , and a fixed level 0 < α < 1 we wish to test

H0 : rkj = 0 when |k − j| ≥ τ (9)

versus H1 : ∃rkj = εn where |k − j| ≥ τ and εn ∼
√

log(pn)

nh
with 0 < h < 1. (10)

Proposition 3.1. Let us define the test

Φ = 1{L2
n,τ ≥ n−1(4 log p− log log p− log(8π)− 2 log log(1− α)−1)}

Under the conditions of Theorem 2.1 the test above has size α asymptotically. Moreover, under
H1 the power of the test is asymptotically 1.

Proof of Proposition 3.1: We have easily the expression of the quantile q1−α of the Gumbel
distribution F given in Theorem 2.1:

q1−α = − log(8π)− 2 log log(1− α)−1

which gives the rejection region for the asymptotic size α:

{L2
n,τ ≥ n−1(4 log p− log log p− log(8π)− 2 log log(1− α)−1)}

Moreover, under H1 we have from the Theorem 2.2 :

n

log(p)
L2
n,τ

P−→
n→+∞

+∞ (11)

It means that the asymptotic power of our test will be 1. More precisely, under the H1

alternative, we have :

lim
n→+∞

P
(
nL2

n,τ − 4 log(pn) + log(log(pn)) > −2 log
(
−
√

8π log(1− α)
))

= 1. (12)

�
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4 Numerical aspects

In this section, we provide some simulated examples to illustrate the behavior of our asymp-
totic result in practical simulations (n and p both large but finite). For this, we use the R
Statistical Software [R C23]. A difficulty comes from the fact that in our context, we have to
compute correlations of large matrices. We need Gaussian observation matrices of size n × p
with log (p) = o

(
n

1
3

)
. It means that for a large n, for example n = 4000, we will have

p ≈ 45000 taking p =
[
exp

(
n

1
3.5

)]
in our simulations (where [x] is the integer part of x).

For each (n× p)-observation matrix, we have to compute the (p× p)-correlation matrix to com-
pute the τ -coherence. For the range of p that we consider, we can observe the evolution of the
size of the (p × p)-matrix in Gb according to n in Figure 1. For example, with n = 4000 and
p = 44112, we have, for correlation stored in double, a 14.5Gb (p× p)-matrix which is very large
for a common computer. We must find a way to compute the τ -coherence without loading the
entire (p× p)-correlation matrix in the computer memory (RAM).

Figure 1: Size of (p × p)-correlation matrix and (n × p)-observation matrix according to n with p =[
exp(n1/3.5)

]
for real numbers stored as double precision numbers.

The idea is to generate the (n × p)-observation matrix by packets of columns. Each packet
will have a size (n × Tb) where Tb is choosen depending on the available memory. With these
packets of columns, we compute all correlation blocks of size (Tb × Tb) between each pair of
packets of columns. In that way, we must choose a size Tb in order to have two blocks fitting
simultaneously in the computer memory. Then, we can compute the τ -coherence by taking the
largest coefficient in absolute value in our block paying attention to wether the block corresponds
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to the central band (with bandwith τ) or not.

Using this strategy, we can generate correlation matrices for p as large as needed, so that
we are able to study the limiting distribution of the τ -coherence. In that way, to illustrate our
theorem, we consider the following parameters :

p =
[
exp

(
n1/3.5

)]
, τ = 5 ∗ [log(p)] , K = 10 ∗

[
n1/10 log(p)

]
, εn = 0.1 ∗

√
log(p)

n

Our purpose here is to simulate a sample of τ -coherence by a Monte-Carlo procedure in order
to compare its empirical distribution with the asymptotic one. We thus run R = 200 replications
of the following procedure, simulating R times matrices of observations and computing their
correlations per blocks. For each replication, we generate an observation matrix X of size (n×p)
using the following numerical scheme :

∀i ∈ [[1, n]],∀j ∈ [[1, p]], Xj
i =

j+K−1∑
k=j

εnY
k
i +

j+K+2τ∑
k=j+K

rkY
k
i +

j+2τ+2K∑
j+K+2τ+1

εnY
k
i (13)

where all coefficients (rk)16k61+2τ are real numbers in [−1, 1] (we take

r1, . . . r1+2τ
i.i.d∼ U[−1,1] in the simulation), Xj

i is the coefficient of X on the ith line and the jth

column and all the random variables Y k
i
i.i.d∼ N (0, 1) arranged in a (n× (p+ 2τ + 2K))-matrix

Y. We highlight the fact that Y is quite larger than X. This numerical scheme is inspired by
time series model.

Figure 2: Level plot of the correlation’s structure with observations : zoom on the square 1 : 500
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We can observe that we generate data following our model and obtain an observation matrix
associated to a correlation matrix with a band structure in Figure 2. We recognize a central band
with non-null coefficients. Indeed, we also notice that the transition band with εn’ coefficients
is not really recognizable but this is due to the fact that those coefficients are decreasing fastly
to 0 when n goes to infinity (for instance, here, we have εn ≈ 0.007 not different from 0 in the
color scale).

With this observation matrix, we can use our procedure to compute the τ -coherence. After
running R replications, we obtain a sample of τ -coherence. In Figure 3 and 4, we see that for n
large enough, the sample distribution seems to approximate the limiting one.

Figure 3: Histograms and Kernel density estimates
for n = 2000, 3000, 4000, 5000 and for R = 200 repli-
cations

Figure 4: Evolution of Kolmogorov, L2 and Total
Variation norm between simulated and asymptotic
behavior

Precisely, we compare the estimated density of the sample (in red) with the asymptotic
density (in blue) which is defined by f(x) = 1

2
√

8π
exp

(
−1

2y −
1√
8π

exp
(
−1

2y
))

for all x ∈ R.
Also, in order to observe the convergence, we study numerically the distance between the sample
and asymptotic distribution. We use the Kolmogorov, L2 and the Total Variation norms :

dKS(f̂ , f) = sup
x∈R
|Fn(x)− F (x)| , d2(f̂ , f) =

∫ ∣∣∣f̂(x)− f(x)
∣∣∣2 dx, dTV (f̂ , f) =

1

2

∫ ∣∣∣f̂(x)− f(x)
∣∣∣ dx.

We observe in Figure 4, that the difference between both distributions decreases to 0 when n
is increasing. These results provide numerical evidence that our limiting distribution is adequate.
Moreover, we can illustrate the estimated power of our test. For this purpose, we keep the same
regime for p.

We will consider n = 1500, 2000, 2500, 3000 and a size α = 0.05. In addition, to illustrate the
impact of the parameter h (and so the speed of (εn) coefficients), we compute esimated power for
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Values for h εn = 0 (null) h = 2 h = 1 h = 0.9 h = 0.7 h = 0.5 h = 0.3
n = 1500 0.045 0.045 0.050 0.055 0.055 0.080 0.835
n = 2000 0.035 0.033 0.030 0.035 0.035 0.055 0.950
n = 2500 0.03 0.03 0.03 0.03 0.04 0.07 1.00
n = 3000 0.065 0.065 0.055 0.055 0.055 0.070 0.995
n = 3500 0.03 0.035 0.045 0.04 0.07 1 1
n = 4000 0.055 0.055 0.06 0.07 0.075 1 1

Table 1: Estimated power computed on R = 200 repetitions for the level α = 0.05. The first
column corresponds to the null hypothese while the other are for the alternative.

differents values of n and for the values h = 2, 1, 0.9, 0.7, 0.5, 0.3. Also, we will consider the case
when εn = 0 (i.e. simulation under the null hypothesis). We simulated R = 200 repetitions of
τ -coherence for each value of n and p and for the differents case of h. We sum up all the result in
the following Table 1. We remark with this power estimations that we highlight (again) the fact
that we faced a slow convergence. On the other way, for value of n until 3000, the sample size is
not large enough to clearly identified the alternative for value of h close to 1 (it means close to
the null hypothese). It is no longer the case for a value of h such that we are far away from the
null. For n = 4000, we observe an improvement for h 6 0.5 while for h = 0.9 and h = 0.7 the
sample size is not large enough to observe the empirical power equal to one.

We aware the reader about the high-dimensional framework impact on the simulation time.
Indeed, we highlight the fact that the procedure we proposed here allows to compute τ -coherence
corresponding to any large matrix Xn arising in actual (big) data experiments. However, this
procedure is not very efficient if it is done with a classical programming. For example, comput-
ing only one replication for n = 4000 (hence p = 44112), requires about 90 min to obtain the
value of one realization of the τ -coherence. In order to obtain more usable (i.e fast) codes in
perspective of real-size applications, we are currently exploring HPC (High Performance Com-
puting) strategies to compute correlation blocks using GPGPU (General-purpose Processing on
Graphics Processing Units) computation. We are very confident into the use of GPU to reduce
simulation’s time.

5 Discussion

In this paper, we consider the regime log(pn) = o(n
1
3 ) and broaden the framework of [CJ11a].

Indeed the convergence of the τ–coherence to the Gumbel law still holds when the correlation
matrix presents a supplementary an additional band of entries εn sufficiently small. This addi-
tional band can be way much larger than τ , i.e. as large as K(n) = O (pνn) for ν > 0 and the
entries εn → 0 as n → ∞ with speed O

(√
log(p)/n

)
. The speed of convergence of εn to 0 is

optimal and not surprisingly it fits the threshold of bandwidth tapering in [BL08a].
Numerous further theoretical questions arise. Among them, the question of ultra-high regimes,

i.e. what is the behaviour of the τ–coherence if log(pn) is of order nα with α > 1/3? Another
natural generalization would be to consider the model with εn disseminated on the whole matrix
and not only bandwise. The Chen-Stein method should be adapted then. Besides, Shao and co
in [LLS08] improved the speed of convergence to the Gumbel law by choosing an intermediate
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variable. They obtained a speed of O((log n)5/2/
√
n). To our knowledge this approach is still

open for the τ -coherence.
In this work, we have shown that the ability of our test to detect the alternative hypothesis

is linked to the value of the parameter h. As in [FJ19], the asymptotic power of this test is 1
or α according to the value h is smaller or greater than 1. It means that asymptotically, our
test is unable to detect the alternative when h ≥ 1 so that the limiting distribution is the same
under the null and under the alternative. In this work, we focus on an alternative that can be
seen as a perturbation of the null (with the same structure in asymptotic). Even if these kinds
of alternatives are classic, the phenomenon happening here is not and it leads to the question
of the power function : is there any renormalisation of the τ -coherence that could highlight a
continuous power function? To the best of our knowledge, it is still an open question.

Our result also suggest perspectives for potential applications, and numerical considerations.
Indeed, considering numerical study, optimization of computation of the τ -coherence, or even
more, of Monte-Carlo simulations in an experimental framework can become necessary. In this
paper we have avoided the issue of the matrix dimension in term of computer memory by splitting
it in sub-matrices. One can think to use HPC (High Performance Computing) methods, such
as parallel computing or GPGPU, in order to reduce the necessary time of computation which
becomes untractable when very large matrices are involved.

6 Proof of the main result

In this section, we describe the proof of our main result. First, we would like to highlight the
fact that, as we said, we apply the Chen-Stein method. But, we do not apply it directly to
the τ -coherence. It is more efficient to use the Chen-Stein method to a new easier to handle
random variable. First of all, we introduce many notation which will be used along these proofs.
Moreover the very technical part are postponed to an Appendix.

6.1 Notations

• I = {(k, j) ∈ [[1, p]]2 : 1 6 k < j 6 p}

• Iτ = {(k, j) ∈ I : |k − j| < τ}

• IK = {(k, j) ∈ I : τ ≤ |k − j| ≤ τ +K}

• I0 = {(k, j) ∈ I : |k − j| > τ +K}

• Eδ = {(k, j) ∈ I : k ∈ Γp,δ or j ∈ Γp,δ}

• Λτp = {(k, j) ∈ I : |k − j| < τ and max
16k 6=q,j 6=q6p

(|rkq|, |rjq|) 6 1− δ}

• ΛKp = {(k, j) ∈ I : τ ≤ |k − j| ≤ τ +K and max
16k 6=q,j 6=q6p

(|rkq|, |rjq|) 6 1− δ}

• Λ0
p = {(k, j) ∈ I : |k − j| > τ +K and max

16k 6=q,j 6=q6p
(|rkq|, |rjq|) 6 1− δ}

With those definitions, Eδ corresponds to the set of lines or columns where there is at least one
coefficient rij which magnitude is greater than the level 1 − δ; Λτp , ΛKp , Λ0

p are respectively the

10



set Iτ , IK and I0 without the lines or columns with rij ’s coefficients greater than the level 1− δ
(which means that rij ’s are bounded in those three sets. With these different sets, we can write
three different partitions of the set I :

1. I = Iτ ∪ IK ∪ I0

2. I = Eδ ∪ Λτp ∪ ΛKp ∪ Λ0
p

3. I0 ∪ IK = ΛKp ∪ Λ0
p ∪
[
Eδ ∩ Iτ

]
The following Lemma gives the sizes of these three sets:

Lemma 6.1. With the previous notations

|Iτ | = (τ − 1)

(
2p− τ

2

)
, (14)

|IK | = (K + 1)

(
2p−K − 2τ

2

)
, (15)

|I0| =
(p− τ −K − 1)(p− τ −K)

2
. (16)

6.2 Auxiliary variables

Now we introduce an auxiliary random variable which will be more convenient to handle in the
Chen–Stein method. Let

Vn,τ = max
16k<j6p,|k−j|>τ

|tXknXjn| = max
α=(k,j)∈I0∪IK

∣∣∣tXknXjn

∣∣∣ . (17)

In the sequel, we will use notation α = (k, j) to denote index into different sets.

Proposition 6.1. Under the assumptions of Theorem 2.1, we have

n2L2
n,τ − V 2

n,τ

n

P−→
n→+∞

0. (18)

The proof is analogous to the proof of convergence (46) in [CJ11a] using Lemma 2.2 of [Jia04]

Hence to study the asymptotic behaviour of Ln,τ , it is enough to study the limiting distribution
of Vn,τ . To do so, we use another slightly different random variable defined by:

V ′n,τ = max
α∈Λ0

p∪ΛKp

(Zα) (19)

where the index α = (k, j) and Zα = Zkj =
∣∣∣tXknXjn

∣∣∣. The two variables Vn,τ and V ′n,τ are linked
by the following inequalities:

Proposition 6.2. Let

an(y) =
√

4n log(pn)− n log log(pn) + ny with y ∈ R. (20)

We have :
P
(
V ′n,τ > an(y)

)
6 P (Vn,τ > an(y)) 6 P

(
V ′n,τ > an(y)

)
+ o(1) (21)

11



Proof. (For seek of simplicity, we will denote an(y) by an in the sequel).
To proove this result, we need the two following technical results whose proofs are postponed to
Section 6.

Lemma 6.2. Let an be as in formula (20). Then,

P0 := P
(∣∣tX1

nXτ+K+2
n

∣∣ > an
)

=
1√
2π
e−

y
2

1

p2
n

(1 + o(1)) = On→+∞

(
1

p2
n

)
. (22)

Lemma 6.3. Let an be as in formula (20) and let us define cγ := 1
2γ

2 − 2|γ|+ 2 with γ defined
in Assumption 1. Then, for any d ∈ [0; cγ [ and n→ +∞ :

PK := P
(∣∣tX1

nXτ+1
n

∣∣ > an
)

= o
(
p−dn

)
. (23)

According to the partition I0 ∪ IK = Λ0
p ∪ ΛKp ∪

(
Eδ ∩ Iτ

)
,

P (Vn,τ > an) = P

(
max

α=(k,j)∈I0∪IK

∣∣∣tXknXjn

∣∣∣ > an

)
6 P

(
V ′n,τ > an

)
+ P

(
max

α=(k,j)∈Eδ∩Iτ

∣∣∣tXknXjn

∣∣∣ > an

)
6 P

(
V ′n,τ > an

)
+

∑
α=(k,j)∈Eδ∩Iτ

P
(∣∣∣tXknXjn

∣∣∣ > an

)
6 P

(
V ′n,τ > an

)
+

∑
α∈[Eδ∩Iτ ]∩IK

P (Zα > an) +
∑

α∈[Eδ∩Iτ ]∩I0

P (Zα > an) .

All variables Zα having same distributions in the different sets above, we have

P (Vn,τ > an) 6 P
(
V ′n,τ > an

)
+
∣∣[Eδ ∩ Iτ ] ∩ IK∣∣P (Z1,τ+1 > an) +

∣∣[Eδ ∩ Iτ ] ∩ I0

∣∣P (Z1,τ+K+2 > an)

6 P
(
V ′n,τ > an

)
+ |IK |PK + |Eδ|P0.

We can use the following straightforward result :

Lemma 6.4.
|Eδ| 6 2pn|Γp,δ|

Hence from assumption 3 of theorem 2.1, we have :

|Eδ| = o(p2
n) (24)

Now, we need to prove that |IK |PK + |Eδ|P0 −→
n→+∞

0. First, from lemma 6.2 and (24),

|Eδ|P (Z1,τ+K+2 > an) ∼
n→+∞

|Eδ|
1√
2π
e−

y
2

1

p2
n

=
n→+∞

o(p2
n)

1√
2π
e−

y
2

1

p2
n

=
1√
2π
e−

y
2 o(1) −→

n→+∞
0.

12



Secondly, using lemma 6.1 (more precisely Equation (15)) and lemma 6.3 we have :

|IK |PK −→
n→+∞

0 ⇔ ν < cγ − 1 (25)

(26)

and this is fullfilled from assumptions on theorem 1. Finally, we obtain :

|IK |PK + |Eδ|P0 −→
n→+∞

0. (27)

Then,
P (Vn,τ > an) 6 P

(
V ′n,τ > an

)
+ o(1). (28)

Also, it is easy to see that :
P
(
V ′n,τ > an

)
6 P (Vn,τ > an) . (29)

Remark 2. The main constraint so far is pnKPK → 0 when n→∞ which leads to

ν <
1

2
γ2 − 2|γ|+ 1 .

Moreover, it also implies the following condition:

γ ∈ [−2, 2] is such that
1

2
γ2 − 2|γ|+ 1 > 0 ⇐⇒ γ ∈]2 +

√
2; 2−

√
2[

.

6.3 Chen–Stein method for V ′n,τ

We focus now on the asymptotic behaviour of V ′n,τ . For that purpose, we apply the Chen-Stein
method. We recall here this result, which can be found in [AGG89].

Lemma 6.5. The Chen-Stein Method
Let Λ be a set of indices. Let α ∈ Λ and Bα a set of subset of Λ (i.e. for all α, Bα ⊂ Λ). Let ηα
be random variables. For a given a ∈ R, we define λ :=

∑
α∈Λ

P (ηα > a). Then,

∣∣∣∣P(max
α∈Λ

(ηα) 6 a

)
− e−λ

∣∣∣∣ 6 min

(
1,

1

λ

)
. (b1 + b2 + b3) , (30)

where

• b1 =
∑
α∈Λ

∑
β∈Bα

P(ηα > a)P (ηβ > a)

• b2 =
∑
α∈Λ

∑
α 6=β∈Bα

P (ηα > a, ηβ > a)

• b3 =
∑
α∈Λ

E [|E[1ηα>a|σ(ηβ, β ∈ I\Bα)]− E[1ηα>a]|].

13



As we said, this method is an approximation of weakly dependent events by a Poisson law
which is represented by the quantity e−λ ( corresponding to P (Z = 0), Z having a Poisson law
P (λ)). We need to find weakly dependent events to have b1, b2 and b3 small (even null or
asymptotically null). In our case, notations are :

• Λ = Λ0
p ∪ ΛKp .

• α = (k, j) ∈ Λ.

• Bα = Bkj = {(u, v) ∈ Λ : |k − u| < τ +K, |j − v| < τ +K and (k, j) 6= (u, v)}.

• ηα = Zα = Zkj =
∣∣∣tXknXjn

∣∣∣ =

∣∣∣∣ n∑
i=1

Xk
i X

j
i

∣∣∣∣.
• λn =

∑
α∈Λ

P(Zα > an).

• b1,n =
∑
α∈Λ

∑
β∈Bα

P(Zα > an)P(Zα > an).

• b2,n =
∑
α∈Λ

∑
α 6=β∈Bα

P(Zα > an, Zβ > an).

• b3,n =
∑
α∈Λ

E [|E [1Zα>an |σ (Zβ, β ∈ Λ\Bα)]− E [1Zα>an ]|] .

The following Lemmas present the asymptotics of λn, bi,n, i = 1 to 3.

Lemma 6.6. Considering the previous notations, with straightforward computations we obtain
the following results :

• |Λ0
p| ∼ p2

n/2 as n→ +∞

• |Bij | 6 8(τ +K)pn ∼ 8Kpn as n→ +∞

• |ΛKp | 6 |IK |

Lemma 6.7. With the previous notations we have

lim
n→+∞

(λn) =
1√
8π
ey/2. (31)

Proof: According to the Chen-Stein method and using the fact that random variables have
the same law when indices are in the same set, we have

λn =
∑

α∈Λ0
p∪ΛKp

P (Zα > an) =
∑
α∈Λ0

p

P (Zα > an) +
∑
α∈ΛKp

P (Zα > an) =|Λ0
p|.P0 + |ΛKp |.PK

From theorem 1, lemma 6.3 and lemma 6.6, we have

lim
n→+∞

|ΛKp |.PK = 0

while, according to lemma 6.2 and lemma 6.6,

|Λ0
p|.P0 ∼

+∞
p2
n

1

p2
n

1√
8π
ey/2 =

1√
8π
ey/2.

Hence we obtain the desired result. We remark that this asymptotic will give the distribution
function of the asymptotic Gumbel random variable.
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Lemma 6.8. In the previous framework, we have

lim
n→∞

bi,n = 0 , for i = 1, 2, 3 .

The proof of this Lemma is postponed to the Appendix.

6.4 Proof of Theorem 2.1

We showed in Section 6.3 that

P
(
V ′n,τ 6 an

)
= exp (−λn) + o (1) as n→ +∞ (32)

Thanks to lemma 6.2, we have, for n large enough :

P (Vn,τ 6 an) = exp (−λn) + o (1) as n→ +∞ (33)

From the expressions of an and λn, this leads us to the asymptotic behaviour :

1

n
V 2
n,τ − 4 log (pn) + log log (pn)

L−→
n→+∞

Z (34)

where Z has the Gumbel cdf defined in theorem 2.1. Then, we can write :

1

n log (pn)
V 2
n,τ − 4

P−→
n→+∞

0 (35)

Then, from Proposition 6.1 we have (5).
�

6.5 Proof of Theorem theorem 2.2

In order to prove this theorem, we first notice that according to the definition of Ln,τ ,

|ρij | 6 Ln,τ for any (i, j) ∈ I0 ∪ IK

Therefore to prove the convergence (8), it suffices to prove that it exists (i, j) ∈ I0∪IK such that
n

log(p)
ρ2
ij

P−→
n→+∞

+∞

Then we consider (i, j) ∈ IK and ρij the empirical correlation coefficient from the bivariate

Gaussian distributionN2

(
0,

(
1 εn
εn 1

))
. The density fij of ρij is given by Muirhead [Mui82]):

for any x ∈]− 1, 1[,

fij(x) =
(n− 2)Γ(n− 1)√

2πΓ(n− 1
2)

(1− ε2
n)

n−1
2 (1− x2)

n−4
2 (1− xεn)

3
2
−n

2F1

(
1

2
,
1

2
;n+

1

2
;
1 + xεn

2

)
It leads to the density of

√
n

log(p)ρij , denoted by f∗ij and defined for any x ∈]−
√

n
log(p) ,

√
n

log(p) [

f∗ij(x) = Cn(1− log(p)

n
x2)

n−4
2 (1− xεn

√
log(p)

n
)
3
2
−n

2F1

1

2
,
1

2
;n+

1

2
;
1 + x

√
log(p)
n εn

2


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where Cn :=

√
log(p)
n

(n−2)Γ(n−1)√
2πΓ(n− 1

2
)

(1− ε2
n)

n−1
2 is an explicit constant which does not depend on x.

It remains to show that, for any δ > 0 :

lim
n→+∞

P(
n

log(p)
ρ2
ij < δ) = lim

n→+∞

√
δ∫

−
√
δ

f∗ij(x)dx = 0

From a straightforward bound on 2F1 we get

Cn(1 + |εn|
√
δ

√
log(p)

n
)3/2−n

√
δ∫

−
√
δ

(
1− x2 log(p)

n

)n−4
2

dx 6 P(
n

log(p)
ρ2ij < δ)

6Cn
√

2

(
1 + |εn|

√
δ

√
log(p)

n

)1−n
√
δ∫

−
√
δ

(
1− x2 log(p)

n

)n−4
2

dx

Moreover from Sirtling equivalent, we show that, as n→ +∞

Cn ∼
1√
2πn

(
1− ε2

n

)n−1
2

which leads to the desired limit. �
Acknowledgments: the authors wish to thank Laurent Delsol for many fruitful discussions.
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7 Appendix: Proofs of technical results

7.1 Proof of Lemma 6.2

For the proof of this Lemma, we need the following technical result which is presented in [CJ11a]
(see Lemma 6.8) and proved in the supplementary paper.

Lemma 7.1. We consider the following hypotheses :

1. ξ1, . . . , ξn i.i.d random variables such that E[ξ1] = 0 and E[ξ2
1 ] = 1.

2. ∃t0 > 0, ∃α ∈]0, 1] such that E
[
et0|ξ1|

α]
< +∞.

3. (pn)n∈N∗ such that pn −→
n→+∞

+∞ and log(pn) = o
(
n

α
2+α

)
as n→ +∞

4. (yn)n>1 such that yn −→
n→+∞

y > 0

Then,

P

(
1√

n log(pn)

n∑
k=1

ξk > yn

)
∼

n→+∞

1

y
√

2π
p
− 1

2
y2n

n

√
log(pn)

−1
(36)
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Let us check all the hypotheses of this lemma above. First we write :

P
(∣∣tX1Xτ+K+2

∣∣ > an
)

= P(

(∣∣∣∣∣
n∑
i=1

X1
iX

τ+K+2
i

∣∣∣∣∣ > an

)
(37)

Now, if we define ξi = X1
iX

τ+K+2
i , we have :

1. E[ξi]

|== E[X1
i ]E[Xτ+K+2

i ] = 0× 0 = 0 where the independence come from the sample.

2. E[ξ2
i ] |== E[

(
X1
i

)2
]E[
(
Xτ+K+2
i

)2
] = 1× 1 = 1

3. For t0 = 1
2 and α = 1, we have :

E[et0|ξ1|
α
] = E[e

|X1
1X

τ+K+2
1 |
2 ] 6 E[e

1
2(X1

1)
2

]E[e
1
2(Xτ+K+2

1 )
2

] < +∞

4. We have wn := an√
n log(p)

−→
n→+∞

√
4 = 2 > 0

5. According to the hypothesis 1 from theorem 2.1 : log(pn) = o(n
1
3 ) as n −→

n→+∞
+∞

So we have all hypothesis needed to apply the lemma 7.1, and then :

P
(∣∣tX1Xτ+K+2

∣∣ > an
)

= P

(
1√

n log(pn)

∣∣tX1Xτ+K+2
∣∣ > an√

n log(pn)

)

= P

(
1√

n log(pn)

∣∣∣∣∣
n∑
i=1

X1
iX

τ+K+2
i

∣∣∣∣∣ > an√
n log(pn)

)

= P

(
1√

n log(pn)

n∑
i=1

X1
iX

τ+K+2
i >

an√
n log(pn)

)
+P

(
1√

n log(pn)

n∑
i=1

X1
iX

τ+K+2
i < − an√

n log(pn)

)

= P

(
1√

n log(pn)

n∑
i=1

X1
iX

τ+K+2
i > wn

)
+ P

(
− 1√

n log(pn)

n∑
i=1

X1
iX

τ+K+2
i > wn

)
(38)

From lemma 7.1

P
(∣∣tX1Xτ+K+2

∣∣ > an
)

=
1

2
√

2π
p
− 1

2
w2
n

n
1√

log(pn)
(1 + o(1)) +

1

2
√

2π
p
− 1

2
w2
n

n
1√

log(pn)
(1 + o(1))

=
1√
2π
p
− 1

2
w2
n

n
1√

log(pn)
(1 + o(1))

=
1

2π log(pn)
e
− 1

2

a2n
n log(pn)

− 1
2

log log(pn)
(1 + o(1)) =

1

p2
n

√
2π
e−

1
2
y(1 + o(1))
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7.2 Proof of Lemma lemma 6.3

We remind that PK := P
(∣∣tX1

nXτ+1
n

∣∣ > an
)
. We will apply once again lemma 7.1, with new

quantities ξ and ω:

• P+
K := P

(
tX1
nXτ+1

n > an
)

• P−K := P
(
tX1
nXτ+1

n < −an
)

• ξk := X1
kX

τ+1
k

• wk :=
(ξk − εn)√

1 + ε2
n

.

Notice that (ξk)k>1 are independent due to the independence between each line of Xn. First
we compute E [ξk] = εn and var (ξk) = 1 + ε2

n. So, E [wk] = 0 and var (wk) = 1.We will apply the
lemma 7.1 with wk. Then,

P+
K = P

 1√
n log(pn)

n∑
k=1

wk >
an − nεn√

(1 + ε2
n)n log(pn)︸ ︷︷ ︸

:=zn

 (39)

From hypotheses of theorem 2.1, we have lim
n→+∞

[zn] := z = 2− γ > 0. Then,

P+
K ∼ 1

z
√

2π
p
− 1

2
z2n

n

√
log(pn)

−1

∼ 1

z
√

2π
exp

[
−1

2
z2
n log (pn)− 1

2
log log (pn)

]
∼ 1

z
√

2π
exp

[
−2

1 + ε2
n

log (pn)

(
1 +

ε2
n

4

log log (pn)

log (pn)
+
y

4

1

log (pn)
+

nε2
n

4 log (pn)
− εn

2

an
log (pn)

)]

With our hypotheses on εn, we have :

• −2

1 + ε2
n

log (pn) −→
n→+∞

−∞

• ε2
n

4

log log (pn)

log (pn)
−→

n→+∞
0

• y

4

1

log (pn)
−→

n→+∞
0

• nε2
n

4 log (pn)
−→

n→+∞

1

4
γ2 from εn ∼ γ

√
log(pn)
n .

• εn
2

an
log (pn)

−→
n→+∞

γ from an ∼ 2
√
n log(pn)
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panP+
K ∼

1

z
√

2π
exp

[(
a− 2− 1

2
γ2 + 2γ + o (1)

)
log (pn)

]
(40)

Finally, for γ ∈]− 2, 2[ :

lim
n→+∞

[
panP+

K

]
= 0⇔ a < 2 +

1

2
γ2 − 2γ (41)

Analogously, we have :

P−K = P

(
1√

n log(pn)

n∑
k=1

wk < −
an + nεn√

(1 + ε2
n)n log(pn)

)
(42)

= P

 −1√
n log(pn)

n∑
k=1

wk >
an + nεn√

(1 + ε2
n)n log(pn)︸ ︷︷ ︸

:=z̃n

 (43)

Thanks to lemma 7.1 and because lim
n→+∞

[z̃n] := z̃ = 2 + γ > 0, we have :

P−K ∼
1

z̃
√

2π
exp

[
−2

1 + ε2
n

log (pn)

(
1 +

ε2
n

4

log log (pn)

log (pn)
+
y

4

1

log (pn)
+

nε2
n

4 log (pn)
+
εn
2

an
log (pn)

)]
(44)

pbnP−K ∼
1

z̃
√

2π
exp

[(
b− 2− 1

2
γ2 − 2γ + o (1)

)
log (pn)

]
(45)

And finally, for γ ∈]− 2, 2[ :

lim
n→+∞

[
pbnP−K

]
= 0⇔ b < 2 +

1

2
γ2 + 2γ (46)

To conclude, observing that

min

(
2 +

1

2
γ2 + 2γ, 2 +

1

2
γ2 − 2γ

)
=

1

2
γ2 − 2|γ|+ 2 := cγ ,

combining eq. (46) and eq. (41), we obtain, for all d ∈ [0; cγ [ and as n→ +∞ :

PK := P
(∣∣tX1

nXτ+1
n

∣∣ > an
)

= o
(
p−dn

)
. (47)

7.3 Proof of Lemma 6.8

7.3.1 Computation of b1,n

We add some notations :

• B0
α := Bα ∩ Λ0

p and |B0
α| 6 |Bα| 6 8(τ +K)pn
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• BK
α := Bα ∩ ΛKp and |BK

α | 6 K2

• Pα := P (Zα > an)

As used above, Zα1 and Zα2 will have the same law as long as α1 and α2 belong to the same set.
Then, we have :

b1,n =
∑

α∈Λ0
p∪ΛKp

∑
β∈Bα

PαPβ

=
∑
α∈Λ0

p

∑
β∈B0

α

PαPβ +
∑
α∈Λ0

p

∑
β∈BKα

PαPβ +
∑
α∈ΛKp

∑
β∈B0

α

PαPβ +
∑
α∈ΛKp

∑
β∈BKα

PαPβ

=
∑
α∈Λ0

p

∑
β∈B0

α

(P0)2 +
∑
α∈Λ0

p

∑
β∈BKα

P0PK +
∑
α∈ΛKp

∑
β∈B0

α

PKP0 +
∑
α∈ΛKp

∑
β∈BKα

(PK)2

= |Λ0
p|.|B0

α|. (P0)2 + |Λ0
p|.|BK

α |P0PK + |ΛKp |.|B0
α|PKP0 + |ΛKp |.|BK

α |. (PK)2 .

At this point, we need to check that lim
n→+∞

(b1,n) = 0, so we focus particulary on :

1. |Λ0
p|.|B0

α|. (P0)2 :

|Λ0
p|.|B0

α|. (P0)2 ∼ 1

2
p2
n.|B0

α|. (P0)2 6 4(τ +K)p3
n.O

(
1

p4
n

)
= O

(
pν−1
n

)
(48)

From assumptions on ν we have lim
n→+∞

[
|Λ0
p|.|B0

α|. (P0)2
]

= 0

2. |Λ0
p|.|BK

α |P0PK :

|Λ0
p|.|BK

α |P0PK ∼ 1

2
p2
n|BK

α |P0PK 6
1

2
K2p2

nP0PK 6 O
(
p2+2ν
n

)
O
(
p−2
n

)
PK = O

(
p2ν
n PK

)
According to lemma 6.3, we will have lim

n→+∞

[
p2ν
n PK

]
= 0 iff 2ν < cγ which is true from

hypothesis 5 in theorem 2.1. Then, we obtain :

lim
n→+∞

[
|Λ0
p|.|BK

α |P0PK
]

= 0

3. |ΛKp |.|B0
α|PKP0 : We use the same principle of computation than previsouly :

|ΛKp |.|B0
α|PKP0 6 pnK|B0

α|PKP0 6 8pnK(τ +K)pnPKP0 = O
(
p2ν
n PK

)
(49)

So, from previous assumptions on ν, we have :

lim
n→+∞

[
|ΛKp |.|B0

α|PKP0

]
= 0 .

4. |ΛKp |.|BK
α |. (PK)2 : We have :

|ΛKp |.|BK
α |. (PK)2 6 pK3 (PK)2 = O

(
p1+3ν
n

)
(PK)2 (50)

According to lemma 6.3, if 1 + 3ν < 2cγ , we have

lim
n→+∞

[
|ΛKp |.|BK

α |. (PK)2
]

= 0 .
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To conclude, we finally obtain :
lim

n→+∞
[b1,n] = 0 .

Remark 3. The main constraint here is pnK3 (PK)2 → 0 which is true from condition
pnKPK → 0 of remark 2.

7.3.2 Computation of b2,n

The computation of b2,n is the most technical part. As we did for the computation of b1,n, we
will divide this computation into four parts (according on which set we are). We remind the
definition of b2,n :

b2,n =
∑

α∈Λ0
p∪ΛKp

∑
β∈Bα

P (Zα > an, Zβ > an) .

Here we introduce some new notations :

• Pαβ := P (Zα > an, Zβ > an)

• P0i := Pαβ1α∈Λ0
p
1β∈Ωi where Ωi will be a subset of indices and i an integer.

• PKi := Pαβ1α∈ΛKp
1β∈Ωi where Ωi will be a subset of indices and i an integer.

To show that lim
n→+∞

[b2,n] = 0, we will divide it into four sums, each one being the sum of the
same probability on a given set of indices. Then, we have :

b2,n =
∑
α∈Λ0

p

∑
β∈B0

α

Pαβ

︸ ︷︷ ︸
:=Q1

+
∑
α∈Λ0

p

∑
β∈BKα

Pαβ

︸ ︷︷ ︸
:=Q2

+
∑
α∈ΛKp

∑
β∈B0

α

Pαβ

︸ ︷︷ ︸
:=Q3

+
∑
α∈ΛKp

∑
β∈BKα

Pαβ

︸ ︷︷ ︸
:=Q4

(51)

Computation of Q1 :

First, we define some additional subsets of indices. In particular, we have :

1. Ω1 := {(u, v) ∈ Λ0
p : i− u < τ and j − v < τ} and |Ω1| 6 τ2

2. Ω2 := {(u, v) ∈ Λ0
p : i− u < τ and τ < j − v < τ +K} and |Ω2| 6 τK

3. Ω3 := {(u, v) ∈ Λ0
p : τ < i− u < τ +K and j − v < τ} and |Ω3| 6 τK

4. Ω4 := {(u, v) ∈ Λ0
p : i− u < τ and τ +K 6 j − v} and |Ω4| 6 τ (pn − τ −K) 6 τpn

5. Ω5 := {(u, v) ∈ Λ0
p : τ +K 6 i− u and j − v < τ} and |Ω5| 6 τ (pn − τ −K) 6 τpn

6. Ω6 := {(u, v) ∈ Λ0
p : τ < i− u < τ +K and τ < j − v < τ +K} and |Ω6| 6 K2

7. Ω7 := {(u, v) ∈ Λ0
p : τ < i− u < τ +K < and τ +K 6 j − v}

and |Ω7| 6 K (pn − τ −K) 6 Kpn

8. Ω8 := {(u, v) ∈ Λ0
p : τ +K 6 i− u and j − v < τ} and |Ω8| 6 K (pn − τ −K) 6 Kpn
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We have :

Q1 6 4
8∑
i=1

∑
α∈Λ0

p

∑
β∈Ωi

Pαβ (52)

Then, using the fact that on each given subset the random variables have the same law :

Q1 6
∣∣Λ0

p

∣∣ . |Ω1|P01 +
∣∣Λ0

p

∣∣ . |Ω2|P02 +
∣∣Λ0

p

∣∣ . |Ω3|P03 +
∣∣Λ0

p

∣∣ . |Ω4|P04 (53)

+
∣∣Λ0

p

∣∣ . |Ω5|P05 +
∣∣Λ0

p

∣∣ . |Ω6|P06 +
∣∣Λ0

p

∣∣ . |Ω7|P07 +
∣∣Λ0

p

∣∣ . |Ω8|P08 (54)

So, we just have to show that each part will have a null limit when n is going to infinity.

Lemma 7.2. Using the previous notations, we have, as n→ +∞ :∣∣Λ0
p

∣∣ . |Ω1|P01 → 0 (55)

Proof. We have :∣∣Λ0
p

∣∣ . |Ω1|P01 6
∣∣Λ0

p

∣∣ τ2P01 ∼
1

2
p2
nτ

2P01 = o
(
p2+2t
n P01

)
for any t > 0

where we use lemma 6.6 for the equivalent. We can write :

P01 = P

(∣∣∣∣∣
n∑
k=1

u1
ku

2
k

∣∣∣∣∣ > an,

∣∣∣∣∣
n∑
k=1

u3
ku

4
k

∣∣∣∣∣ > an

)
(56)

(57)

where
(
u1
k, u

2
k, u

3
k, u

4
k

)
16k6n

i.i.d∼ N4 (0,Σ4) and

Σ4 =


1 0 r1 0
0 1 0 r2

r1 0 1 0
0 r2 0 1

 ,

where coefficients r1, r2 are from the correlation matrix (rkj). From Lemma 6.11 of [CJ11a],
focusing on equation (131), we know that

P01 6 O
(
p−2b2+ε1
n

)
+O

(
p−2−2c2+ε2
n

)
as n→ +∞ (58)

for any ε1, ε2 > 0 and where a = 1+(1−δ)2
2 , b = a

(1−δ)2 and c = 1−a
3 for δ ∈]0, 1[. By construction

b2 − 1 > 0, hence for a well-chosen t such that t < b2 − 1, there exists ε1(δ) > 0 such that we
have :

ε1 < 2b2 − 2− 2t . (59)

Analogously, we can find ε2(δ) such that:

ε2 < 2
(
c2 − t

)
. (60)

Since τ = o(pt) for any t > 0, we have∣∣Λ0
p

∣∣ . |Ω1|P01 → 0 as n→ +∞ . (61)
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Lemma 7.3. Using previous notations, we have :∣∣Λ0
p

∣∣ . |Ω2|P02 → 0 (62)

Proof. We have :∣∣Λ0
p

∣∣ . |Ω2|P02 6 τK
∣∣Λ0

p

∣∣P02 ∼
1

2
p2
nτKP02 = O

(
τp2+ν

n P02

)
where we use the lemma 6.6 for the equivalence above. In this proof, we almost have the same
case than in the proof of lemma 7.2. In fact, the only difference is the matrix Σ4 which is now

Σ4 =


1 0 r 0
0 1 0 εn
r 0 1 0
0 εn 0 1

 ,

where r is a coefficient from the matrix (rkj). So, by the same method we have

p2+ν
n P02 → 0 (63)

iff ε1 < 2b2−2−ν and ε2 < 2c2−ν where we still have b = 1+(1−δ)2

2(1−δ)2 and c = 1−(1−δ)2
6 . Moreover

we can show that b2 − 1 > c2. Then, if ν < 2c2 (fullfilled by assumptions in theorem 2.1), and
from τ = o

(
ptn
)
for any t > 0, we have :∣∣Λ0

p

∣∣ . |Ω2|P02 → 0 . (64)

Lemma 7.4. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω3|P03 → 0 (65)

Proof. This proof is exactly the same than for lemma 7.3 except that the matrix becomes

Σ4 =


1 0 εn 0
0 1 0 r
εn 0 1 0
0 r 0 1

 .

In particular, we obtain the same condition on ν.

Lemma 7.5. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω4|P04 → 0 (66)

Proof. We have : ∣∣Λ0
p

∣∣ . |Ω4|P04 6 τpn
∣∣Λ0

p

∣∣P04 ∼ τp3
nP04 (67)
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Now, the correlation matrix is Σ4 =


1 0 r 0
0 1 0 0
r 0 1 0
0 0 0 1

.

Thanks to the lemma 6.9 in [CJ11a], proved in the supplementary paper, we obtain P04 =

O
(
p−4+ε
n

)
for any ε > 0. Then, we have p3

nτP04 = O
(

τ
p1−εn

)
which tends to 0 as n → ∞ since

τ = o
(
ptn
)
for any t > 0.

Lemma 7.6. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω5|P05 → 0 . (68)

Proof. This proof is exactly the same than for lemma 7.5 considering the correlation matrix

Σ4 =


1 0 0 0
0 1 0 r
0 0 1 0
0 r 0 1



Lemma 7.7. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω6|P06 → 0 (69)

Proof. This proof is exactly the same than for lemma 7.3 except that the matrix become

Σ4 =


1 0 εn 0
0 1 0 εn
εn 0 1 0
0 εn 0 1


In particular, we have : ∣∣Λ0

p

∣∣ . |Ω6|P06 6 K
2
∣∣Λ0

p

∣∣P06 ∼ O
(
p2+2ν
n P06

)
(70)

with Σ4 as correlation matrix for the 4-uplet in P06. As for lemma 7.3, we have the following
conditions

ε1 < 2b2 − 2− 2ν and ε2 < 2
(
c2 − ν

)
(71)

which is summarized in ν < c2, and which is true considering theorem 2.1. Then, we obtain the
desired result : ∣∣Λ0

p

∣∣ . |Ω6|P06 → 0 (72)

Lemma 7.8. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω7|P07 → 0 (73)
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Proof. This proof is exactly the same than for lemma 7.5 considering the correlation matrix

Σ4 =


1 0 εn 0
0 1 0 0
εn 0 1 0
0 0 0 1

 .

Lemma 7.9. Using notations previously introduced, we have :∣∣Λ0
p

∣∣ . |Ω8|P08 → 0 (74)

Proof. This proof is exactly the same than for lemma 7.5 considering the correlation matrix

Σ4 =


1 0 0 0
0 1 0 εn
0 0 1 0
0 εn 0 1

 .

Remark 4. The main constraint here for Q1 is ν < c2.

Computation of Q2 :

For this case, we will divide the computation into two parts. Indeed, we consider two cases :
when α is close to the set ΛKp and when it is not. For that purpose, we introduce the following
sets :

I0,I = {(i, j) ∈ [[1, p]], i < j and τ +K < j − i < τ + 4K} and Λ0
p,I = Λ0

p ∩ I0,I

and

I0,II = I0\I0,I and Λ0
p,II = Λ0

p ∩ I0,II .

We can write :

Q2 :=
∑
α∈Λ0

p

∑
β∈BKα

Pαβ =
∑

α∈Λ0
p,I

∑
β∈BKα

Pαβ +
∑

α∈Λ0
p,II

∑
β∈BKα

Pαβ .

Now, we look at the sum on Λ0
p,I . We notice that on this set, the probability Pαβ is issued

from a Gaussian vector with correlation matrix

Σ4 =


1 0 r1 r2

0 1 r3 r4

r1 r3 1 εn
r2 r4 εn 1


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where |ri| 6 1− δ for all i ∈ {1, 2, 3, 4}. Moreover, coefficients (ri)i may be replaced here by εn
according to the position of the indice in both sets Λ0

p,I and B
K
α . But we know that lim

n→+∞
(εn) = 0

then, for n large enough, we still have |ri| 6 1 − δ. Using Cauchy-Schwarz inequality, we can
bound :

Pαβ = E
[
1Zα>an1Zβ>an

]
6

√
E
[
12
Zα>an

]
E
[
12
Zβ>an

]
6
√

E [1Zα>an ] E
[
1Zβ>an

]
=
√

PαPβ

Now, we use the fact that α ∈ Λ0
p,I ⊂ Λ0

p and β ∈ BK
α ⊂ IK , then :

Pαβ 6
√

P0PK

which is true for any |ri| 6 1 then, sup
|ri|61,i=1,...,4

Pαβ 6
√

P0PK . At this point, using |Λ0
p,I | 6

3Kp, |BK
α | 6 K2, and P0 = O

(
p−2
)
, we get:∑

α∈Λ0
p,I

∑
β∈BKα

Pαβ 6 3K3p
√

P0PK 6 3K3P1/2
K O(1) = O

(
p3νP1/2

)
as n→ +∞.

Now, using lemma 6.3:

p3νP1/2 −→
n→+∞

0⇔ 3ν <
1

2

(
1

2
γ2 − 2|γ|+ 2

)
⇔ ν <

1

6
cγ (75)

which is true according to assumptions of theorem 2.1.

Now, let us focuse on the computation of Λ0
p,II . For that purpose, we introduce four subsets:

• Ω2
1 := {(u, v) ∈ BK

α : u− i < τ and j − v > τ +K} and |Ω2
1| 6 Kτ

• Ω2
2 := {(u, v) ∈ BK

α : τ +K < u− i and j − v < τ} and |Ω2
2| 6 Kτ

• Ω2
3 := {(u, v) ∈ BK

α : τ 6 u− i 6 τ +K and j − v > τ +K} and |Ω2
2| 6 K2

• Ω2
4 := {(u, v) ∈ BK

α : τ +K < u− i and τ 6 j − v 6 τ +K} and |Ω2
4| 6 K2

We have :

∑
α∈Λ0

p,II

∑
β∈BKα

Pαβ 6 4

4∑
i=1

∑
α∈Λ0

p,II

∑
β∈Ω2

i

Pαβ

.
In order to consider all these subset, we have the four next lemmas :

Lemma 7.10. Considering the same notations as previously :
(
u1
k, u

2
k, u

3
k, u

4
k

)
16k6n

i.i.d∼ N4 (0,Σ4).

If the probability Pαβ is issued from a Gaussian vector with covariance matrix Σ4 =


1 0 r1 x
0 1 0 0
r1 0 1 εn
x 0 εn 1


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where x ∈ {εn, 0}, then : ∑
α∈Λ0

p,II

∑
β∈Ω2

1

Pαβ 6 O
(
pt+ν+εP1/2

K

)
(76)

for any t > 0 and any ε > 0.

Proof. In order to prove this result, we observe that in this case, for all k > 1, u2
k is independent

of {u1
k, u

3
k, u

4
k}. It means that conditionally on u1

k, we have independence between Z12 and Z34.
By consequence, using Cauchy-Schwarz, we obtain :

Pαβ = E
[
E
[
1Z12>an1Z34>an |u1

k, k = 1, . . . , n
]]

(77)
= E

[
E
[
1Z12>an |u1

k, k = 1, . . . , n
]

E
[
1Z34>an |u1

k, k = 1, . . . , n
]]

(78)

6

√
E
[
E
[
1Z12>an |u1

k, k = 1, . . . , n
]2]

E
[
E
[
1Z34>an |u1

k, k = 1, . . . , n
]2] (79)

Now, because u1
k is independent of u2

k, we can use lemma 6.7 from [CJ11a] and we have :

E
[
E
[
1Z12>an |u1

k, k = 1, . . . , n
]2]

= O
(
p−4+ε

)
for any ε > 0. And on the other side, we have :

E
[
E
[
1Z34>an |u1

k, k = 1, . . . , n
]2]
6 PK

Finally, using |Λ0
p,II | 6 p2 and |Ω2

1| 6 Kτ , and writing K = O(pν), we have the desired
result: ∑

α∈Λ0
p,II

∑
β∈Ω2

1

Pαβ 6 O
(
pt+ν+εP1/2

K

)
(80)

Now, from lemma 7.10 we have the condition :

t+ ν + ε <
1

2

(
1

2
γ2 − 2|γ|+ 2

)
,

which can be fullfilled from condition in eq. (75) and for well-chosen t > 0 and ε > 0. Finally we
obtain, with our condition on ν that :

lim
n→+∞

 ∑
α∈Λ0

p,II

∑
β∈Ω2

1

Pαβ

 = 0 .

For the other subsets Ω2
i , i = 2, 3, 4, we will use the same method. Indeed we notice that

respectively for Ω2
2, Ω2

3 and Ω2
4, the covariance matrices involved are respectively :

Σ2
4 =


1 0 0 0
0 1 x r
0 x 1 εn
0 r εn 1

 , Σ3
4 =


1 0 εn x
0 1 0 0
εn 0 1 εn
x 0 εn 1

 , Σ4
4 =


1 0 0 0
0 1 x εn
0 x 1 εn
0 εn εn 1

 (81)
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For each case, we use the fact that we always have u2
k (or u1

k) independent of the other three
random variables. Also, in order to use the lemma 7.10, we notice that by construction Z12 = Z21.
Then, for cases Ω2

3 and Ω2
4, we just have to consider the Gaussian vector (u2

k, u
1
k, u

3
k, u

4
k) instead

of (u1
k, u

2
k, u

3
k, u

4
k). In that way, all matrices have the same form than in lemma 7.10 and similar

upper-bound for the probability. Now, we use the upper-bound of subsets Ω2
i . More precisely,

for Ω2
3 and Ω2

4:∑
α∈Λ0

p,II

∑
β∈Ω2

3

Pαβ 6 |Λ0
p,II |.|Ω2

3|P
1/2
K O

(
p−2+ε

)
= O

(
p2ν+εP1/2

K

)
for any ε > 0

It means that we need to have, according to lemma 6.3 :

2ν <
1

2

(
1

2
γ2 − 2|γ|+ 2

)
⇔ ν <

1

4

(
1

2
γ2 − 2|γ|+ 2

)
. (82)

With this condition

lim
n→+∞

 ∑
α∈Λ0

p,II

∑
β∈Ω2

3

Pαβ

 = 0

and

lim
n→+∞

 ∑
α∈Λ0

p,II

∑
β∈Ω2

4

Pαβ

 = 0

Finally, the case Ω2
2 leads to the exactly same result than for Ω2

1 because of the upper-bound on
|Ω2

2| which is the same than for |Ω2
1|. Then, we have :

lim
n→+∞

 ∑
α∈Λ0

p,II

∑
β∈BKα

Pαβ

 = 0

and then
lim

n→+∞
[Q2] = 0

Remark 5. The main constaint here is ν < 1
6cγ.

Computation of Q3 :

We focuse here on Q3 =
∑

α∈ΛKp

∑
β∈B0

α

Pαβ . Once more, we will consider different subsets for β

according to its place into B0
α. More precisely, let us define :

• Ω3
1 = {(u, v) ∈ Λ0

p : i− u < τ and v − j < τ} and |Ω3
1| 6 τ2.

• Ω3
2 = {(u, v) ∈ Λ0

p : i− u < τ and τ 6 v − j 6 τ +K} and |Ω3
2| 6 τK.

• Ω3
3 = {(u, v) ∈ Λ0

p : i− u < τ and τ +K < v − j} and |Ω3
3| 6 τp.
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• Ω3
4 = {(u, v) ∈ Λ0

p : τ 6 i− u 6 τ +K and v − j < τ} and |Ω3
4| 6 τK.

• Ω3
5 = {(u, v) ∈ Λ0

p : τ +K < i− u and v − j < τ} and |Ω3
5| 6 τp.

• Ω3
6 = {(u, v) ∈ Λ0

p : τ 6 i− u 6 τ +K and τ 6 v − j 6 τ +K} and |Ω3
6| 6 K2.

• Ω3
7 = {(u, v) ∈ Λ0

p : τ 6 i− u 6 τ +K and τ +K < v − j} and |Ω3
7| 6 Kp.

• Ω3
8 = {(u, v) ∈ Λ0

p : τ +K < i− u and τ 6 v − j 6 τ +K} and |Ω3
8| 6 Kp.

Then, we have :

Q3 6
8∑
i=1

∑
α∈ΛKp

∑
β∈Ω3

i

Pαβ

For Q3, we use the computation of Q2. Indeed, covariance matrices which are involved in the
computation of Q3 are similar than for Q2. The similarity comes from the fact that we exchange
the role between α and β. More precisely, for Q2 we had α ∈ Λ0

p and β ∈ BK
α and now we

have α ∈ ΛKp and β ∈ B0
α. So, covariance matrices here will have the same structure than in Q2

exchanging columns {1, 2} and columns {3, 4}.

We notice that :
|Ω3

1|, |Ω3
2|, |Ω3

4| 6 |Ω3
6| 6 K2 (83)

Using the fact that B0
α ⊂ Λ0

p, we have :∑
α∈ΛKp

∑
β∈Ω3

6

Pαβ 6
∑
α∈ΛKp

∑
β∈Ω3

6

P0 6 pK.K
2P0 = O

(
p3ν−1

)
as n→ +∞

However, from condition in eq. (75), we have ν < 1
3

(
1
4γ

2 − |γ|+ 1
)
. But, γ ∈]−2+

√
2, 2−

√
2[.

Then, 1
3

(
1
4γ

2 − |γ|+ 1
)
∈]1

6 ,
1
3 [. It leads, in particular, to ν < 1

3 and then :

lim
n→+∞

 ∑
α∈ΛKp

∑
β∈Ω3

6

Pαβ

 = 0

And so, from equation eq. (83) :

lim
n→+∞

 ∑
α∈ΛKp

∑
β∈Ω3

1

Pαβ

 = lim
n→+∞

 ∑
α∈ΛKp

∑
β∈Ω3

2

Pαβ

 = lim
n→+∞

 ∑
α∈ΛKp

∑
β∈Ω3

4

Pαβ

 = 0 (84)

Now, we look at the case when β belongs to Ω3
3,Ω

3
5,Ω

3
7 and Ω3

8. We start by describing
each covariance matrix involved. We note x ∈ {εn, 0} and r a correlation coefficient such that
|r| 6 1− δ. We have :

• for α ∈ ΛKp , β ∈ Ω3
3, Σ3

4 =


1 εn r 0
εn 1 x 0
r x 1 0
0 0 0 1


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• for α ∈ ΛKp , β ∈ Ω3
5, Σ3

4 =


1 εn 0 x
εn 1 0 r
0 0 1 0
x r 0 1



• for α ∈ ΛKp , β ∈ Ω3
7, Σ3

4 =


1 εn εn 0
εn 1 x 0
εn x 1 0
0 0 0 1



• for α ∈ ΛKp , β ∈ Ω3
8, Σ3

4 =


1 εn 0 x
εn 1 0 εn
0 0 1 0
x εn 0 1

.

We observe that for each case above one variable u3
k or u4

k is independent from the three other
ones. Then we can use the same method than for Q2 (conditioning on u3

k when u
4
k is independent

of the other ones or reversely on u3
k).Then, by Cauch-Schwarz, we obtain the same upper-bound

for Pαβ . To show that we obtain the desired convergence, we study here the worst case. That is
to say, using the fact that |Ω3

i | 6 Kp for i = 3, 5, 7, 8, we can write :∑
α∈ΛKp

∑
β∈Ω3

7

Pαβ 6 |ΛKp |.|Ω3
7|P

1/2
K O

(
p−2+ε

)
6 O

(
p2ν+εPK

)
as n→ +∞

Then, we have exactly the same condition on ν that for equation eq. (82). It means that

lim
n→+∞

 ∑
α∈ΛKp

∑
β∈Ω3

7

Pαβ

 = 0,

and it induces that
lim

n→+∞
[Q3] = 0.

Computation of Q4 :

This last quantity is simpler because we can write :

Q4 =
∑
α∈ΛKp

∑
β∈BKα

Pαβ 6
∑
α∈ΛKp

∑
β∈BKα

PK =
∣∣ΛKp ∣∣ . ∣∣BK

α

∣∣PK 6 pK3Pk = O
(
p1+3νPK

)
as n→ +∞

So, to have lim
n→+∞

(Q4) = 0 we must have, according to lemma 6.3:

1 + 3ν <
1

2
γ2 − 2|γ|+ 2 ⇔ ν <

1

3
(cγ − 1)

Under this assumption on ν we have

lim
n→+∞

[Q4] = 0
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Finally, gathering the results from Q1 to Q4 and under sufficient assumtions, we have :

lim
n→+∞

[b2,n] = 0.

Remark 6. The constraint on ν is ν < 1
3(cγ − 1).

7.3.3 Computation of b3,n

We have :

b3,n =
∑

α∈Λ0
p∪ΛKp

E
[∣∣E [1Zα>an |σ (Zβ, β ∈ (Λ0

p ∪ ΛKp )\Bα
)]
− E [1Zα>an ]

∣∣]
=
∑
α∈Λ0

p

E
[∣∣E [1Zα>an |σ (Zβ, β ∈ (Λ0

p ∪ ΛKp )\Bα
)]
− E [1Zα>an ]

∣∣]
+
∑
α∈ΛKp

E
[∣∣E [1Zα>an |σ (Zβ, β ∈ (Λ0

p ∪ ΛKp )\Bα
)]
− E [1Zα>an ]

∣∣]
(85)

The first term of the RHS above is 0 from the choice of Bα. Hence

b3,n =
∑
α∈ΛKp

E
[∣∣E [1Zα>an |σ (Zβ, β ∈ (Λ0

p ∪ ΛKp )\Bα
)]
− E [1Zα>an ]

∣∣] (86)

6
∑
α∈ΛKp

E
[
E
[
1Zα>an |σ

(
Zβ, β ∈ (Λ0

p ∪ ΛKp )\Bα
)]]

+ E [E [1Zα>an ]] (87)

6 2
∣∣ΛKp ∣∣PK (88)

(89)

According to the hypotheses in theorem 1, we have

lim
n→+∞

[∣∣ΛKp ∣∣PK] = 0

Finally, we obtain :

lim
n→+∞

[b3,n] = 0

Remark 7. Gathering remark 2 to 6 and noticing that on γ ∈] − 2 +
√

2, 2 −
√

2[ we have
1
3(cγ − 1) < 1

6cγ we get the final assumptions of theorem 1 for ν.

�
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